

A Framework for Integrating Wireless Sensors and Cloud

Computing

by

Mohammad Jassas

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Applied Science

in

Electrical and Computer Engineering

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

© Mohammad Jassas, 2015

ii

Abstract

A Framework for Integrating Wireless Sensors and Cloud Computing

Mohammad Jassas Advisor:

University of Ontario Institute of Technology, 2015 Professor Qusay H. Mahmoud

Wireless sensors generate a large volume of data that require a highly scalable framework

that enables storage, processing, and analysis. Cloud computing technology can provide

unlimited storage in addition to a flexible processing infrastructure, allowing for the

management and analysis of vast amounts of sensor data. This thesis presents a framework

for integrating wireless sensors and cloud computing. This framework can provide

scalability and high availability for applications that use wireless sensors. Moreover, this

cloud-based framework is designed to immediately make decisions based on real-time

sensor and historical data, and a list of sensor and user policies are defined by the system

administrator. In order to evaluate the framework performance after applying scalability

and availability techniques, a load testing environment was built in the cloud to simulate a

large number of virtual users. This environment was created in order to examine the quality

of the services as provided by Windows Azure. The results have shown that the use of

scalability techniques can significantly increase availability and performance. Finally, we

present an eHealth smart system as a case study for collecting real-time data that can be

used for real-time monitoring and data analysis.

iii

Dedication

To my parents and siblings.

They mean a lot to me!

iv

Acknowledgements

I would like to thank my family members, as without the continuous encouragement of my

parents, and constant motivation and loving support of my wife, it would have been

difficult to fulfill this work.

 I would like to thank and express my sincerest gratitude to my supervisor, Dr. Qusay

Mahmoud, for his continuous support and motivation throughout the research work.

 I would also like to thank my exam committee members, Dr. Masoud Makrehchi, Dr.

Ying Zhu, and Dr. Martin Agelin-Chaab, for their consideration and time in revising my

thesis and their helpful recommendations.

 I convey special acknowledgement to Abdullah Qasem, a good friend, for his boundless

help and encouragement. He is a friend in the truest sense and I wish him the very best in

his future endeavours. I would also like to acknowledge another friend, Abdulaziz

Almehmadi, for his assistance with the configuration of the Raspberry Pi.

 Last but not least, the scholarship and support from Umm Al-Qura University in the

Kingdom of Saudi Arabia is greatly acknowledged.

v

Table of Contents

Abstract .. ii

Acknowledgements .. iv

Acronyms and Abbreviations ... viii

List of Figures ... ix

List of Tables ..x

Chapter 1 Introduction ...1

1.1. Motivation ...2

1.2. Research Statement ...3

1.3. Thesis Contributions ...4

1.4. Thesis Outline ...5

Chapter 2 Background and Related Work ..6

2.1. Wireless Sensor Networks ..6

2.2. Cloud Computing ..7

2.2.1. Cloud Delivery and Deployments Models .. 7

2.2.2. Scalability in Cloud Computing ... 8

2.3. Security and Privacy in the Cloud ...10

2.4. Internet of Things ..10

2.5. Related Work...11

2.5.1. Scalability and Availability... 15

2.5.2. Data Management and Analysis ... 15

2.5.3. Context Awareness ... 16

2.5.4. Security and Privacy in the Cloud .. 16

2.6. Summary ...17

Chapter 3 Proposed Framework ..18

3.1. Overview ...18

3.2. Framework Components and Design Goals ..20

vi

3.3. Data Collection ..20

3.4. Scalability and availability ..20

3.5. Data Management and Analysis ..22

3.6. Data Security and Privacy ..24

3.6.1. Encryption Mechanism ... 24

3.6.2. Hashing Mechanism .. 25

3.7. Summary ...25

Chapter 4 Prototype Implementation ..26

4.1. Implementation Architecture ...26

4.1.1. Overview ... 26

4.2. Components Implementation ..28

4.2.1. Client Platform .. 28

4.2.2. Cloud Platform .. 30

4.2.3. Decision Making Algorithm Implementation.. 30

4.2.4. Microsoft Azure Virtual Machines .. 31

4.2.5. Azure Cloud Services ... 32

4.2.6. Availability Set ... 32

4.2.7. Virtual Machines Scalability ... 32

4.3. Applying Scalability and Availability Techniques ...33

4.4. Security and Privacy Implementation ...37

4.5. Summary ...38

Chapter 5 Evaluation Results ...39

5.1. Storing Sensor Data and Performance Measurement ..39

5.2. Load Testing in the Cloud ...42

5.2.1. Methodology ... 43

5.2.2. Experimental Design and Implementation .. 44

5.2.3. The System Running in a Single VM ... 47

5.2.4. System Performance After Applying Load Balancing 51

5.3. Summary ...60

vii

Chapter 6 Case Study: An eHealth Smart System ...61

6.1. Overview ...61

6.2. Physical Components of eHealth System..63

6.3. eHealth Smart System Architecture ..64

6.4. Performance Evaluation and Results...71

6.5. Summary ...73

Chapter 7 Conclusion and Future Work ...74

7.1. Contributions ...74

7.2. Future Work ..75

Appendix A : The Client Application in Raspberry Pi ..77

Appendix B : The Server Application in The Cloud ..81

Appendix C : Decision Making Algorithm Code ..83

Appendix D : Applying Hashing Technique ...85

Appendix E : Implementation of Encryption Technique..87

Appendix F : Generating Random Sensor Data From Client Side89

Appendix G : Cloud Server Application ..93

Bibliography ...96

viii

Acronyms and Abbreviations

WSNs Wireless Sensor Networks

IoT Internet of Things

KNN K-Nearest Neighbour

SQL Structured Query Language

NoSQL Not Only SQL

VM Virtual Machine

DR Data Repository

DPU Data Processing Unit

RS Request Subscriber

DBMS Database Management System

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

VHDs Virtual Hard Disks

CDA Clinical Document Architecture

WSP Web 2.0 Service Platform

ix

List of Figures

Figure 3.1: The Proposed Framework ... 19

Figure 4.1: System Architecture of Prototype Implementation .. 27

Figure 4.2: Raspberry Pi Components .. 29

Figure 4.3: Load Balancer and Traffic Manger Implementation in Azure 34

Figure 5.1: Storing Sensor Data in the Cloud ... 40

Figure 5.2: Performance Results of Storing Different Numbers of Requests in the Cloud

... 41

Figure 5.3: Architecture of Building Load Testing Environment in the Cloud 45

Figure 5.4: Thread Group Setting ... 48

Figure 5.5: Sample Load Testing Run using JMeter .. 48

Figure 5.6: Results of Testing a System Running in a Single VM 50

Figure 5.7: Architecture of Setting Load Testing after Applying Load Balancing

Technique .. 51

Figure 5.8: The Performance of the System after Applying Load Balancing 53

Figure 5.9: The Architecture of Setting the Load Testing in the Cloud with Applying

Traffic Manager Technique to the System.. 54

Figure 5.10: The Performance of the System after Applying Traffic Manager 56

Figure 5.11: Architecture of Setting Load Testing after Applying the Load Balancer and

Traffic Manager Techniques ... 58

Figure 5.12: Applying Traffic Manager and Load Balancer .. 59

Figure 6.1: eHealth System Components.. 64

Figure 6.2: Medical Sensors and eHealth Sensor Shield Connected to Pi 64

Figure 6.3: eHealth Smart System Architecture ... 65

Figure 6.4: The Home Page of eHealth Smart System Running in Windows Azure 66

Figure 6.5: Real-time Data Generated from Medical Sensors .. 68

Figure 6.6: Decision Making Process ... 69

Figure 6.7: Body Temperature Monitoring for One Patient at Different Times 71

x

List of Tables

Table 4.1: The size of VM Running in Azure ...32

Table 4.2: Traffic Manger Load Balancing Methods ..36

Table 5.1: The Performance of Storing Sensor Data in the Cloud41

Table 5.2: The Size of VMs Used for Load Testing ..46

Table 5.3: The Results of Run the System in a Single Machine..49

Table 5.4: The Result of Testing the System after Applying Load Balancing52

Table 5.5: Three VMs Running at Different Regions ..55

Table 5.6: The Result of Testing the System after Applying Traffic Manager55

Table 5.7: The Results after Applying the Load Balancer and Traffic Manager

Techniques ...58

Table 6.1: System Decisions ..73

1

Chapter 1

1. Introduction

Many applications have used Wireless Sensor Networks (WSNs) in their components.

Although these applications are widely implemented and are an important trend in many

industrial, governmental, commercial, and environmental applications, WSNs face several

issues due to weaknesses in their communication, such as security and privacy, reliability,

scalability, and mobility. WSNs also face many challenges with resources, such as limited

battery and storage data capacity, availability of bandwidth, and data processing

capabilities. Another important factor to be considered is the lack of efficient management

of the vast amounts of sensor data. High-performance, powerful, scalable computing, and

an unlimited storage infrastructure are required for real-time storage and data management

and analysis. Therefore, using cloud computing technology can be an effective solution to

overcome the limitations of wireless sensors in terms of storage, memory, scalability, and

availability. Cloud computing technology has several advantages, including flexibility,

high levels of automation, scalability, availability, the provision of fast service, and

unlimited storage capacity.

 In designing and implementing a framework, consideration must be given as to whether

such a framework can provide scalability and high availability to wireless sensor

applications. In addition, this framework should be able to manage and analyze a large

amount of sensor data in order to extract interesting patterns.

 This thesis presents the design and implementation of a framework that integrates

wireless sensors and cloud computing. The proposed framework can be applied to the many

2

applications that use wireless sensors in their infrastructure. The presentation of this

framework focuses on building a prototype that provides scalability, high availability, and

security, and enhances data management and analysis for wireless sensor applications.

This chapter presents our motivation behind understanding why integrating wireless

sensors with the cloud is an effective solution. This chapter is organized as follows: Section

1.1 presents the motivation of this research, while Section 1.2 details the research

statements which instigated this study, and Section 1.3 specifies the thesis contributions.

Finally, the organization of this thesis is presented in Section 1.4.

1.1. Motivation

Many modern applications, such as smart home monitoring, the smart city, and eHealth

systems have used Wireless Sensor Networks (WSNs) in their infrastructures. For example,

eHealth smart systems have been used to give healthcare environments more vitality and

to provide very fast service for patients. In recent years, however, these sensors have

generated a vast amount of data. Consequently, WSNs have faced several challenges and

limitations in dealing with the large scale of data in terms of processing, memory, storage,

and scalability. In order to solve these challenges and limitations, our motivation is to

develop a framework for integrating wireless sensors with cloud computing. This

framework can be applied to offer unlimited data storage, high scalability, availability, and

security.

Even though cloud computing has many advantages in terms of storage capacity, the

ability to easily share information, and access to lightning-fast processing power, cloud

computing has faced several challenges, such as security, availability, and

3

performance[1][2][3]. Thus, this study also presents modern techniques that are applied

recently to overcome the cloud computing challenges.

 Even though many researchers have provided and developed several frameworks for

the integration between WSNs and cloud computing, there are several new technologies

and techniques that have emerged in terms of storage, scalability, availability, and security.

Thus, our objective is to develop a framework that provides a new approach for the

applications that use wireless sensors in their infrastructure. This approach focuses on the

design and implementation of a framework that uses new features of cloud computing to

overcome the lack of the embedded systems and sensors.

1.2. Research Statement

In order to design and implement a framework for integrating wireless sensors with the

cloud, existing frameworks will be studied to identify areas of weakness. Following this, a

proposed framework will be designed and implemented using modern techniques of cloud

computing. Even though this study focuses on providing scalability and high availability

to applications that use wireless sensors in their infrastructures, data management, analysis,

security, and privacy are taken into consideration in this framework. The framework will

be evaluated in terms of scalability and availability. In this thesis, we also study the

challenges of integrating wireless sensors and cloud computing. In addition, we address

new techniques that have been used to increase the scalability and availability of cloud

technology, while ensuring that all sensor data have been securely stored. Moreover,

applying the auto scaling technique to the cloud-based system is extremely valuable when

the number of users is increased or decreased, as this technique helps to ensure that the

proposed framework is reliable and cost efficient. For example, when the system is

4

experiencing high load, the number of virtual servers employed will be automatically

increased. Alternatively, when the system is experiencing low load, the number of virtual

servers employed will be automatically decreased. The automatic increase or decrease of

server usage contributes to a highly reliable and cost efficient platform.

1.3. Thesis Contributions

The main contributions of this thesis are as follows:

 Integrating wireless sensors with the cloud - We present a framework for the

integration of wireless sensors and cloud computing. This framework provides wireless

sensor technology with high scalability and availability, and promotes more security

features. Moreover, storing sensor data in the cloud, which provides unlimited storage

capability, can be an efficient solution for applying data analytics techniques. A

decision making algorithm is one of the most important features of this framework.

This algorithm makes proposed decisions based on real-time sensor and historical

sensor data, and a list of sensor and user policies are defined by the system

administrator. In terms of security and privacy, we present some existing techniques

that can be applied to ensure that sensitive data have been securely transferred and

stored.

 A prototype implementation of the framework using Azure - Azure is a cloud

platform that enables developers to build, publish, manage, scale, and test applications.

Thus, the proposed framework was implemented using Windows Azure. The

framework has been evaluated in terms of scalability and availability using the JMeter

tool to generate a high load by simulating a large number of users to examine the

capability of the system after applying the scalability and availability techniques.

5

 Data security and privacy: Securing data is one of the challenges that face cloud

technology. Thus, we present some techniques that can be applied to ensure that

sensitive data has been securely transferred and stored. Although data security and

privacy are considered in this framework, these factors are not the focus of this thesis.

 Designing and implementing an eHealth System: As proof of concept, we designed

and implemented an eHealth system that can be applied to serve the healthcare

community. We have published some of the results at an IEEE conference [4].

1.4. Thesis Outline

This thesis is structured as follows: Chapter 2 presents an overview of WSNs, cloud

computing, and the Internet of Things. We then discuss previous studies that used cloud

computing technology to solve the challenges that face WSNs, including limited storage,

computing, and low performance. Chapter 3 describes the design and implementation of

the proposed framework, while Chapter 4 documents the proof of concept implementation

of the proposed framework. Chapter 5 presents the design of experiments for evaluating

the performance of the proposed framework as well as results of evaluation. The case study

(eHealth Smart System) is the focus of Chapter 6. Finally, the conclusion and future work

are provided in Chapter 7.

6

Chapter 2

Background and Related Work

This chapter presents an overview of the main research areas related to this thesis, namely,

cloud computing, wireless sensors, and Internet of Things (IoT). We also review previous

studies that have been carried out for integrating wireless sensors and cloud computing.

2.1. Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are widely implemented and becoming an important

trend in several industrial, governmental, commercial, and environmental areas. WSN

architecture is a self-organizing network that has a number of sensor devices, which

connect to other devices by using a wireless communication network. In other words,

WSNs are a computer network with a large number of sensor nodes. These sensor nodes

interact to monitor a specific area and bring data from surrounding areas. Sensor nodes

then transfer sensing data to a master management node [5][6]. A WSN contains sensors

that have the ability to cooperatively monitor environmental conditions such as pressure,

pollution, temperature, and sound. In recent years, WSNs have also been used in many

areas such as healthcare, military targets [7][8], environmental monitoring (such as natural

disasters [9]), seismic sensing, dangerous environment exploration [10], and sound.

However, WSNs face several challenges and issues due to their lack of communication in

areas such as security and privacy, short communication range, reliability, scalability, and

mobility. Sensor networks also face many challenges with resources such as limited battery

and storage data capacity, availability of bandwidth, and capability to process data [11].

7

2.2. Cloud Computing

Cloud computing, the future generation’s computing model as a utility, has the ability to

make cloud-based software more attractive as a service. Developers who have innovative

ideas for enhancing Internet services no longer need to set up a large number of physical

machines, or require experts and technical support to operate the infrastructures. Cloud

computing technology has several advantages such as flexibility, automation, low cost, fast

service, and unlimited storage capacity. Cloud computing technology provides users with

great flexibility [12][13]. For example, users are able to view their data and modify them

from anywhere and at any time by using different kinds of devices (such as computers,

smart phones, and laptops) and different kinds of operating system (such as Windows, Mac,

and Android). One of the popular cloud computing definitions is that published by the

National Institute of Standards and Technology (NIST). “Cloud computing is a model for

enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service provider

interaction. This cloud model promotes availability and is composed of five essential

characteristics, three service models, and four deployment models” [14].

2.2.1. Cloud Delivery and Deployments Models

NIST introduces three cloud delivery models which are Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS). All three models can be

combined to build an architecture of IT resources. Thus, the PaaS environment provides

the cloud consumers with a ready-made environment to develop and deploy their

applications as SaaS cloud services. Many cloud providers offer PaaS such as Heroku [15]

8

and Google App Engine[16]. Examples of cloud providers that offer IaaS are Amazon Web

Services (AWS) [17] and Windows Azure [18].

 NIST also presents four cloud deployment models, namely, public cloud, private cloud,

community cloud, and hybrid cloud. A public cloud generally offers IT resources and cloud

services, and these services are provided by a third party. A private cloud offers IT

resources that are used by only one organization. The purpose of the private cloud is to

ensure that an organization is isolated from others. A community cloud is generally limited

for access by a group of organizations that have common computing concerns. A hybrid

cloud is a combination of two or more other cloud deployment models [13].

2.2.2. Scalability in Cloud Computing

One of the main advantages of using cloud computing is that it addresses and supports

many scalability issues. When managing a successful application, the ability of the system

to scale becomes a critical need. It is important to be able to fit rapid growth in incoming

traffic and a large amount of data. This helps to ensure customers, who are using the

system, are satisfied. Thus, the most obvious goal of an elastic system is to have the ability

to automatically scale-out to meet growing demand. However, the objective is not only to

scale out to handle increasing loads, but also to scale in during lower volume periods or

reduce the number of incoming requests [19].

 Scaling has been applied to many systems to increase computing resources. Two

different types of scaling are Vertical Scaling and Horizontal Scaling. The definition of

Vertical Scaling, is growing a single machine with more and faster CPUs, more memory,

or faster disks. Horizontal Scaling, can be applied by adding additional servers to support

9

the overall application’s computing requirements, and the load balancing technique that

has been applied across those resources.

 The main role of the load balancer is to distribute incoming requests from clients across

available servers. Many cloud providers offer different methods of load balancing. The

cloud user can choose which method best fits the application requirements.

 How scalability and reliability are interlinked is another important factor that should be

considered when the architecture of the system has been designed. Since VMs are added

to the system’s infrastructure, new endpoints that are added to the system can fail for any

reason. Therefore, all components should be configured in a redundant manner, to ensure

24x7 always-on operations.

 Scalability and availability are key factors that make cloud computing more attractive

to organizations and individual users. Developers have full control for adding and

removing instances as they need. Thus, if one of the instances fails, the load balancer

reroutes the workload to the remaining running instances. Load Balancing has many

features that include distribution of requests across multiple instances, and continuous

checking of the healthy instances which have been registered with Load Balancing. The

most popular load balancer technique is Round Robin, which distributes incoming requests

one at a time to an application server for processing, allowing requests to be serviced in a

certain period of time [20][21].

10

2.3. Security and Privacy in the Cloud

Security and privacy are the most significant challenges in the cloud computing

environment. Cloud computing is a multiple range environment in which numerous

computing resources are shared. These shared resources, both hardware and storage data

areas, are at risk from insider or outsider attacks. Cloud computing faces several challenges

in terms of security and privacy [2][22]. Researchers have discussed various approaches to

address these challenges, and they present their solutions for building a more secure cloud

environment. Many methods have been introduced to ensure data security and privacy in

the cloud, including creating secure channels to transfer data from local servers to cloud

servers, using cryptographic processes to encrypt data before storage, and applying

authentication and authorization processes before storing or retrieving sensitive data [23].

2.4. Internet of Things

Widespread sensing enabled by WSNs has been used in many areas of the live

environment. As a result, this offers a high ability to sense and understand environmental

indicators. The fast growth of these devices and sensors in a communicating network has

brought into being the Internet of Things (IoT). Actuators and sensors combine with the

environment, and the information is shared across multiple platforms. In the IoT model, a

large number of the objects/things that are around us are going to be on the network in one

form or another. Smart connectivity with new modern networks and context-aware

computing are important components of IoT [24][25].

 The Internet of Things demands the following: (1) Users understand how they can use

their appliances; (2) Pervasive communication networks and software architectures process

the contextual information to where it is relevant; (3) The use of analytics tools to discover

11

interesting patterns and smart behavior from collected data. When these three fundamental

processes have been applied, context-aware computation and smart connectivity can be

accomplished. Ashton in 1999 presented the term Internet of Things [26]. However, the

definition of IoT has been more widely used in different kinds of applications such as

transportation and healthcare [2]. Weiser, the father of ubiquitous computing, presents the

definition of the smart environment as “ the physical world that is richly and invisibly

interwoven with sensors, actuators, displays, and computational elements, embedded

seamlessly in the everyday objects of our lives, and connected through a continuous

network” [27].

2.5. Related Work

This section presents some related work which focuses on the design and implementation

of a framework for integrating WSN and cloud computing. Some of the work presents

techniques that can apply to increase the security and privacy in the cloud.

 Fortino et al. [28] present a system designed for the monitoring and management of

body sensor data, called Body Cloud, using cloud computing technology. The authors’

approach relies on the integration of cloud computing and WSNs which can provide

scalable, powerful data storage, and the enhancement of processing infrastructure to

execute the analysis of body sensor data. This study presents the monitoring and

management of sensor infrastructure, especially data flows, based on cloud computing

infrastructure. One of the important applications is monitoring a patient condition using

medical distribution sensors. A network of body sensors generates a vast amount of data

that should be processed and stored. Cloud computing technology can solve the limitations

of WSNs in terms of computing, storage, and scalability. Body Cloud architecture covers

12

some techniques that are related to data management. However, the security perspective

for storing the sensor data in encrypted format is not discussed in their approach.

 Rao et al. [29] describe how cloud computing and the IoT work together to overcome

the challenges of Big Data. This study discusses sensing service technology in the cloud

computing environment when using some applications in contexts such as environmental

monitoring and agriculture. This work presents an architecture model in the cloud, and the

main advantage of which is providing sensing as a service in the cloud. WSNs enables

services and applications to react with the real physical environment. Cloud computing

services, includes Big Data analytics and high computing resources, can be used to store,

process, and analyse the sensor data to improve availability and scalability.

 Perumal et al. [30] presents a study of the integration between WSNs and cloud

computing for e-healthcare applications. In this application, sensor data are captured and

will be sent to the cloud environment. A variety of end users, such as researchers, clinics,

and patients can have full access to their data in the cloud. This study presents an

architecture model that can provide a cost efficient solution for life care agencies and

automating hospitals, allowing then to manage real-time data from different types of

sensors, provide strong authentication mechanisms, and support privacy. However, there

are some significant points that should be taken into consideration in future studies such as

using a strong encryption mechanism for storing data in the cloud.

 Sudarsan et al. [31] introduce a new approach for life care communities, which focuses

on a secured Wireless Sensor Networks integrated cloud computing for life care. The

system, which has been designed to monitor human health, has many features that allow it

13

to share data in the cloud among different types of users, including doctors, care-givers,

pharmacies, and clinics. Thus, at low cost, the users can obtain a high service of healthcare.

This study uses different technologies with new approaches, including cloud computing

security, and WSN.

 Chung et al. [32] present a new approach for integrating a WSN with cloud computing

to monitor the information provided by an agriculture system. The authors propose a

solution to monitor a physical environment and to gather important sensor data, such as

humidity and temperature. The authors suggest that applying this approach will provide

convenient and quicker information for those who use the system, based on WSNs.

However, this paper does not mention any technique that is applied to deal with a vast

amount of sensor data. In addition, in their approach, the authors do not design their

architecture model based on a security perspective. Therefore, the design of this

architecture is weak because it does not consider the most important factor, which is the

security perspective.

 Lounis et al. [33] offer a design and implementation architecture for gathering and

accessing large amounts of data generated by WSNs. The main objective of this

architecture is to overcome the challenges of dealing with a vast amount of data and to

facilitate information sharing among healthcare professionals. The paper focuses on data

management in WSNs, specifically sensor data that have been generated from medical

sensors.

14

 Khandakar et al. [34] present a framework for integration between WSN and cloud

computing and they discuss the security and privacy challenges of cloud computing. The

focus of their research was on access control, user management, retrieval of distributed

data, and storage. The framework has many components, including Identity and Access

Management Unit (IAMU), Data Processing Unit (DPU), Request Subscriber (RS),

Pub/Sub Broker, and Data Repository (DR). While they use an encryption message

technique in the cloud, they do not mention which cryptography algorithm is applied for

the encryption mechanism. In addition, they do not discuss which type of security key

mechanism is used. In particularly, whether there is a specific technique to generate a

security key for each user or if a static key is used. All these details have a significant

impact from a security perspective.

 Lan [35] presents a novel framework, Sensor Cloud, which enables the consumer to

effortlessly capture, process, access, store, analyze, share, visualize, and seek a large

amount of sensor data from many types of applications, using all features of the cloud, such

as storage resources and computational IT.

 Chang et al. [36] have presented ubiquitous cloud computing middleware for smart

home automation. In their approach, the cloud computing platform enables end users to

monitor and control various kinds of sensors and devices in the home at any-time and from

anywhere. A significantly large amount of data will be processed in the cloud computing

environment which has context-aware intelligence processing to control the remote

devices.

 Rolim et al. [37] focused on developing patients’ data gathering technique. This paper

presents a novel framework to solve the problems of taking notes manually which is a slow

15

process. Besides, they cause lateness for accessing real-time data and that restricts the

capability of clinical monitoring and diagnostics. Thus, authors proposed a system to

automate collecting patients’ information process using wireless sensor networks which

are connected to medical equipment, and then transferring this data to the healthcare

provider centers in the cloud to store, process, and analyze patients’ data.

2.5.1. Scalability and Availability

One of the most significant features of cloud computing is providing availability. Thus,

applying the load balancing technique in the cloud computing environment is an important

factor for improving availability and performance. The Load balancing technique has been

explained in a white paper as demonstrated by Adler [38]. The paper presents the

techniques and tools that have been commonly used for applying load balancing in the

cloud computing environment. However, the author states that the load balancing technique

still has some challenges in adapting to the many changes in the cloud. Chaczko et al. [21]

illustrates the role that load balancing plays in improving availability and performance. For

applying load balancing, there are many different types of load balancing algorithms such

as Ant Colony and Round Robin.

2.5.2. Data Management and Analysis

Lijun et al. [39] have applied Hadoop technology to develop Health Information Exchange

(HIE), which is the next generation of health informatics development in China. Their

approach employs a medical information platform that relies on Hadoop, called Medoop.

Medoop uses HDFS to efficiently store Clinical Document Architecture (CDA). In

addition, they utilize the MapReduce paradigm to organize the attributes of data on the

CDA document, based on the frequent business and computed statistic distribution. Their

16

objective in applying the Medoop platform is to build an integrated platform for health

information storage by using the components in Hadoop. Utilizing Hadoop to store CDA

documents increases the efficiency of storing clinical data.

2.5.3. Context Awareness

Huang [40] presents a new design of the Web 2.0 Service Platform (WSP) for DPWS based

smart home sensors and devices in cloud computing environments. This platform

automatically records and observes a user's behaviours to adapt home appliances to reset

the devices based on the changing need of the residents. Users can obtain more elective

mobility and scalability by implementing ontology technology. A mobile user can control

and monitor home devices through web 2.0 blog-based interfaces.

 Lu et al. [41] propose a novel indoor localization method deploying Wi-Fi access points,

called the cluster K-NN algorithm. Furthermore, using this technique does not cost extra

money for infrastructures and still provides decent accuracy compared to other localization

techniques. According to the offline simulation, the complexity of the cluster k-NN is

lower, while the accuracy is up to 98.67 percent.

2.5.4. Security and Privacy in the Cloud

Hwang et al. [42] approach an interesting business model for cloud computing, this model

based on the concept of performing the encryption and decryption technique, whereby a

cloud provider must ensure that the data have been stored in encrypted format. Moreover,

after the computation operations are completed, all data must be deleted. This study

discusses many points related to encryption data in the cloud. However, it does not discuss

security aspect during uploading and downloading operations in terms of securing the

channel between the client and cloud provider.

17

 Lam et al. [43] proposes Tresorium which is a cryptographic file system that is designed

for data storage in the cloud. The authors state that the data must be encrypted before

uploading to the cloud storage providers. They mention that Tresorium enables the sharing

of data among a number of clients using an underlying group key agreement protocol.

However, in their solution, the data encryption process is not completed in the cloud.

Therefore, users need to have specific software to encrypt their data before the uploading

operation.

2.6. Summary

This chapter presented an overview of cloud computing, WSN, and IoT areas. Some

previous studies present a framework of integrating WSN and cloud computing while other

related work was describe some encryption techniques have been applied in order to

increase the security and privacy in the cloud. The proposed framework will be presenting

in the next chapter.

18

Chapter 3

 Proposed Framework

This chapter explains the main components of our proposed framework. The most

important features of this framework are providing high availability and scalability, and

more security. Data management and analysis have been incorporated into this framework.

Section 3.1 describes an overview of the proposed framework. The illustration of

framework components is presented in Section 3.2, while the description of how sensor

data have been collected is offered in Section 3.3. The scalability and availability

techniques are presented in Section 3.4; while data management and data analysis is

discussed in Section 3.5. Finally, Section 3.6 presents the data security and privacy

techniques that apply in the proposed framework.

3.1. Overview

As shown in Figure 3.1, the proposed solution serves different types of applications such as

eHealth, smart home, smart city, and other applications that need to use Wireless Sensor

Networks (WSNs) in their infrastructure. These sensors are connected to a local server

which is responsible for collecting data from sensors and for transmitting the data through

wireless communication channels to the appropriate services hosted in the cloud. The

system, which is located in the cloud side, has many functions as listed below:

(1) It is responsible for providing a service to store sensor data in an encrypted format;

(2) It provides a platform for analyzing, managing, updating, visualizing real-time data;

19

(3) The system is able to make appropriate decisions based on real time data and

historical data; and

(4) Some security techniques have been applied to ensure that sensitive data is

transferred from clients to the cloud server securely, and is stored in encrypted format

using advance cryptography algorithm.

Raspberry pi with e-health

Sensors

Web servers

Data Security and User Authentication

 Privacy and Data Management

Historical data

Normal

Decision making

ID and Sensor data

Proposed decision

Smart citySmart home

Load balancer

Database

Abnormal

Figure 3.1: The Proposed Framework

20

3.2. Framework Components and Design Goals

A number of points should be followed in order to explain the concepts and techniques that

are designed to build this framework:

3.3. Data Collection

Wireless sensors are responsible for measuring and monitoring environmental conditions.

These sensors are often connected to a local server or microcomputer. For example, these

sensors are connected to the Raspberry Pi that reads the data from a smart home sensor

device and securely transfers this data (device id and sensor data) over the wireless network

channel to the cloud. A cloud-based system can be connected to one Raspberry Pi or more,

based on the application requirements. An application has been deployed to the cloud to

receive and store sensor data in database. Sensor data will be stored in a high scalable

available database that is running in the cloud.

3.4. Scalability and Availability

Building a scalable and available framework in the cloud is one of our objectives. Thus,

we architect the proposed framework has been designed to ensure high scalability and

availability using some cloud services that have been created to help developers build high

scalable, available applications running in the cloud environment. The proposed

framework can serve a large number of users after applying the scalability techniques.

Horizontal scaling has been selected as this type of scaling allows the system to scale out

and scale in without down time. Maximizing scalability is a significant aspect that can be

applied by increasing the number of virtual machines that can serve a large number of

users, and scaling a system based on the business requirements by adding or removing

resources from the system’s components. In addition, some cloud providers offer some

21

features such as caching and load balancer services that are specifically offered to enhance

the scalability of the cloud application.

 One of the best features of cloud computing is offering auto-scaling service. Auto-

scaling helps cloud users apply some available metrics based on their preference, such as

CPU average. For instance, cloud users can set metrics such as adding three virtual

machines when the CPU average is higher than 50% for all running VMs.

When we launch a single VM, we are launching a VM running on a physical server at one

of data centers. As a result, one of the following events could take down the VM:

 The VM itself could fail, or the hard drive volume could become corrupted;

 The physical server on which the VM resides could fail;

 The data center, which houses the physical machine could fail.

Running the system in one single virtual machine is not an optimal solution because it can

fail for any reason. Thus, the proposed framework has used several techniques that are

offered by cloud providers to maximize the availability of the system, such as running a

system in different geo-locations to ensure that the system is always available. Thus,

hosting copies of a web-based system in multiple data centers around the world increases

the availability of the system. The data center is called an Availability Zone (AZ). A whole

cluster of AZ's is known as a Region. The proposed framework is designed to deploy the

system to different AZs for high availability. When a single VM or an entire AZ goes

offline, traffic stops routing to the affected VM. This is the idea behind a Multi-AZ setup,

and which will covered in more detail later in Chapter 4.

 Since we provide our framework to serve multiple numbers of users, we need to apply

load balancing technology to our proposed solution to distribute expected incoming

22

application workload across multiple web servers. This will help to achieve maximum levels

of fault tolerance in the application and provide the desired amount of load balancing

capability, which is required to distribute application workload. Furthermore, load

balancing is responsible for ensuring that only healthy web servers receive requests by

detecting unhealthy web servers and changing the new request path towards the remaining

healthy web servers.

3.5. Data Management and Analysis

Once wireless sensor applications are integrated to cloud, unlimited storage will be

available. In addition, many cloud providers offer different ways to store and manage large

amounts of data. Many applications today rely on a Relational database using Database

Management System (DBMS) to store receiving data. Relational databases such as

Microsoft SQL Server. Managing and analyzing sensor data is an important approach

particularly when sensors generate a large amount of data. As a result, using advance

analysis tools that can help to extract interesting patterns from a large amount of data is

required. In the proposed framework, a system is able to make decisions based on real-time

sensor data and historical data. In the next section, we will explain the decision making

process.

3.5.1. Decision Making Algorithm

The system is responsible for creating appropriate decisions using a decision-making

algorithm based on standard medical practices and historical data. The proposed decisions

will be sent to system administrators, who are responsible for making a final decision for

approval. Therefore, users will have high quality services because the system provides real-

time data gathering, eliminating manual data collection, enabling the monitoring of the large

23

number of devices, and creating appropriate decisions that can help users to create final

decisions.

 When the cloud application receives sensor data from the client application, the cloud

application will check if the sensor data is normal or abnormal, depending on the policies

defined in the system. Every sensor and user has a list of policies are defined by the system

administrator. For example, in the Smart eHealth System, some patients have chronic

diseases, so medical staff must consider some changes in patient heartbeat rates, decreases

in Oxygen saturations and increase in body temperature. Thus, the system will make

decisions based on these abnormal data and other criteria. Another concern in smart home

systems is applying policies technique. This provides the necessary options to create a

dynamic policy by using active devices and their attributes. The following examples can be

applied in smart home applications to set policies. These examples explain how machine to

machine can take place based on policies that have been created by the system administrator.

If Alarm System = “On” and HomeTem > “40.5” = “Set Status is Abnormal” and

Making Decision & (send notification to the Emergency Services).

 If the data is normal, the application will store this data in the database to feed the

historical data. Otherwise, the application will make a decision based on historical medical

data and polices. If the user does not have any historical data for the same condition/s, the

system will make a decision based on the historical statistical data of users who have similar

conditions. The decision making algorithm has been presented in detail in chapter 6.

24

3.6. Data Security and Privacy

One primary requirement of our study is to secure communication between sensors and the

cloud service, and sensitive data must be stored in encrypted format. There are a few

different attack vectors that could be utilized by adversaries and those security concerns

need to be taken into consideration when designing our framework. Even though it is quite

a challenge to address all possible data security concerns, it is important to discuss the

possible threat models which need to be considered in such an implementation. For

example, in some cases, home owners are able to remotely control intelligent appliances

such as furnaces, washing machines or even a coffee machine with the use of a smart phone.

While these types of advancements provide huge comfort to our hectic lives, they also pose

a certain danger. For example, if any enemy is able to remotely control your furnace or enter

into your home, this poses a threat to your loved ones as well as to your home. Therefore, it

is important to provide proper security measures to mitigate these types of risks.

3.6.1. Encryption Mechanism

Data, by default is presented in a readable format called plaintext. As a result, when sensitive

data is transmitted over a network as plaintext, it is vulnerable to unauthorized and

potentially malicious access. To protect sensitive data from malicious users, applying a

strong encrypted algorithm is required. In the proposed framework, we apply two security

techniques, encryption and hashing, to ensure that the framework provides more security to

these applications that use wireless sensors in their infrastructure. We used an encryption

mechanism to secure the channel between clients and cloud server. Also, storing sensitive

data in the cloud using, an encryption key will be implemented [44]. More details on the

encryption mechanism is mentioned in Chapter 4.

25

3.6.2. Hashing Mechanism

The hashing mechanism is used when a one way form of data protection is required. When

hashing mechanism has been applied to a message, it is locked. We used hashing to store

users passwords in cloud storage.

3.7. Summary

In this chapter, we presented the proposed solution which can be applied to implement a

high available and scalable framework for the integrating between WSN and cloud. In

addition, the framework has been designed to provide scalability and high availability.

This framework also is able to make proposed decisions based on the sensor and historical

data. Moreover, some existing encryption techniques have been applied to this framework

in order to ensure that sensitive sensor data are securely store in the cloud. The

implementation of the proposed framework will be presenting in the next chapter.

26

Chapter 4

4. Prototype Implementation

This chapter presents the design and implementation of the proposed framework. Section

4.1 describes an overview of implementation architecture for integrating wireless sensor

and cloud computing, while Section 4.2 identifies the components, tools, and programming

languages that have been applied to implement this framework. Scalability and availability

techniques that were implemented to build a high scalable and available framework are

described in Section 4.3. Finally, the security and privacy techniques that have been applied

to increase the quality of services are outlined in Section 4.4.

4.1. Implementation Architecture

The design and implementation architecture of the integration between wireless sensors

and cloud computing is presented in this section. Many modern technologies have been

applied to develop this integration, especially in scalability, availability, and security level.

4.1.1. Overview

As shown in Figure 4.1, Raspberry Pi has been used to collect data from different types of

sensors, including a body temperature sensor and a Pulse and Oxygen sensor. These data

are transmitted to the cloud environment through secure wireless communication channels.

A web-based system has been built in the cloud to receive, manage, and store sensor data.

Some different techniques have been applied to ensure that the proposed framework

provides more security. The system also uses a load balancer technique that plays an

27

important role in terms of availability, by handling incoming user requests across multiple

Virtual Machines (VMs).

VM 2

Azure load

balancer

VM 1

Historical data

Decision
Making and

Data analysis

Clients

IIS IIS

Data Security and User Authentication

Normal Requests

SensorsSensors

Figure 4.1: System Architecture of Prototype Implementation

 After the data has been received, the system is responsible for making appropriate

decisions using a decision-making algorithm. The algorithm makes the decision based on

three parameters, namely, real-time sensor data, historical users’ data, and system polices

that are defined by system administrators. Before the algorithm begins the decision- making

process, the algorithm checks if the data needs to be analyzed, or simply stored. In other

28

words, the decision-making algorithm will be applied if the real-time data is abnormal.

Otherwise, the data will be stored for future needs. The proposed decisions will be sent to

individuals, who are responsible for making final decisions. The system sends final

decisions to clients after the proposed decisions are approved. Therefore, the quality of

service offered to users will be enhanced because the smart system supports decision

makers and users by providing real-time data gathering, eliminating manual data collection,

and enabling the monitoring of a vast number of sensors.

4.2. Components Implementation

This section discusses the components of the architecture and technologies that have been

applied to implement this framework. New and different techniques and components are

combined to ensure that the proposed framework is providing high scalability, availability,

and security. The components of the architecture from the client’s side, are Raspberry Pi

and the sensors. In the cloud side, we use some available cloud services to increase the

system scalability and availability, such as Load Balancer.

4.2.1. Client Platform

The client platform can be divided into two significant components, the Raspberry Pi and

the sensors. The Raspberry Pi is a small size computer developed in the United Kingdom

by the Raspberry Pi Foundation. Raspberry Pi connects to a computer monitor or TV, and

uses a keyboard and mouse. The Pi’s hardware includes 2 USB ports, an HDMI and Ethernet

port, an SD card slot, memory, video/audio outputs, and a power source [45]. The Pi runs a

Linux operating system and recognizes Python as the main programming language with

support for C, Java and Perl. Raspberry Pi components are shown in Figure 4.2. We used

the Linux operating system and ran a client application written in C++ on the Raspberry Pi,

29

to read the data from the sensors and to send collected data to the cloud. A client application

was created using a socket programming technique and TCP/IP protocol to transfer sensor

data from the client side to the cloud. Raspberry Pi and the sensors have limitations in

terms of computing, memory, storage, and power. As a result, connecting Pis’ to the cloud

can be one of the best solutions to overcome the challenges and limitations presented by

the Pi devices themselves.

Figure 4.2: Raspberry Pi

 Developers can connect different types of sensors to the Raspberry Pi. The types of

sensors will be selected based on application requirements. In the case study of the design

and implementaion of eHealth Smart System, commercial Medical sensors were used to

implement client side connecting to these sensors [4]. The case study of eHealth Smart

System is discussed in detail in Chapter 6.

 In the Raspberry Pi, the client application has been written in C++ programming

languages using Socket and TCP/IP protocol. This application is responsible for collecting

30

data from sensors and sending them to the cloud. On the cloud side, the server application

has been written in C# programming language. The server application is responsible for

receiving sensor data and storing the data in the cloud storage. At this time, the data analysis

and decision-making algorithm will be applied in the cloud. The client application code is

added in Appendix A while the cloud server program code is added in Appendix B.

4.2.2. Cloud Platform

On the cloud side, the Windows Azure Platform has been selected as the cloud provider.

Windows Azure offers many cloud services and components, including Virtual Machine,

load balancer, traffic manager, high scalability and availability services, machine learning

and data analysis tool, big data solution, load testing, and security and privacy.

 After we searched for an appropriate cloud provider that can fit the need to implement

the proposed framework, we chose Windows Azure [46] because it provides Azure tools

for Microsoft Visual Studio, which can help developers create and publish scalable web

applications and services on Azure. In addition, Azure is a cloud platform that enables

developers to build, publish, mange, scale, and test applications. Azure is extremely flexible

as it supports many different operating systems such as Linux, and many programming

languages such as C#, Python, and PHP. One of the advantages of the Azure is that it allows

companies to use elastic auto-scale to fit changing resources demand and volume needs.

Azure offers SaaS, PaaS, and IaaS. Figure 4.1 shows the design of the prototype

implementation on Windows Azure.

4.2.3. Decision Making Algorithm Implementation

We implemented the decision making algorithm using SQL Server Stored Procedure. We

can define stored procedure as a group of SQL statements which are grouped to perform a

31

certain task. In Chapter 6, the decision-making algorithm for an eHealth application will be

explained in detail. The decision-making algorithm code has been added in Appendix C.

4.2.4. Microsoft Azure Virtual Machines

The Azure Virtual Machine provides users with full control. Customers can use Microsoft

Azure Virtual Machines when they need high scalable cloud servers running a Linux or

Windows operating system. Customers can take advantage of using Azure as Infrastructure

as a service (IaaS) by having full control on VMs in term of stopping and restarting VMs

with no loss of data or server setting.

 Azure offers a gallery of virtual machine images called Virtual Hard Disks (VHDs). The

two types of Virtual Machine images that were selected from Microsoft gallery options were

Windows server 2012 R2 and Microsoft SQL server. Multiple Azure VMs were created

running Windows server 2012 R2 as the operating system. After all VMs had been created

successfully, Internet Information Services (IIS) server, which is used for hosting web sites,

was configured. The sizes and description of these VMs are shown in Table 4.1. Although

Azure provides different sizes and options of the VMs based on computing resources, we

chose the small size because we were interested in minimizing the cost of using cloud

services in the implementation. Azure offers VMs services in two tiers, basic and standard.

The two tiers offer a choice of sizes. However, some capabilities are not available in the

basic tier, such as auto-scaling and load-balancing [47].

32

Table 4.1: The Size of VM Running in Azure

Size CPU Cores Memory Disk Size

A2\Standard Tier 2 3. 5 GB 135 GB

4.2.5. Azure Cloud Services

The Azure Cloud Service is an example of Platform as a Service (PaaS) which enables

users to deploy their web applications to the cloud. However, with PaaS, users do not have

administrative access to the VM. In our implementation, we used IaaS, where the Azure

Cloud Service is used as a collection of VMs that are hosted in the cloud. Each VM has an

image of the system installed on it.

4.2.6. Availability Set

 One of the features of the proposed framework is providing high availability. As a result,

an availability set is specified when creating a VM in the Azure Cloud Service, and two or

more VMs are placed in an availability set. This technique provides several advantages

which includes providing high available hardware through a 99.95% SLA guarantee for

uptime from Azure. For example, if the application is running on two different availability

sets, such as the United States and Europe, the cloud users will have high availability.

Where one availability set becomes unavailable, the other availability set will

automatically be employed and become accessible.

4.2.7. Virtual Machines Scalability

Once the VMs have been created in the same Cloud Service and they are assigned to the

same availability set, scalability and auto-scale can be applied to a number of the VMs

based on application requirements. Applying this technique will increase performance and

33

throughput for cloud-based systems. To apply the scaling technique to the applications, all

VMs that have been created must be added to the same availability set, and all VMs within

that availability set must be of the same size, in order to apply the auto-scale technique.

 Applying the auto-scale technique helps users minimize the operational cost of using

Azure. Customers can specify auto-scaling based on two different types of metrics, namely,

the average percentage of CPU usage, and the number of messages in a queue.

 In this case study, we configured the cloud services to automatically scale up and scale

down based on average CPU usage. We set the range of average CPU from 60 percent to

80 percent. When the average percentage of CPU is higher than the maximum setting, two

VMs are turned on. In contrast, when the average percentage of CPU is lower than the

minimum setting, VMs are turned off. We set a ten minute interval between the last scale

action, which can be a scale-up action or a scale down action, and the next scale-up action.

All VMs were included when calculating the average CPU usage. The average was

calculated based on use over the last hour.

4.3. Applying Scalability and Availability Techniques

To provide scalability and high availability in the cloud-based system, a load balancing

technique is applied, which is responsible for distributing the workload across multiple

VMs. In order to implement this scalable and high available framework, two cloud services

were created in Windows Azure. In each cloud service, different availability zones have

been created. Two Virtual Machines have been created in each availability zone because

one of the system’s requirements is to ensure that, where failure occurs in all VMs in a

specific availability zone, other VMs in a different availability zone can still process

incoming requests, as shown in Figure 4.3.

34

Figure 4.3: Load Balancer and Traffic Manger Implementation in Azure

 Windows Azure provides two levels of load balancing for infrastructure as a service.

These two levels are Network Level and Domain Name System (DNS) Level. At the

Network Level, incoming internet traffic is distributing across VMs located in the same

cloud service and data center. The Azure load balancer is responsible for applying load

balancing at the Network Level. The DNS level is distributing incoming traffic to different

cloud services located in different data centers around the world, or to external endpoints.

The Azure Traffic Manager is responsible for applying the load balancing technique at the

DNS level. The following section provides more details about the Azure load balancer and

the Traffic Manager.

4.3.1. Azure Load Balancer

The Azure load balancer only works with VMs that are in the same region. The Azure load

balancer can only apply a Round Robin technique, and routes traffic between two more

private endpoints that sit behind a public endpoint. As a result, the load balancer is

35

configured to receive incoming client requests and distribute them among healthy VMs.

Since the system is web-based, the load balancer is configured to listen in on port 80 using

http protocols.

4.3.2. Azure Traffic Manger

The Azure Traffic Manager provides more availability, and enhances the efficiency and

performance of the system. The Traffic Manager allows developers and administrators to

control incoming requests of user traffic across available health endpoints, which can

include web sites and cloud services. The Traffic Manager uses an intelligent policy engine

to route clients, via the DNS, to the cloud provider. As a result, the Traffic Manger supports

applications by allowing them to run globally in different data centers around the world

[48].

The Traffic Manager has been used for many reasons:

 It is very effective in terms of improving the availability of applications by

managing and monitoring endpoints of cloud services. The Traffic Manager

provides automatic failover capabilities when an Azure website or cloud services

go down.

 It can improve the performance of applications and response delivery times by

directing clients to the endpoint with the lowest network latency.

 It enables developers to upgrade and perform service maintenance without

downtime.

36

 It can be used for large, complex deployments. With nested Traffic Manager

profiles, a Traffic Manager profile can have another Traffic Manager profile as an

endpoint.

 Since the object of this study is to design a framework that provides high availability,

the Traffic Manager is added to our architecture as shown in Figure 4.3. The Traffic

Manager offers different load balancing techniques, which are the Performance Technique,

the Round Robin Technique, and the Failover Technique. Developers are responsible for

selecting which load balancing method best fits the application’s requirements. Developers

are able to change the load balancing method at any time. The comparison among these

algorithms is shown in Table 4.2. The Traffic Manager works at the DNS level, routing

traffic between one or more public endpoints that sit behind a common DNS name [49].

Table 4.2: Traffic Manger Methods

Performance Round Robin Failover

Developers can select the

performance option when an

application has endpoints in

different geographic regions

and they need incoming

request clients to be

transferred to the closest

endpoint in terms of the

lowest latency.

Distribute load across a

set of endpoints across

different datacenters.

Developers can select the

Failover option when they

have endpoints in the same

or different regions and they

want to use a primary

endpoint for all incoming

requests; however; it

provides backups in case the

primary Virtual Machine or

endpoints are unavailable.

37

4.4. Security and Privacy Implementation

Windows Azure has been applied to many techniques related to security and privacy,

particularly at the network level. Thus, we implemented two important techniques to ensure

that sensitive data will be stored securely in the cloud. We used the advance cryptography

algorithm to store sensitive data in the cloud in an encrypted format, and stored user

passwords in an SQL database that runs in the cloud, using the hashing technique. The

detailed implementations of these two techniques are described below.

4.4.1. Data Encryption in the Cloud

Before storing the data in the cloud, our system is responsible for encrypting the data using

a cryptography algorithm. In this way, the data is stored securely in the cloud. Different

types of encryption algorithms have been used to provide cloud users with data security.

The objective of these algorithms is to protect the system against malicious users, and to

secure information against advanced threats. The code that has been used to implement the

encryption technique is added in Appendix E.

4.4.2. Hash Functions in the Cloud

It is extremely crucial that user data authentication is stored securely. Thus, we used the

hashing technique to store user passwords in the database. The code that has been used to

implement the hash technique has been included in Appendix D.

38

4.5. Summary

This chapter presented the design and implementation of integrating wireless sensors with

the cloud. Tools and techniques were employed to provide high scalability and availability

and to increase the level of security. The Raspberry Pi and sensors were used on the client

side to generate sensor data. The VM, Load Balancer, and Traffic Manager were used on

the cloud side components, in order to provide scalability and high availability. In the next

chapter, the framework was evaluated in terms of scalability and availability using a load

testing tool. In this way, the capability of the proposed framework as it runs on Windows

Azure was examined.

39

Chapter 5

5. Evaluation Results

This chapter presents an evaluation of the proposed framework. The performance of the

proposed framework was evaluated based on the amount of time required to send and

execute different sets of requests from the client side (Raspberry Pi), and store these requests

in the cloud storage. This is further discussed in Section 5.1. In Section 5.2, we explain the

process of building a test environment that runs in the cloud. This involves applying load

testing techniques to the system in order to evaluate the scalability and availability of the

system itself.

5.1. Storing Sensor Data and Performance Measurement

To determine the real-world storage performance of the proposed framework, an

experiment is performed to evaluate the framework where a large amount of sensor data is

sent from the Raspberry Pi (client side) to the cloud. The goal is to measure the execution

time of sending a different number of requests and storing these requests to the cloud

storage.

40

Raspberry Pi

 Application
 server

TCP/IP

Requests

Application client

Figure 5.1: Storing Sensor Data in the Cloud

5.1.1. Experimentation Setup

Sensors have been used to monitor different aspects of the physical environment, and

databases are typically used to store data generated by sensors. Thus, a key issue becomes

the performance of virtual database servers and how the efficiency of this type of databases

compares with physical ones. As mentioned in Chapter 4, we created the database in the

cloud using a Microsoft SQL Server which runs in an Azure Virtual Machine. The SQL

Server is a product used to manage and store data. The goal of this experiment is to measure

the performance of sending sensor data from the Raspberry Pi, and storing such data in the

cloud.

 On the Raspberry Pi, an application client has been written in C++. The most important

function of this application is generating large amounts of random sensor data in order to

create user requests. Each request includes user id, sensor id, and sensor data. On the cloud

side, an application server has been written in C#, with the aim of this application being to

receive incoming requests from the client side, and to storing these requests in the cloud

storage as shown in Figure 5.1.

41

Table 5.1 presents the average execution time in milliseconds of storing a different number

of requests in the cloud. The application client code is detailed in Appendix F, while the

code for the application server is included in Appendix G.

5.1.2. Experimental Results

Table 5.1 shows the average execution time of sending a different number of requests from

client side and storing these requests to the cloud. In order to ensure that the results are

accurate, the experiment was performed six times. Using these results, an average

execution time was calculated. In this experiment, scalability and availability techniques

were not applied.

Table 5.1: Performance Results of Storing Sensor Data in the Cloud

Number of

requests T1 T2 T3 T4 T5 T6

Execution time

(Average)

millisecond

1 2090 2117 1957 2112 1908 1856 2007

10 11159 10091 10618 15713 15818 9585 12164

100 18720 25693 22386 25287 22823 20280 19327

500 127777 125835 128103 125619 127238 126957 126921.5

1000 213601 209981 211787 213263 209856 211238 211621

Figure 5.2: Performance Results of Storing Different Numbers of Requests in the Cloud

0

50,000

100,000

150,000

200,000

250,000

0 200 400 600 800 1000 1200

E
x
ec

u
ti

o
n

 T
im

e
in

 m
il

li
se

c
o

n
d

Number of requests

42

 Figure 5.2 shows the execution time of sending a different number of requests from the

client side and storing these requests to the cloud. The horizontal axis on the figure shows

the number of requests, and the vertical axis shows the execution time in milliseconds. The

execution time increases gradually when large amounts data have been stored as the

number of requests increases. The results indicate that the system is able to transfer and

store a large number of requests in a reasonable time.

5.2. Load Testing in the Cloud

In order to ensure that the proposed framework has high scalability and availability, we

built a load testing environment in the cloud. Through this environment, we were able to

evaluate the behavior of the Azure Load Balancer and the Traffic Manager. Details of our

implementation have been included in Chapter 4. Load testing and stress testing are used

to measure the performance of the system. Such tests are often performed during the

application development phase, to ensure that the application has the ability to handle the

expected level of load by simulating multiple virtual users. We evaluate the load balancer

to investigate the following determinations:

 to determine the number of application servers that are required to support

various traffic levels;

 to investigate the number of load balancers required to distribute the incoming

traffic without a decrease in response time; and

 to examine the availability of the system, and to ensure that the application is able

to continue to operate when a hardware or a network failure occurs.

43

Despite several public cloud providers offering computing services, there are different

approaches in terms of infrastructure, virtualization, and software services. Windows

Azure provides many features that consumers of cloud services require. The goal is to

evaluate the functionality and performance of the scalability and availability services that

are provided by Azure cloud providers, to help developers build high scalable applications

that run in the cloud. Thus, we built cloud-based load testing which assisted us in

determining if a system has the capability to handle incoming requests with a high load,

and test the availability services when some of the VMs fail for any reason. The load testing

environment has been built in the cloud because the cloud infrastructure provides

consumers with unlimited computing resources, which are required to simulate a large

number of virtual users.

5.2.1. Methodology

Testing the ability of the system to handle incoming requests is one of the most significant

steps before deploying the system to the production cloud server. As mentioned in Chapter

4, an Azure load balancer and traffic manager have been applied to increase the scalability

and availability of the system. Load testing is to examine if a system has the capability to

handle incoming requests with a high load. Such a high load can be generated using a load

testing tool such as JMeter, which can simulate thousands of virtual users for facilitating

load testing under controlled stress conditions [50]. We have run our load testing to

examine the system in the following cases:

 Using a Single Virtual Machine

We evaluate the framework performance when the system is implemented using a

single VM only, with no load balancing techniques being applied.

44

 Load Balancing technique has been applied

The framework has been evaluated after applying the load balancing technique to

the framework architecture, with the system running on multiple VMs.

 Traffic Manger technique has been applied to the system

After the Azure Traffic Manger has been added to the framework architecture, we

load testing to the system, to examine whether the scalability and availability of

cloud services increased the system’s performance and availability.

 Applying both techniques (the Load Balancer and Traffic Manger) to the

proposed framework.

In order to achieve the highest performance, we apply both the Azure Load

Balancer and the Traffic Manager. We then evaluate the performance using the

load testing tool.

5.2.2. Experimental Design and Implementation

This section describes the implementation of building the load testing environment in the

cloud. We had to build the testing environment in the cloud because load testing execution

requires high computational resources, which are very important for simulating a high

number of virtual users. This allows us to determine the point at which the system’s

response time degrades or fails. Figure 5.3 on the following page presents the architecture

of building the load testing environment in the cloud.

45

 Slave 1 Slave 2 Slave N

 Master

Number of Requests

Web Role
Target System

Number of Requests

Azure load

balancer

Auto ScalingAuto Scaling

 Availability set

Load Testing Environment

Number of Requests

Number of Requests
Number of Requests

Number of Requests

Figure 5.3: Architecture of Building Load Testing Environment in the Cloud

The architecture components in Figure 5.3 include VMs and the Azure Load Balancer. The

size of all VMs is the same as in Table 5.2. All VMs have been created in a specific region

located in Western Europe. We add the load balancer and auto-scale techniques to the load

testing architecture, in order to increase the number of load generating slaves, based on

auto scaling rules. For example, when the average CPU of other load slaves reaches a

certain level, more VMs are initiated as load generators automatically.

46

The JMeter tool is an open source testing software that is used to apply load and

performance testing to a target system. This tool can be used to generate a heavy load on a

server to test the overall performance under different load types. In order to build a load

testing environment in the cloud, we created a number of VMs for generating a large

number of virtual users.

 After we created these VMs, we configured one VM as a master, which is responsible

for distributing the load of virtual users and requests among the Slave VMs. Slave VMs

are responsible for performing the master’s command by sending the requests to the target

system. Finally, each Slave VM sends back the results to the master, including the response

time and throughput. The single machine cannot simulate the real characteristics of massive

user requests due to limitations of server resources. As a result, load testing has been built

in the cloud which provides unlimited resources. The following steps clarify how we apply

the load testing environment in the Windows Azure:

Table 5.2: The Size of VMs Used for Load Testing

Location Size CPU Cores Memory Disk Size

Europe West Standard\A2 2 3.5 GB 135 GB

1. We created three Virtual Machines (VMs) that run in Azure. The size of these VMs

is presented in Table 5.2. We ensure that all VMs running in the same availability

are using the same Azure Load balancer. The number of VMs can be increased and

auto-scale can be applied if more hardware resources are required to simulate more

virtual users.

2. The same version of Apaches JMeter and Java JDK are installed on all the VMs.

47

3. We define one VM as a Master and the other two VMs as Slaves. The Master VM

is responsible for controlling the test, and sending the commands to the Slave VMs.

The Slave VMs are running as JMeter servers, and are responsible for receiving the

commands from the Master VM and generating a number of requests to the target

web role. The Web role runs using windows server 2012 with Internet Information

Services (IIS).

4. Three important terminologies for building the load testing environment are :

 Master: The VM running JMeter GUL, which is responsible for controlling

the load test.

 Slave: The VMs running JMeter-Server, which takes commands from the

Master VM and sends the requests to web role target.

 Target: The web-based server in which the load test will be executed.

We ran the test 30 times to ensure that the results are accurate.

The following sections present the results of examining the proposed framework in terms

of scalability and availability. We ran the load testing to evaluate the framework’s

performance in different cases, which are presented in the next four sections.

5.2.3. The System Running in a Single VM

In this section, we describe the first experiment, which was performed using a load testing

environment. The proposed framework is evaluated before applying the scalability and

availability techniques. In this experiment, the framework is designed to run in a single

VM. This single machine may fail due to unexpected causes, such as out of memory

exception or hardware defects. As a result, users cannot access the system because it is

down.

48

 Figure 5.4 shows a snapshot of setting a number of virtual users by using the JMeter

tool while Figure 5.5 presents an example of the result of sending a number of requests to

the cloud-based system. The green icons indicate that requests have been successfully

executed.

Figure 5.4: Thread Group Setting

Figure 5.5: Sample Load Testing Run using JMeter

49

 The aim is to investigate system capability when a high number of requests are received

by a single VM, as shown in Figure 5.3. The results of applying load testing to the system

while running in a single VM are presented in Table 5.3. The results indicate that the system

has a high performance when the number of requests are fewer than 300. Following this,

the average response time increases, to a peak of 232 milliseconds, for executing 1500

requests. In addition, we noticed that, at this point, some requests are executed with a low

performance peak of 5230 milliseconds. There is a sharp increase in the average response

time when the number of requests rose to 15,000. At this point, we noticed that some

requests failed while others took a longer period of time to be processed as a single VM

could not handle the large number of requests.

Table 5.3: The Results of Running the System in a Single Machine

Number of

users

Number of

requests

Average response

time

(in millisecond)

Min Max Throughput

(in second)

1 30 90 86 202 11.1

10 300 89 85 212 83.4

50 1500 232 84 5230 172.2

100 3000 281 84 5314 313.3

200 6000 195 84 5220 687.4

300 9000 306 85 7649 821.5

500 15000 769 84 30073 451.4

50

Figure 5.6: Results of Testing a System Running in a Single VM

 Response time is the difference between the time when the request was sent and

the time when the response has been fully received.

 Throughput is the number of requests per unit of time. We divide the total

average time by 1000 to convert milliseconds to seconds

Throughput = (number of requests) / (total average time / 1000)

 Figure 5.6 shows the result of testing the system when it is running on a single VM. As

a result, when a low number of requests are sent to a cloud-based system, the system is

able to handle these requests with high performance. However, when the number of virtual

users and requests are increased, the average response time peaks to a high response time.

 In some cases, when the number of users was 200, the response time suddenly decrease

compared with 100 users. The main reason is the load testing runs from different machines,

and the frequent of the internet connection is not considered in this experiment.

0

100

200

300

400

500

600

700

800

900

0

100

200

300

400

500

600

700

800

900

1 10 50 100 200 300 500

Th
ro

u
gh

p
u

t
p

e
r

Se
co

n
d

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e
 in

 M
ill

is
e

co
n

d

Virtual Users

Throughput
ResponseTime

51

5.2.4. System Performance After Applying Load Balancing

In order to solve low performance and availability, the load balancing technique was

applied to the system. In this section, we evaluate the system when it is running in three

VMs using the Azure load balancer to distribute incoming requests among these VMs. In

Chapter 4, we explained in detail the Azure load balancer. Three VMs were created in the

same availability set. We created all VMs in the same availability set in order to apply the

auto scale technique. We configured the cloud services to automatically scale up and scale

down based on average CPU usage. We set the range of average CPU from 60% to 80%.

When the average percentage of CPU is higher than the maximum setting, two VMs are

turned on. In contrast, when the average percentage of CPU is lower than the minimum

setting, the two VMs are turned off. We set ten minutes to wait between the last scale action

(which can be a scale-up action or a scale-down action), and the next scale action.

 Slave 1 Slave 2 Slave N

 Master

Number of Requests

Number of Requests

Web Role 2

Number of Requests

Azure load

balancer

Auto ScalingAuto Scaling

 load

balancer

Web Role 1 Web Role N

Number of RequestsNumber of Requests

 Availability set

 Availability set

Load Testing Environment

Number of Requests

Number of Requests

Figure 5.7: Architecture of Setting Load Testing after Applying Load Balancing Technique

52

 Figure 5.7 presents the architecture of setting the load testing in the cloud in order to

test the system after applying the load balancing technique. The results of running this load

test are shown in Table 5.4. The results indicate that the system’s performance improved

after applying the load balancing technique. Thus, it is evident that, after applying the load

balancing technique, the system was able to serve up to 15,000 requests with high

performance within a reasonable response time. However, when the system was running

on a single machine, the system was able to handle 9000 requests.

 We also noticed that when requests surpassed 15,000, although there were no failures,

the response time of some requests increased. In order to increase the capability of the

system for serving more requests, more VMs were turned on.

Table 5.4: Result of Testing the System after Applying Load Balancing Technique

Number of

Users

Number of

requests

Average Response

Time

(Millisecond)

Min Max Throughput

(per second)

1 30 98 94 216 10.1

10 300 97 93 235 78.5

50 1500 97 93 194 383

100 3000 97 93 217 766.7

200 6000 104 93 240 1435.5

300 9000 145 93 347 1609.7

500 15000 231 93 5392 1332

800 24000 251 93 11954 1412.2

53

Figure 5.8: Performance of the System after Applying Load Balancing

 As shown in Figure 5.8, after applying the load balancing technique to the system, the

performance was increased and the response time was reduced significantly. We noted that

the response was even faster than when using a single virtual machine. Thus, when the

number of VMs has been increased and the Azure load balancer and auto-scale have been

applied, high system performance has been achieved. In addition, we tested the availability

of the system during the load testing time by turning off the one of the available VMs that

was connected to the load balancer. In order to evaluate the availability of the framework,

when we turned off one VM, we noticed that the load balancer automatically transfers

incoming requests to a healthy VM. After the unavailable VM becomes healthy, the load

balancer automatically starts to send incoming requests to this VM.

0

200

400

600

800

1000

1200

1400

1600

1800

0

50

100

150

200

250

300

1 10 50 100 200 300 500 800

Th
ro

u
gh

p
u

t
p

e
r

Se
co

n
d

A
ve

ra
ge

 R
e

sp
o

n
se

Ti
m

e
 in

 M
ill

is
e

co
n

d

Virtual Users

Throughput

ResponseTime

54

5.2.5. The System Performance after Applying Traffic Manger

This section describes the design and implementation of building a system that can provide

high availability using the Azure Traffic Manager, as well as evaluating the performance

of the Traffic Manager. Figure 5.9 presents the Architecture of setting the load testing in

the cloud with applying Traffic Manager technique to the system.

Slave 1 Slave 2 Slave N

 Master

Number of Requests
Number of Requests

Azure load

balancer

Traffic Manager

Web role
East US

Web role
North Central US

Web role
West US

Availability set

Load Testing Enviroment
Number of Requests Number of Requests

Number of Requests

Figure 5.9: The Architecture of Setting the Load Testing in the Cloud with Applying Traffic Manager

Technique to the System

 The Traffic Manager offers different load balancing techniques include Performance,

Round Robin, and Failover. When we evaluated the Traffic Manager performance, we set

the configuration in Round Robin method. We created three VMs that are running in

55

different regions as shown in Table 5.5. The main advantage of using the Azure Traffic

Manager is to increase the availability of the system, as the Traffic Manger supports

applications to run in different data centers around the world. After the application of the

Traffic Manager, the availability improved. In the instance where one VM becomes

unavailable in a specific region, other VMs can be employed to handle the requests.

Table 5.5: Three VMs Running at Different Regions

Location Size CPU

Cores

Memory Disk Size

East US A2\Standard

Tier

2 3.5 GB 135 GB

North Central US

Europe West

Table 5.6: The Result of Testing the System after Applying Traffic Manager

Number

of

Users

Number of

Requests

Average Response Time

(In millisecond)

Min Max Throughput

(In Second)

1 30 91 86 225 40.8

10 300 99 85 311 147.1

50 1500 95 85 255 705.6

100 3000 115 84 347 1419.1

200 6000 161 84 399 1151

300 9000 178 84 412 1100.8

500 15000 370 84 5675 989.9

800 24000 505 85 5886 1331.8

1000 30000 359 84 10381 1224.8

56

Figure 5.10: Performance of the System after Applying Traffic Manager

 Figure 5.10 shows the performance of the eHealth smart system after applying the Azure

Traffic Manager where the configuration is set in a Round Robin method. Even though the

virtual machines were created in different regions, we noticed that the performance

increased and that the average response time was similar to the result of applying the Azure

load balancer as shown in Table 5.6. Furthermore, the increase in latency time was directly

based on the location of the data center. Table 5.5 shows the size and location of each VM.

When applying the Traffic Manager using the performance method, the performance was

increased because the Traffic Manger transferred incoming requests to the closest available

data centers. When we tested the system with the Traffic Manger being configured in the

performance method, all incoming requests transferred to one VM running in the Western

Europe region. This was because the load testing environment was running in the Western

Europe region, so all requests had been sent to Western Europe VM. We present in the next

0

200

400

600

800

1000

1200

1400

1600

0

100

200

300

400

500

600

1 10 50 100 200 300 500 800 1000

Th
ro

u
gh

p
u

t
p

e
r

Se
co

n
d

A
ve

ra
ge

 o
f

R
e

sp
o

n
se

Ti
m

e
 in

 M
ill

is
e

co
n

d

Virtual Users

Throughput

ResponseTime

57

section a new approach to using the Azure Load balancer and the Traffic Manager in the

same architecture, to help customers and developers achieve high scalability and

availability. As shown in Figure 5.10, when the number of virtual users rose up 1000, the

average response time suddenly decreased compared with 800 users. The reason behind

this case is the load testing run on different VMs that have different CPU and memory

performance, and the load testing had applied at different time. Moreover, in this

experiment, the internet connection performance measurement was not considered. Thus,

all these aspects can affect the average response time.

5.2.6. The System Performance after Applying Load balancer and Traffic Manger

After we examined and evaluated the system under different scenarios, we designed and

implemented a high scalable and available architecture running in Windows Azure, as

presented in Figure 5.11 in the next page. We feel that this architecture achieves the desired

result of establishing an architecture that ensures high scalability.

58

 Slave 1 Slave 2 Slave N

 Master

Number of Requests

Number of Requests

Number of Requests

VM 2

load balancer

Auto ScalingAuto Scaling

VM1 VM N VM 2VM1 VM N

Traffic Manager

East US - Availability set 1 North Central US- Availability set 2

 Availability set

 load

balancer
 load

balancer

Load Testing Enviroment

Figure 5.11: Architecture of Setting Load Testing after Applying the Load Balancer and Traffic Manager

Techniques

Table 5.7: The Results after Applying the Load Balancer and Traffic Manager Techniques

Number

of

Users

Number of

Requests

Average Response Time

(In millisecond)

Min Max Throughput

(In Second)

1 30 91 86 237 10.8

10 300 104 91 313 69.3

50 1500 100 85 235 353.1

100 3000 96 84 385 717.0

200 6000 131 84 5245 634.3

300 9000 161 85 5246 940.7

500 15000 199 85 5413 1468.9

800 24000 232 84 5346 1546.9

1000 30000 193 84 5291 1895.1

1100 33000 208 84 5337 2023.1

1200 33600 248 84 5471 1809.3

1400 42600 312 85 7566 1751.9

59

Figure 5.12: Applying Traffic Manager and Load Balancer

As shown in Figure 5.12, the system performance has increased, and a large number of

requests were executed with low response time. The proposed framework provided

scalability after applying load balancing and auto scaling techniques. In addition, a high

availability was achieved after applying Azure Traffic Manager. Table 5.7 shows the

results of a run load test after applying the scalability and availability techniques. These

techniques were applied in order to achieve height performance and availability using

Azure as a cloud provider. We also notice in some cases that the frequent of the internet

connection, which is not considered in this experiment, can affect the response time. For

example, when the number of virtual users rose up 1000, the average response time

suddenly decreased compared with 800 users. In addition, the load testing run on different

VMs that have different CPU and memory performance, and the load testing had applied

at different time. As a result, all these aspect can affect the average response time.

0

500

1000

1500

2000

2500

0

50

100

150

200

250

300

350

Th
ro

u
gh

p
u

t
p

e
r

Se
co

n
d

A
ve

ra
ge

 o
f

R
e

sp
o

n
se

Ti
m

e
 in

 M
ill

is
e

co
n

d

Virtual Users

Throughput

ResponseTime

60

5.3. Summary

This chapter presented a detailed description of the experiments that had been conducted

to evaluate the framework performance. The performance evaluation of storing sensor data

in the cloud was presented. This experiment evaluated the execution time of sending

different numbers of requests, including sensor data, to the cloud. Load testing was

implemented to examine the performance of the cloud-based system after applying the

scalability and availability techniques. The results have proved that after applying the Azure

Load Balancer and the Traffic Manager, the framework performance was increased and the

system was able to handle a large number of virtual users. In the next chapter, the design

and implementation of an eHealth smart system will be presented as a case study.

61

Chapter 6

6. Case Study: An eHealth Smart System

This case study applies the proposed framework to the eHealth system. The two main

objectives of this case study are as follows: (1) presenting a proof of concept for designing

and implementing a high scalable framework that uses medical sensors as infrastructure,

and (2) evaluating the performance of the system by simulating an environment where a

number of users are utilizing the system. This chapter provides an overview of the eHealth

Smart System architecture, which is presented in Section 6.1. The components and

experimental setup of the system are demonstrated in Section 6.2. The design and

implementation architecture of the case study is described in Section 6.3. The evaluation

of the eHealth Smart System is presented in Section 6.4.

6.1. Overview

This case study presents the design and implementation of an eHealth smart network system.

The eHealth system is designed to prevent delays in the transmission of patient medical

information to healthcare providers. For example, in accident and emergency situations,

where timing is crucial, it eliminates the need to manually enter data. An effective eHealth

system would also contribute to the efficient use of hospital resources, as administrators

would be able to make effective decisions based on real-time data. The architecture for this

system is based on the use of medical sensors, which, once connected to the patient, allow

for the measurement of a patient’s physical condition. These sensors transfer data collected

from a patient’s body, over the wireless network, to cloud services. The system is

62

responsible for generating appropriate medical decisions using a decision making algorithm,

which is based on standard medical practices and a patient’s historical medical data.

Proposed decisions will be sent to medical staff, responsible for a patient’s healthcare, for

approval. The system sends final decisions to the patient after medical staff approval.

Therefore, the patient will have high quality services because the eHealth Smart System

supports medical staff by providing real-time data gathering, eliminating manual data

collection, and enabling the monitoring of a large number of patients at one time.

 There are many advantages of using this system, such as:

1) providing real-time data gathering;

2) eliminating the manual data collection process, which sometimes includes data entry

errors;

3) monitoring a large numbers of patients, who are depending on a limited number of

medical staff;

4) ensuring that bed occupancy in hospitals is only for patients who need them; and

5) helping medical staff from different health providers, benefit from each other's

experiences.

63

6.2. Physical Components of eHealth System

In the case study, we used commercial medical sensors which are connected with an eHealth

Sensor Shield that is placed on top of the Raspberry Pi. The eHealth Sensor Shield and

medical sensors have been designed by Cooking Hacks, in order to assist researchers and

developers in measuring real-time sensor data, which can be used for experimentation

purposes [51]. Given that the eHealth platform does not have medical certification, its use

is limited. It cannot be used to monitor critical patients who need accurate medical

monitoring devices. The eHealth Sensor Shield was originally designed for Arduino. In

order to utilize the eHealth Sensor Shield on Raspberry Pi, we used a Connection Bridge,

which allows any shield, board, or module, originally designed for Arduino, to be used

with Raspberry Pi. Figure 6.1 further illustrates this concept.

 Even though many medical sensors are available, we used only two types of sensors to

minimize the cost of our experiment. The Pulse and Oxygen in Blood sensor (SPO2) allows

one to measure the amount of Oxygen saturation in blood. The Body Temperature sensor,

allows one to measure an individual’s body temperature. Figure 6.1 shows the components

that were utilized in the experimental setup, including the Raspberry Pi, the eHealth Sensor

Shield, and the Raspberry Pi to Arduino Shields Connection Bridge. Medical sensors and

other main components are connected together, as shown in Figure 6.2.

64

Figure 6.1: eHealth System Components

Figure 6.2: Medical Sensors and eHealth Sensor Shield Connected to Pi

6.3. eHealth Smart System Architecture

This architecture is designed based on the integration between medical sensors (which are

responsible for measuring a patient’s physical medical condition), and the cloud

environment. This integration becomes the basis for a smart medical system.

Pulse and Oxygen

in Blood (SPO2)

Body

temperature

Raspberry Pi
Raspberry Pi to Arduino

shields Connection Bridge

eHealth Sensor

Shield

65

Raspberry pi with e-health Sensors

Web Servers

Data Security and User Authentication

 Privacy and Data Management

Secure Channel

Historical patients’ Data

Secure Channel

Normal

Abnormal

Decision Making

ID and Sensor data

Final

Decision

Decision

Decision

Approved

Intelligent Monitoring

Application Interface

New Decision

HTTPSHTTPS

Proposed Decision

Storing and Retrieving Data
DataBase

Figure 6.3: eHealth Smart System Architecture

 As shown in Figure 6.3, there are medical sensors that are connected with Raspberry Pi.

This Raspberry Pi is responsible for collecting data from the sensors, and transmitting this

data, through wireless communication channels, to platform services hosted in the cloud.

This platform provides the following services:

(1) storage service, which is responsible for storing patient data;

(2) data analysis service, which is responsible for providing medical decisions based on a

patient’s historical medical data; and

66

(3) managing service, used for updating, reviewing and testing a patient’s data that is needed

by medical staff. Medical staff and patients can utilize the cloud application from different

mobile and stationary devices, using the Internet. Figure 6.4 shows the system’s home page.

Figure 6.4: The Home Page of eHealth Smart System Running in Windows Azure

 Security and privacy are two significant factors that relate to the cloud environment

because cloud computing is a multiple-range environment, in which numerous computing

resources are shared. The sharing of hardware resources and storage data areas in the cloud

present a high risk of insider or outsider attacks. In order to achieve data security and privacy

in our system, we apply three techniques, which are as follows:

1) Socket Secure Layer (SSL), which is one of the most popular techniques for

establishing an encrypted channel between a web server and the Raspberry Pi, to

transmit patient data to the cloud application, through secure channels;

67

2) Cryptography Algorithm - Since SSL is not responsible for encrypted data in a

cloud, we use cryptography algorithm to ensure that the data has been stored in an

encrypted format; and

3) Hashing user authentication passwords.

More details for implementing security and privacy techniques are mentioned in Chapter 4.

The following sections describe the design and implementation of the eHealth system in

detail:

A) Data Collection

Medical sensors measure patient physical parameters using wireless sensors. All medical

sensors are connected to the Raspberry Pi to read data from patients’ bodies and transfer the

data (patient id and sensor data) over the wireless network channel to the cloud environment.

To send sensor data from clients to the cloud platform, we use socket programming, which

is the sending or receiving of data over the TCP/IP protocol. The code was written in C++

programming language (the source code is listed in Appendix A). From the perspective of

security, data will be transmitted to the cloud through an SSL secure channel. These sensors

generate real-time patient data, with the Raspberry Pi being responsible for sending the data

to the application server that runs continuously in the cloud. We also configured the

Raspberry Pi application to apply delay time, because we noticed that the body temperature

sensor takes time to measure the right body temperature. Figure 6.5 presents the real-time

sensor data for patients.

68

Figure 6.5: Real-time Data Generated from Medical Sensors

B) Decision Making Algorithm

Figure 6.6 shows the system decision making algorithm process. We used the Microsoft

SQL Stored Procedure technique in order to implement this algorithm [52].

 The decision making algorithm procedures are responsible for creating appropriate

medical decisions based on three parameters, namely, patient id, sensor type, and sensor

current data. When the application receives the data from the sensors, the algorithm will

check if the sensor data is normal or abnormal based on the normal ranges of laboratory

medical tests and patient medical policies, which are defined in the system. In health-related

fields, normal range of laboratory medical tests usually describe the variations of a

measurement or value in healthy individuals. Reference ranges are often determined by

taking the lowest and highest values of results obtained from a normal population [53].

69

Start

System read data

from sensors

If (SensorData) is

normal data

Yes

No

Send the decision to

doctors for approval

Save data in DB

No
Is there historical

medical decision similar

to current patient

condition?

Send the decision to

patient for follow up

Call Rule Procedure (PatientId,

SensorId, SensorData)

Send notification to

doctors for making a

decision

Yes

Historical Patient Data

Figure 6.6: Decision Making Process

 Every patient has a medical policies profile in the system based on the sensor type, to

assist the system in creating compatible medical decisions. For example, some patients have

chronic diseases, so in these cases, medical staff should consider some change to normal

70

ranges of laboratory medical tests. Medical staff can set specific policies for every patient

based on patient condition. The following are two examples:

Example 1:

If Patient id = “1000001” & SPO2 < “89” & TEMP > “37.5” = “Set Status is

Abnormal” & Making Decision & (send notification to the doctor).

Example 2:

If Patient id = “1000002” & SPO2 < “85” & TEMP > “39.5” = “Set Status is

Abnormal” & Making Decision & (send notification to Emergency Medical

Services (EMS).

If the data is normal, the algorithm will store this data in sensor information tables in the

database to feed patient historical data. Otherwise, the algorithm will create a medical

decision based on the patient’s historical medical data. If the patient does not have any

historical medical data for the same condition, the system will make a medical decision

based on historical statistical data of patients who have a similar health conditions. Before

storing the data in the cloud, our system is responsible to encrypt the data using a

cryptography algorithm. Therefore, the data is stored securely in the cloud.

C) Decision Approver

 After the system makes appropriate decisions, these decisions are sent to medical staff

who are responsible for patient healthcare, for approval. There are different ways to notify

medical staff, such as SMS and email. They can use the browser or their mobile devices to

review and update these decisions. Medical staff are responsible for reviewing patient

historical information based on their medication and chronic diseases. After that, medical

staff can decide if the decisions created from the system are appropriate for the patient’s

condition, or whether they need to change and update them. After the medical staff approve

71

the decisions, the system will confirm them, save them, and send the confirmed decisions

to the patient to follow the staff’s instructions.

6.4. Performance Evaluation and Results

This section describes the experiments that have been applied to evaluate the performance

of the system while uploading the sensor data from a Raspberry Pi to the cloud storage.

We applied these experiments by using one body temperature sensor (Pulse and Oxygen)

because we wanted to minimize the cost of the experiment. It is important to note that most

of the performance evaluation results are obtained based on generating random patient data.

 The experiment was conducted myself as the subject patient. In this experiment, we

focused on measuring the body temperature for myself at different times. The purpose of

this experiment was to prove that the system is able to continuously monitor during a 24-

hour period.

Figure 6.7: Body Temperature Monitoring for One Patient at Different Times

36.5

37

37.5

38

38.5

39

39.5

40

40.5

11-Jun-14 12-Jun-14 13-Jun-14 14-Jun-14 15-Jun-14 16-Jun-14 17-Jun-14 18-Jun-14 19-Jun-14

72

 We collected body temperatures for one patient at different times from June 12, 2014

until June 18, 2014. Thus, medical staff can easily monitor the patient during any chosen

day, as shown in Figure 6.7. The medical staff also can make decisions based on the patient’s

condition, if they noticed that the patient was an emergency case. To ensure a high level of

accuracy, as the body temperature sensor takes time to generate the correct temperature,

we applied the delay technique. We noticed that the 30-second delay in collecting body

temperature will assist obtaining high accuracy in temperature measurement because the

temperature sensor takes 30-second in order to read the correct temperature. However,

applying the delay technique is not required if the patient already wearing a private sensor.

As a result, we noticed that every occasion needed a maximum of one minute to read the

body temperature includes the delay time. We found this result to be quick in comparison

to the traditional manual technique.

 Table 6.1 shows the decisions created by the system. SPO2 is standard for peripheral

capillary oxygen saturation. These decisions will be sent to medical staff for approval.

Medical staff are responsible for reviewing patient historical information based on their

medication and their chronic diseases. As a result, they will decide if the current decisions

are appropriated for the patients or if they need to change and update them. These results

are based on commercial medical sensors. The performance can be improved by using

separate body temperature sensors for every patient, and using real medical sensors, which

do not require the delay technique for enhancing the accuracy.

73

Table 6.1: System Decisions

6.5. Summary

In this chapter, the design and implementation of the eHealth Smart System was described

in order to present a case study of the proposed framework. We also described the decision

making algorithm process. The decision making algorithm process is responsible for

creating appropriate medical decisions based on three parameters, namely, patient id, sensor

type, and sensor current data. Moreover, an encryption algorithm has been applied to

provide cloud users with data security and privacy. The conclusion and future work will be

presented in the next chapter.

74

Chapter 7

7. Conclusion and Future Work

In this chapter, we present a summary of the contributions of this thesis, and highlight

research ideas for future research directions.

7.1. Contributions

The main contributions of this thesis are as follows:

 An approach has been presented for designing and implementing a framework for

the integration of wireless sensors and cloud computing. This approach provides

wireless sensor technology by high scalability and availability, as well as more

security features. Moreover, storing sensor data in the cloud, which provides

unlimited storage capability, can be an efficient solution for applying data analytic

techniques.

 A decision making algorithm was designed and implemented based on real-time

sensor data and historical sensor data.

 From perspective of security, we applied some security mechanisms to ensure that

sensitive data had been transferred and stored securely.

 An eHealth system was designed and implemented and used as a case study that

can be applied to serve healthcare communities. After the eHealth Smart System

was implemented, we applied some experiments to evaluate the system’s

performance. We used the cloud infrastructure for building a testing environment,

75

and examined the performance of the Azure services, which included the Azure

Load Balancer and the Traffic Manager.

7.2. Future Work

Many interesting research statements that are out of the scope of this thesis, remain open

to research. Some of them are listed below:

 Many cloud providers have started to offer new services which can be used for

storing, managing, and analyzing a large volume of data. For instance, Azure offers

HDInsight, which provides Big Data analysis services that can be used to process

unstructured and semi-structured data. Azure HDInsight has deployed and

provisioned Apache Hadoop clusters in the cloud. It provides a software

framework that is designed to manage and analyze the Big Data with high

availability and reliability [54]. Thus, these new services need to be evaluated in

terms of quality.

 Machine Learning (ML) tools that are offered by cloud providers can be a new

approach to using cloud computing for data mining tasks. However, these tools

need to be evaluated to ensure that cloud users can achieve high accuracy results

when they use ML tools that run in the cloud. Data mining concepts and techniques

can be applied to historical data in order to make high accurate decisions by the

system. Also, wearable technology can be used for data collection.

 We implemented and evaluated the scalability at the application level. Scalability

in the database tier should have been applied. Different types of testing could then

have been applied to evaluate the database performance and examine the quality of

services.

76

 Comparing the performance of different types of cloud storage offered by different

cloud providers is a very important research area, as it can help cloud users in

selecting a cloud provider that best fits their needs.

 Comparing the performance of storing sensor data using relational databases such

as MS SQL Server, with non-relational databases, such as Document DB.

 From a security perspective, we applied two important mechanisms to ensure that

the proposed framework is secure. However, many other techniques can be

practically applied to this framework at the software level to increase security and

privacy.

77

Appendix A : The Client Application in Raspberry Pi

In Raspberry Pi, the client application has been written in C++ programming languages

using Socket and TCP/IP protocol. This application is responsible for collecting data from

sensors and sending the data to the cloud.

1 : // Client app

2 : //Include eHealth library

3 : #include "eHealth.h"

4 : #include "arduPi.h"

5 : #include<iostream>

6 : #include<stdio.h>

7 : #include<string.h>

8 : #include<string>

9 : #include<sys/socket.h>

10 : #include<arpa/inet.h>

11 : #include<netdb.h>

12 : #include <sstream>

13 :

14 : using namespace std;

15 :

16 : class tcp_client

17 : {

18 : private:

19 : int sock;

20 : std::string address;

21 : int port;

22 : struct sockaddr_in server;

23 :

24 : public:

25 : tcp_client();

26 : bool conn(string, int);

27 : bool send_data(string data);

28 : string receive(int);

29 : };

30 :

31 : tcp_client::tcp_client()

32 : {

33 : sock = -1;

34 : port = 0;

35 : address = "";

36 : }

37 :

38 :

39 : // Connect to a server on using IP + port number

40 :

41 : bool tcp_client::conn(string address , int port)

42 : {

43 : //create new socket if it is not be created

44 : if(sock == -1)

45 : {

46 :

47 : sock = socket(AF_INET , SOCK_STREAM , 0);

48 : if (sock == -1)

49 : {

78

50 : perror("error happen when the applicaion try to create

 socket");

51 : }

52 :

53 : cout<<"Socket has been created\n";

54 : }

55 : else { cout<<"error \n"; }

56 :

57 : //setup address structure

58 : if(inet_addr(address.c_str()) == -1)

59 : {

60 : struct hostent *he;

61 : struct in_addr **addr_list;

62 :

63 : //resolve the hostname, its not an ip address

64 : if ((he = gethostbyname(address.c_str())) == NULL)

65 : {

66 : //gethostbyname failed

67 : herror("gethostbyname");

68 : cout<<"Failed to resolve server name\n";

69 :

70 : return false;

71 : }

72 :

73 :

74 : addr_list = (struct in_addr **) he->h_addr_list;

75 :

76 : for(int i = 0; addr_list[i] != NULL; i++)

77 : {

78 :

79 : server.sin_addr = *addr_list[i];

80 :

81 : cout<<address<<" resolved to

 "<<inet_ntoa(*addr_list[i])<<endl;

82 :

83 : break;

84 : }

85 : }

86 :

87 : //plain ip address

88 : else

89 : {

90 : server.sin_addr.s_addr = inet_addr(address.c_str());

91 : }

92 :

93 : server.sin_family = AF_INET;

94 : server.sin_port = htons(port);

95 :

96 : //Connect to remote server

97 : if (connect(sock , (struct sockaddr *)&server , sizeof(server)) <

0)

98 : {

99 : perror("connect to server is failed. Error");

100: return 1;

101: }

102:

103: cout<<"Connected\n";

104: return true;

105: }

106:

107:

108: // Sending data to the connected host

109:

79

110: bool tcp_client::send_data(string data)

111: {

112: //Sending sensor data

113: if(send(sock , data.c_str() , strlen(data.c_str()) , 0) < 0)

114: {

115: perror("Sending is failed : ");

116: return false;

117: }

118: cout<<"Data send\n";

119:

120: return true;

121: }

122:

123:

124: // Receiveing data from the connected server

125:

126: string tcp_client::receive(int size=512)

127: {

128: char buffer[size];

129: string reply;

130:

131: //Receive a reply from the server

132: if(recv(sock , buffer , sizeof(buffer) , 0) < 0)

133: {

134: puts("recving failed");

135: }

136:

137: reply = buffer;

138: return reply;

139: }

140:

141: std::string float_to_string(float f)

142: {

143: std::ostringstream s;

144: s << f;

145: return s.str();

146: }

147:

148:

149:

150: int main(int argc , char *argv[])

151: {

152: tcp_client c;

153: string host;

154: string s0;

155:

156: c.conn("52.24.15.7", 1108);

157:

158: //send some data

159: for (int i=0; i<40;i++)

160: {

161: float temperature = eHealth.getTemperature();

162: s0 = float_to_string(temperature);

163: printf("Temperature : %f \n", temperature);

164: s0= s0+"$";

165:

166: delay(10000);

167: c.send_data(s0);

168:

169: //Receiveing Data

170: cout<<"**********************\n\n";

171: cout<<c.ReceiveData(1024);

172: cout<<"\n\n***********************\n\n";

80

173:

174: }

175:

176: //done

177: return 0;

178: }

81

Appendix B : The Server Application in The Cloud

In the cloud side, the server application has been written in C# programming language; the

server application is responsible for receiving sensor data and storing them in the cloud

storage. Then, data analysis and the decision-making algorithm have been applied in the

cloud[55].

1 using System;

2 using System.Collections.Generic;

3 using System.Web;

4 using System.Web.UI;

5 using System.Web.UI.WebControls;

6 using System.Text;

7 using System.IO;

8 using System.Net;

9 using System.Net.Sockets;

10 using System.Text.RegularExpressions;

11 using System.Data.SqlClient;

12 using System.Configuration;

13 using System.Data.Sql;

14 using System.Data;

15

16 public partial class ConnectToPi : System.Web.UI.Page

17 {

18 protected void Page_Load(object sender, EventArgs e)

19 {

20

21

22 }

23 protected void Button1_Click(object sender, EventArgs e)

24 {

25 // SocKet open connection

26

27 string data;

28

29 IPEndPoint ip = new IPEndPoint(IPAddress.Any, 999);

30 Socket socket = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

31

32 socket.Bind(ip);

33 socket.Listen(10);

34

35 Socket client = socket.Accept();

36

37 IPEndPoint newclient = (IPEndPoint)client.RemoteEndPoint;

38

39 Label1.Text = "Connected";

40

41 // Client Send Data

42 // Create a System.Net.Sockets.NetworkStream from the above Socket:

43 NetworkStream ns = new NetworkStream(client);

44 StreamReader sr = new StreamReader(ns);

45 StreamWriter sw = new StreamWriter(ns);

46

82

47 string welcome = "Welcome";

48 sw.WriteLine(welcome);

49 sw.Flush();

50

51

52 data = sr.ReadLine();

53 txtSensorId.Text += data;

54

55 data = sr.ReadLine();

56 txtPatientId.Text = data;

57

58 data = sr.ReadLine();

59 txtTemp.Text = data;

60

61 sw.Flush();

62 socket.Close();

63 Label1.Text = "Disconnected";

64

65 SqlConnection conn = new SqlConnection(@"Data Source=ec2-54-191-23-

 134.us-west-2.compute.amazonaws.com\WIN-MJ8KG93S5MU,1433;

66 Initial Catalog=FinalProject;Persist Security Info=True;User

 ID=sa;Password=sa_1234");

67

68 DateTime now = DateTime.Now;

69

70 System.Data.SqlClient.SqlCommand cmd = new

 System.Data.SqlClient.SqlCommand();

71 cmd.CommandType = System.Data.CommandType.Text;

72

73 cmd.CommandText = "INSERT FP_SENSORS_INFO (Sensor_Id, Patient_Id,

 Sensor_Data, Insert_Date) VALUES (@Sensor_Id, @Patient_Id, @Sensor_Data,

 @Insert_Date)";

74 cmd.Parameters.AddWithValue("@Sensor_Id", txtSensorId.Text);

75 cmd.Parameters.AddWithValue("@Patient_Id", txtPatientId.Text);

76 cmd.Parameters.AddWithValue("@Sensor_Data", txtTemp.Text);

77 cmd.Parameters.AddWithValue("Insert_Date", now);

78

79 cmd.Connection = conn;

80

81 conn.Open();

82 cmd.ExecuteNonQuery();

83

84 // decision making Proc start

85 SqlCommand cmd2 = new SqlCommand("FP_SYSTEM_DECISION_SP", conn);

86

87 //Specify that the SqlCommand is a stored procedure

88 cmd2.CommandType = System.Data.CommandType.StoredProcedure;

89

90 //Add the input parameters to the command object

91 cmd2.Parameters.AddWithValue("@PatientId", txtPatientId.Text);

92 cmd2.Parameters.AddWithValue("@SensorId", txtSensorId.Text);

93 cmd2.Parameters.AddWithValue("@SensorData", txtTemp.Text);

94

95 cmd2.ExecuteNonQuery();

96

97 // close the connection

98 conn.Close();

99 sw.Close();

100 sr.Close();

101

102 }

103}

83

Appendix C : Decision Making Algorithm Code

We implemented the decision making algorithm using SQL Server Stored Procedure. We

can define stored procedure as a group of SQL statement which are grouped to perform a

certain task.

1 USE [FinalProject]

2 GO

3 /****** Object: StoredProcedure [dbo].[SYSTEM_DECISION] Script Date: 21/07/2015

 10:56:06 PM ******/

4 SET ANSI_NULLS ON

5 GO

6 SET QUOTED_IDENTIFIER ON

7 GO

8 ALTER PROCEDURE [dbo].[SYSTEM_DECISION]

9 (

10 @PatientId int,

11 @SensorId varchar(10),

12 @Temp_SensorData float,

13 @SPO2_Sensor int,

14 @Gluo_Sensor int

15)

16 AS

17 begin

18 declare @maxseq int,

19 @Decision_Desc varchar(max),

20 @result int, @Sensor_Typed varchar(30),@Spo2_result int, @Gluo_result int,

 @NormalPercent int

21

22 -- Check data normal or abnormal based on ranges of laboratory medical tests and

 patients medical policies

23 -- Start

24

25 set @Spo2_result= (Select count(1) from FP_Sensors_Policies where Patient_Id=

 @PatientId

26 And Sensor_typed='SPO2' and @SPO2_Sensor between [from] and [to])

27

28 set @Gluo_result= (Select count(1) from FP_Sensors_Policies where Patient_Id=

 @PatientId

29 And Sensor_typed='Gluo' and @Gluo_Sensor between [from] and [to])

30

31 set @result = (SELECT COUNT(1)

32 --into @result

33 FROM FP_Sensors_Policies

34 WHERE Patient_Id = @PatientId

35 and @Temp_SensorData between [from] and [to] -- or between Normal Range between

 [37] and [38]

36 and @Spo2_result=1

37 and @Gluo_result=1)

38

39

40 set @Sensor_Typed = (SELECT Sensor_Typed FROM FP_Sensors_Policies

41 WHERE Patient_Id = @PatientId

42 AND Sensor_Id = @SensorId)

43

44 --Normal sensor data based patients medical policies

45 if (@result > 0)

46 begin

47 set @Decision_Desc = ('You are healthy and your test results seem normal')

48 end

49

50 if (@result = 0) -- End the Check if Data Norm or Abnor

51 begin

52 --if (@Sensor_Typed like 'Temp')

53 --begin

54

55 set @maxseq = (SELECT MAX (Request_Id)

84

56 FROM FP_Patient_Requests_Inf WHERE Patient_Id = @PatientId

57 --AND round(Temp_Sensor,2,1) = round(@Temp_SensorData,2,1)

58 AND Temp_Sensor between @Temp_SensorData and (@Temp_SensorData + 1)

59 AND SPO2_Sensor between @SPO2_Sensor and (@SPO2_Sensor + 5)

60 AND Gluo_Sensor between @Gluo_Sensor and (@Gluo_Sensor + 10)

61 AND lower(Request_Status) = 'approval')

62

63 set @Decision_Desc = (SELECT Request_Dec

64 FROM FP_Patient_Requests_Inf

65 WHERE Patient_Id = @PatientId

66 AND Temp_Sensor between @Temp_SensorData and (@Temp_SensorData + 1)

67 AND SPO2_Sensor between @SPO2_Sensor and (@SPO2_Sensor + 5)

68 AND Gluo_Sensor between @Gluo_Sensor and (@Gluo_Sensor + 10)

69 AND lower(Request_Status) = 'approval'

70 AND Request_Id = @maxseq)

71 end

72

73 -- Check sensor data If Temp_Sensor > 37.5 {print temp is high}

74 -- else (Print temp is normal) If (SPO2 between 60, 90) else

75 if (@Decision_Desc is null)

76 begin

77 set @maxseq = (SELECT MAX (Request_Id) FROM FP_Patient_Requests_Inf WHERE

78 --AND round(Temp_Sensor,2,1) = round(@Temp_SensorData,2,1)

79 Temp_Sensor between @Temp_SensorData and (@Temp_SensorData + 1)

80 AND SPO2_Sensor between @SPO2_Sensor and (@SPO2_Sensor + 5)

81 AND Gluo_Sensor between @Gluo_Sensor and (@Gluo_Sensor + 10)

82 AND lower(Request_Status) = 'approval')

83

84 set @Decision_Desc = (SELECT Request_Dec

85 FROM FP_Patient_Requests_Inf

86 WHERE

87 Temp_Sensor between @Temp_SensorData and (@Temp_SensorData + 1)

88 AND SPO2_Sensor between @SPO2_Sensor and (@SPO2_Sensor + 5)

89 AND Gluo_Sensor between @Gluo_Sensor and (@Gluo_Sensor + 10)

90 AND lower(Request_Status) = 'approval'

91 AND Request_Id = @maxseq)

92 end

93

94 -- Normal data for those don't have police records because they are first time

using the system

95 if ((@Decision_Desc is null) and (@Temp_SensorData between 37 and 37.5)

96 and (@SPO2_Sensor between 95 and 100) and (@Gluo_Sensor between 100 and 120))

97 begin

98 set @Decision_Desc = ('You are healthy and your test results seem normal')

99 end

100

101 -- Check sensor data If Temp_Sensor > 37.5 {print temp is high} else (Print temp

is normal)

102 -- If (SPO2 between 60, 90) else

103 if (@Decision_Desc is null)

104 begin

105 set @Decision_Desc = ('Please Enter your Decision. There is not historical

decisions are appropriate')

106 end

107

108 set @NormalPercent = (@Spo2_result + @Gluo_result)

109 if (@NormalPercent>=2)

110 begin

111 set @NormalPercent= (100)

112 end

113 else if (@NormalPercent<=1)

114 begin

115 set @NormalPercent= (50)

116 end

117

118 update FP_Patient_Requests_Inf

119 SET Request_Dec= @Decision_Desc

120 WHERE Request_Id=(SELECT MAX (Request_Id)

121 FROM FP_Patient_Requests_Inf WHERE Patient_Id= @PatientId);

122 END

85

Appendix D : Applying Hashing Technique

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Web;

5 using System.Web.UI;

6 using System.Web.UI.WebControls;

7 using System.Data.Sql;

8 using System.Data;

9 using System.Data.SqlClient;

10 using System.Collections;

11 using System.Configuration;

12 using System.Web.Security;

13

14

15 public partial class login : System.Web.UI.Page

16 {

17 protected void Page_Load(object sender, EventArgs e)

18 {

19

20 }

21 protected void Button1_Click(object sender, EventArgs e)

22 {

23 string hashresult2 =

 FormsAuthentication.HashPasswordForStoringInConfigFile(txtPass.Text,

 "SHA1");

24

25 SqlConnection conn = new SqlConnection(@"Data Source=ec2-52-24-15-

7.us- west-2.compute.amazonaws.com\WIN-MJ8KG93S5MU,1433;Initial

 Catalog=FinalProject;Persist Security Info=True;User

 ID=sa;Password=sa_1234");

26

27 conn.Open();

28 string checkuser = "select count(*) from Users where User_Id= '" +

 txtUsername.Text + "' and password= '" + hashresult2 + "'";

29 string checktype = "select type from Users where User_Id= '" +

 txtUsername.Text + "'";

30 string checkName = "select User_Name from Users where User_Id= '" +

 txtUsername.Text + "'";

31

32 SqlCommand com = new SqlCommand(checkuser, conn);

33 SqlCommand com2 = new SqlCommand(checktype, conn);

34 SqlCommand com3 = new SqlCommand(checkName, conn);

35

36

37 string temp = com.ExecuteScalar().ToString();

38 string type = com2.ExecuteScalar().ToString();

39 string Name = com3.ExecuteScalar().ToString();

40 conn.Close();

41

42

43 if (temp == "1")

44 {

45 if (type == "Patient")

46 {

47 //Response.Write("password is not correct");

48 Session["user"] = txtUsername.Text;

49 Session["User_Name"] = Name;

50 Session["User_Type"] = type;

51 Response.Redirect("test.aspx");

86

52 }

53 else

54 Session["user"] = txtUsername.Text;

55 Session["User_Name"] = Name;

56 Session["User_Type"] = type;

57 Response.Redirect("test.aspx");

58 }

59 else

60 {

61 Label4.Text = "Username is not correct";

62 }

63 }

64}

87

Appendix E : Implementation of Encryption Technique

1 : using System;

2 : using System.Collections.Generic;

3 : using System.Linq;

4 : using System.Web;

5 : using System.Web.UI;

6 : using System.Web.UI.WebControls;

7 : using System.IO;

8 : using System.Net;

9 : using System.Text.RegularExpressions;

10: using System.Collections;

11: using System.Security.Cryptography;

12: using System.Text;

13:

14: public partial class WordCount : System.Web.UI.Page

15: {

16: protected void Page_Load(object sender, EventArgs e)

17: {

18:

19: }

20: protected void UploadButton_Click(object sender, EventArgs e)

21: {

22: if (FileUpload1.HasFile)

23: {

24: // Add code to upload file with encryption

25: byte[] file = new byte[FileUpload1.PostedFile.ContentLength];

26: FileUpload1.PostedFile.InputStream.Read(file, 0,

 FileUpload1.PostedFile.ContentLength);

27:

28: string fileName = FileUpload1.PostedFile.FileName;

29:

30: // key for encryption

31: byte[] Key = Encoding.UTF8.GetBytes("asdf!@#$1234ASDF");

32: try

33: {

34: string outputFile =

 Path.Combine(Server.MapPath("~/UploadedFiles"), fileName);

35: if (File.Exists(outputFile))

36: {

37: // Show Already exist Message

38: }

39: else

40: {

41: FileStream fs = new FileStream(outputFile,

 FileMode.Create);

42: RijndaelManaged rmCryp = new RijndaelManaged();

43: CryptoStream cs = new CryptoStream(fs,

 rmCryp.CreateEncryptor(Key, Key), CryptoStreamMode.Write);

44: foreach (int data in file)

45: {

46: cs.WriteByte((byte)data);

47: }

48: cs.Close();

49: fs.Close();

50: }

51: StatusLabel.Text = "Upload status: File uploaded!";

52: string filename = Path.GetFileName(FileUpload1.FileName);

53: Label3.Text = filename;

54: //PopulateUploadedFiles();

55: }

56: catch

88

57: {

58: Response.Write("Encryption Failed! Please try again.");

59: }

60:

61: }

62: }

63: }

89

Appendix F : Generating Random Sensor Data From Client Side

In the Raspberry Pi (Client Side), we create an application written in C++ to generate a

large number of requests based on random sensor data.

1 // Adding eHealth library

2 #include "eHealth.h"

3 #include "arduPi.h"

4 #include<iostream>

5 #include<stdio.h>

6 #include<string.h>

7 #include<string>

8 #include<sys/socket.h>

9 #include<arpa/inet.h>

10 #include<netdb.h>

11 #include <sstream>

12

13 using namespace std;

14

15

16 // TCP connection Client class

17

18 class tcpconn_client

19 {

20 private:

21 int sock;

22 std::string IpAddress;

23 int PortNo;

24 struct sockaddr_in server;

25

26 public:

27 tcpconn_client();

28 bool conn(string, int);

29 bool SendData(string SensorData);

30 string ReceiveData(int);

31 };

32

33 tcpconn_client::tcpconn_client()

34 {

35 sock = -1;

36 PortNo = 0;

37 IpAddress = "";

38 }

39

40

41 // connect a client to a cloud server using Ip + port number

42

43 bool tcpconn_client::conn(string IpAddress , int PortNo)

44 {

45 //create new socket if it is not be created

46 if(sock == -1)

47 {

48 //Create a new socket

49 sock = socket(AF_INET , SOCK_STREAM , 0);

50 if (sock == -1)

51 {

52 perror(" error happen when the applicaion try to create

socket");

53 }

90

54

55 cout<<"socket has been created\n";

56 }

57 else { cout<<"error \n"; }

58

59 //setup Ip Address structure

60 if(inet_addr(IpAddress.c_str()) == -1)

61 {

62 struct hostent *he;

63 struct in_addr **addr_list;

64

65 //check a server name (True ip or not)

66 if ((he = gethostbyname(IpAddress.c_str())) == NULL)

67 {

68 //If the function is failed, the next error will be presented

69 herror("gethostbyname");

70 cout<<"Failed to resolve server name\n";

71

72 return false;

73 }

74

75

76 addr_list = (struct in_addr **) he->h_addr_list;

77

78 for(int i = 0; addr_list[i] != NULL; i++)

79 {

80 //strcpy(ip , inet_ntoa(*addr_list[i]));

81 server.sin_addr = *addr_list[i];

82

83 cout<<IpAddress<<" resolved to

"<<inet_ntoa(*addr_list[i])<<endl;

84

85 break;

86 }

87 }

88

89 //plain ip IpAddress

90 else

91 {

92 server.sin_addr.s_addr = inet_addr(IpAddress.c_str());

93 }

94

95 server.sin_family = AF_INET;

96 server.sin_port = htons(PortNo);

97

98 //connect to a server

99 if (connect(sock , (struct sockaddr *)&server , sizeof(server)) < 0)

100 {

101 perror("Error connect failed. ");

102 return 1;

103 }

104

105 cout<<"The client are connected to the server\n";

106 return true;

107}

108

109

110 // After the client has been connnected to cloud server, data will be

sent

111

112 bool tcpconn_client::SendData(string SensorData)

113{

114 //Send Sensor data to the cloud

91

115 if(send(sock , SensorData.c_str() , strlen(SensorData.c_str()) , 0) <

0)

116 {

117 perror("Sending data is failed: ");

118 return false;

119 }

120 cout<<"Client sent Data to the cloud \n";

121

122 return true;

123}

124

125

126 //receiveing data from the cloud

127

128 string tcpconn_client::ReceiveData(int size=512)

129{

130 char Rbuffer[size];

131 string ReplyFromServer;

132

133 // the cloud server sends reply to the client

134 if(recv(sock , Rbuffer , sizeof(Rbuffer) , 0) < 0)

135 {

136 puts("ReceiveData from server is failed");

137 }

138

139 ReplyFromServer = Rbuffer;

140 return ReplyFromServer;

141}

142

143 int sys_random(int min, int max) {

144 srand(static_cast<unsigned int>(time(0)));

145 return (rand() % (max - min+1) + min);

146}

147

148 float RandomFloat(float min, float max)

149{

150 srand(static_cast<unsigned int>(time(0)));

151 float r = (float)rand() / (float)RAND_MAX;

152 return min + r * (max - min);

153}

154

155

156 std::string float_to_string(float f)

157{

158 std::ostringstream s;

159 s << f;

160 return s.str();

161}

162

163 std::string NumberToString (int num)

164 {

165 std::ostringstream ss;

166 ss << num;

167 return ss.str();

168 }

169

170

171

172 int main(int argc , char *argv[])

173{

174 tcpconn_client c;

175 string host;

176

92

177 string s0;

178 string s1;

179 string s2;

180

181 int patientid;

182 float patient_Tem;

183 int Spo2;

184

185 cout<<"Enter hostname : ";

186 cin>>host;

187

188 //connect to host

189 c.conn(host, 1109);

190

191 //send some data

192 for (int i=0; i<1;i++)

193 {

194 patientid= sys_random(1000,4000);

195 s0= NumberToString (patientid);

196 //cout<< patientid << endl;

197

198 patient_Tem= RandomFloat(36,42);

199 //cout<< patient_Tem << endl;

200 //float temperature = eHealth.getTemperature();

201 s1 = float_to_string(patient_Tem);

202

203

204 Spo2= sys_random(80,99);

205 s2= NumberToString (Spo2);

206 //cout<< Spo2 << endl;

207

208 s0= s0+s1+s2+"$";

209 //str.append(str2);

210 //delay(10000);

211 c.SendData(s0);

212

213 //ReceiveData

214 cout<<"**********************\n\n";

215 cout<<c.ReceiveData(1024);

216 cout<<"\n\n***********************\n\n";

217

218 }

219

220 //done

221 return 0;

222}

93

Appendix G : Cloud Server Application

This section presents the source code of Cloud server application which has been used for

receiving sensor data from Raspberry Pi; then, storing sensor data in the cloud storage. The

execution time is accounted to evaluate the performance[55].

1 : using System.Threading.Tasks;

2 : using System.IO;

3 : using System.Net;

4 : using System.Net.Sockets;

5 : using System.Text.RegularExpressions;

6 : using System.Data.SqlClient;

7 : using System.Configuration;

8 : using System.Data.Sql;

9 : using System.Data;

10 :

11 : namespace ConsoleApplication13

12 : {

13 : class Program

14 : {

15 : static void Main(string[] args)

16 : {

17 : TcpListener serverSocket = new TcpListener(1109);

18 : int requestCount = 0;

19 : TcpClient clientSocket = default(TcpClient);

20 : serverSocket.Start();

21 : Console.WriteLine(" >> Server Started");

22 : clientSocket = serverSocket.AcceptTcpClient();

23 : Console.WriteLine(" >> Accept connection from client");

24 : requestCount = 0;

25 :

26 : Console.WriteLine(" Data from client");

27 : Console.WriteLine("Patient

 Id......................Temp..............SPO2");

28 :

29 : TimeSpan ts = (DateTime.UtcNow - new DateTime(1970, 1, 1,

0, 0, 0, DateTimeKind.Utc));

30 : long millis = (long)ts.TotalMilliseconds;

31 :

32 : while ((true))

33 : {

34 :

35 : try

36 : {

37 : requestCount = requestCount + 1;

38 : NetworkStream networkStream =

 clientSocket.GetStream();

39 : byte[] bytesFrom = new byte[10000];

40 : networkStream.Read(bytesFrom, 0,

 (int)clientSocket.ReceiveBufferSize);

41 : string dataFromClient =

 System.Text.Encoding.ASCII.GetString(bytesFrom);

42 : string dataFromClient1;

43 : string PatientId = dataFromClient.Substring(0, 4);

44 : string Patient_Temp = dataFromClient.Substring(4,

7);

45 : string Patient_Spo2 = dataFromClient.Substring(11,

2);

94

46 : string Check_Data = dataFromClient.Substring(0, 5);

47 : string Checker = "\0\0\0\0\0";

48 :

49 :

50 : int j = 0;

51 : SqlConnection conn = new SqlConnection(@"Data

 Source=ec2-52-24-15-7.us-west-2.compute.amazonaws.com\WIN-

 MJ8KG93S5MU,1433;Initial Catalog=FinalProject;Persist Security

 Info=True;User ID=sa;Password=sa_1234");

52 : conn.Open();

53 :

54 : if (Check_Data != Checker)

55 : {

56 :

57 : DateTime now = DateTime.Now;

58 : System.Data.SqlClient.SqlCommand cmd = new

 System.Data.SqlClient.SqlCommand();

59 : cmd.CommandType =

 System.Data.CommandType.Text;

60 : cmd.CommandTimeout = 0;

61 :

62 : cmd.CommandText = "INSERT Temp (PatientId,

 Patient_Temp, Patient_Spo2,Insert_Date) VALUES (@PatientId,

 @Patient_Temp,@Patient_Spo2, @Insert_Date)";

63 : cmd.Parameters.AddWithValue("@PatientId",

 PatientId);

64 :

cmd.Parameters.AddWithValue("@Patient_Temp",

Patient_Temp);

65 :

cmd.Parameters.AddWithValue("@Patient_Spo2",

Patient_Spo2);

66 : cmd.Parameters.AddWithValue("Insert_Date",

 now);

67 :

68 : cmd.Connection = conn;

69 : cmd.ExecuteNonQuery();

70 :

71 :

72 : Console.WriteLine(PatientId +

 "..................." + Patient_Temp + "..........." + Patient_Spo2);

73 :

74 : string reply = "recived recored from client--

 > Patient id=" + PatientId;

75 :

76 : Byte[] sendBytes1 =

 Encoding.ASCII.GetBytes(reply);

77 : networkStream.Write(sendBytes1, 0,

 sendBytes1.Length);

78 : networkStream.Flush();

79 :

80 : }

81 : else break;

82 : }

83 : catch (Exception ex)

84 : {

85 : Console.WriteLine(ex.ToString());

86 : }

87 : }

88 :

89 : TimeSpan ts2 = (DateTime.UtcNow - new DateTime(1970, 1, 1,

0, 0, 0, DateTimeKind.Utc));

90 : long millis2 = (long)ts2.TotalMilliseconds;

95

91 : long elapsed = millis2 - millis;

92 : String x = String.Format("{0:#,##0}{1}", elapsed, "

millis");

93 : Console.WriteLine("The execution time for receiving and

 storing data in the cloud for 100 Patients is {0}:",x);

94 :

95 : clientSocket.Close();

96 : serverSocket.Stop();

97 : Console.WriteLine(" >> exit");

98 : Console.ReadLine();

99 :

100:

101: }

102: }

103: }

96

Bibliography

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and

research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18, Apr. 2010.

[2] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and Privacy Challenges in

Cloud Computing Environments,” IEEE Secur. Priv. Mag., vol. 8, no. 6, pp. 24–

31, Nov. 2010.

[3] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Futur.

Gener. Comput. Syst., vol. 28, no. 3, pp. 583–592, 2012.

[4] M. S. Jassas, A. A. Qasem, and Q. H. Mahmoud, “A smart system connecting e-

health sensors and the cloud,” in 2015 IEEE 28th Canadian Conference on

Electrical and Computer Engineering (CCECE), 2015, pp. 712–716.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: a survey,” Comput. Networks, vol. 38, no. 4, pp. 393–422, Mar. 2002.

[6] J. Yicka, B. Mukherjeea, and D. Ghosal, “Wireless sensor network survey,”

Comput. Networks, vol. 58, no. 12, pp. 2292–2330, 2008.

[7] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sallai,

and K. Frampton, “Sensor network-based countersniper system,” Association for

Computing Machinery, 2004.

[8] S. K. Dash, J. P. Sahoo, S. Mohapatra, and S. P. Pati, “Sensor-Cloud: Assimilation

of wireless sensor network and the cloud,” in Lecture Notes of the Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering,

LNICST, 2012, vol. 84, no. PART 1, pp. 455–464.

[9] M. Castillo-Effer, D. H. Quintela, W. Moreno, R. Jordan, and W. Westhoff,

“Wireless sensor networks for flash-flood alerting,” Proc. Fifth IEEE Int. Caracas

Conf. Devices, Circuits Syst. 2004., vol. 1, 2004.

[10] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J.

Lees, “Deploying a wireless sensor network on an active volcano,” IEEE Internet

Comput., vol. 10, no. 2, pp. 18–25, 2006.

[11] B. Swathi and H. Guruprasad, “Integration of Wireless Sensor Networks and

Cloud Computing,” Int. J. Comput., 2014.

97

[12] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of cloud computing,”

Commun. ACM, vol. 53, no. 4, p. 50, Apr. 2010.

[13] R. Buyya, R. Buyya, C. S. Yeo, C. S. Yeo, S. Venugopal, S. Venugopal, J.

Broberg, J. Broberg, I. Brandic, and I. Brandic, “Cloud computing and emerging

IT platforms: Vision, hype, and reality for delivering computing as the 5th utility,”

Futur. Gener. Comput. Syst., vol. 25, no. 6, p. 17, 2009.

[14] P. Mell and T. Grance, “The NIST Definition of Cloud Computing

Recommendations of the National Institute of Standards and Technology,” Nist

Spec. Publ., vol. 145, p. 7, 2011.

[15] “Heroku | Cloud Application Platform.” [Online]. Available:

https://www.heroku.com/. [Accessed: 01-Sep-2015].

[16] “Google App Engine: Platform as a Service - App Engine — Google Cloud

Platform.” [Online]. Available: https://cloud.google.com/appengine/docs.

[Accessed: 01-Sep-2015].

[17] “Amazon Web Services (AWS) - Cloud Computing Services.” [Online].

Available: https://aws.amazon.com/. [Accessed: 01-Sep-2015].

[18] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of Mobile Cloud

Computing : Architecture , Applications , and Approaches,” Computer (Long.

Beach. Calif)., no. Cc, pp. 1–38, 2011.

[19] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling

applications in the cloud,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no.

1, p. 45, Jan. 2011.

[20] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic Scaling of Web

Applications in a Virtualized Cloud Computing Environment,” in 2009 IEEE

International Conference on e-Business Engineering, 2009, pp. 281–286.

[21] C. Zenon, M. Venkatesh, and A. Shahrzad, “Availability and Load Balancing in

Cloud Computing,” Int. Conf. Comput. Softw. Model. IPCSIT vol.14 IACSIT Press.

Singapore, vol. 14, pp. 134–140, 2011.

[22] L. M. Kaufman, “Data Security in the World of Cloud Computing,” IEEE Secur.

Priv. Mag., vol. 7, no. 4, pp. 61–64, Jul. 2009.

[23] D. G. FENG, M. ZHANG, Y. ZHANG, and Z. XU, “Study on Cloud Computing

Security,” J. Softw., vol. 22, no. 1, pp. 71–83, Mar. 2011.

98

[24] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A

vision, architectural elements, and future directions,” Futur. Gener. Comput. Syst.,

vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[25] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput.

Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[26] K. Ashton, “That ‘Internet of Things’ Thing,” RFiD J., 2009.

[27] M. Weiser, R. Gold, J. S. Brown, B. Sprague, and R. Bruce, “The origins of

ubiquitous computing research at PARC,” IBM Syst. J., vol. 38, no. 4, pp. 693–

696, 1999.

[28] G. Fortino, M. Pathan, and G. Di Fatta, “BodyCloud: Integration of Cloud

Computing and body sensor networks,” in CloudCom 2012 - Proceedings: 2012

4th IEEE International Conference on Cloud Computing Technology and Science,

2012, pp. 851–856.

[29] B. B. P. Rao, P. Saluia, N. Sharma, A. Mittal, and S. V Sharma, “Cloud computing

for Internet of Things & sensing based applications,” in Sensing Technology

(ICST), 2012 Sixth International Conference on, 2012, pp. 374–380.

[30] H. M. Perumal, B., Rajasekaran, M., & Ramalingam, “WSN Integrated Cloud For

Automated Telemedicine (ATM) Based E-Healthcare Applications,” International

Proceedings of Chemical, Biological & Environmental Engineering, 29, 2012.

[Online]. Available: http://www.ipcbee.com/vol29/30-ICBBT2012-H10011.pdf.

[Accessed: 11-Aug-2015].

[31] S. R. Vemuri, N. Satyanarayana, and V. L. Prasanna, “Generic Integrated Secured

WSN-Cloud Computing U-life care,” Int. J. Eng. Sci. Adv. Technol., no. 4, pp.

897–907, 2012.

[32] W. Chung, P. Yu, and C. Huang, “Cloud computing system based on wireless

sensor network,” Comput. Sci. Inf. Syst., pp. 877–880, 2013.

[33] A. Lounis, A. Hadjidj, A. Bouabdallah, and Y. Challal, “Secure and scalable

cloud-based architecture for e-Health wireless sensor networks,” in 2012 21st

International Conference on Computer Communications and Networks, ICCCN

2012 - Proceedings, 2012.

[34] K. Ahmed and M. Gregory, “Integrating Wireless Sensor Networks with Cloud

Computing,” 2011 Seventh Int. Conf. Mob. Ad-hoc Sens. Networks, pp. 364–366,

Dec. 2011.

[35] K. L. Tan, “What’s NExT?: Sensor + Cloud!?,” the 7th International Workshop on

Data Management for Sensor Networks, 2010. [Online]. Available:

99

http://www.vldb2010.org/proceedings/files/vldb_2010_workshop/DMSN_2010/in

dividual-files/01.keynote.pdf. [Accessed: 11-Aug-2015].

[36] C. H. Yun, H. Han, H. S. Jung, H. Y. Yeom, and Y. W. Lee, “Intelligent

management of remote facilities through a ubiquitous cloud middleware,” in

CLOUD 2009 - 2009 IEEE International Conference on Cloud Computing, 2009,

pp. 65–71.

[37] C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi, and G. S.

Salvador, “A Cloud Computing Solution for Patient’s Data Collection in Health

Care Institutions,” 2010 Second Int. Conf. eHealth, Telemedicine, Soc. Med., no. ii,

pp. 95–99, Feb. 2010.

[38] B. Adler and S. Architect, “Load balancing in the cloud: Tools, tips and

techniques,” 2012.

[39] W. Lijun and H. Yongfeng, “Medoop: A medical information platform based on

Hadoop,” 2013 IEEE 15th Int. Conf. e-Health Networking, Appl. Serv. (Healthcom

2013), pp. 1–6, Oct. 2013.

[40] C. M. Huang, H. H. Ku, and Y. W. Chen, “Design and implementation of a web

2.0 service platform for DPWS-based home-appliances in the cloud environment,”

in Proceedings - 25th IEEE International Conference on Advanced Information

Networking and Applications Workshops, WAINA 2011, 2011, pp. 159–163.

[41] C. H. Lu, H. H. Kuo, C. W. Hsiao, Y. L. Ho, Y. H. Lin, and H.-P. Ma,

“Localization with WLAN on smartphones in hospitals,” in 2013 IEEE 15th

International Conference on e-Health Networking, Applications and Services

(Healthcom 2013), 2013, pp. 534–538.

[42] J. J. Hwang, H. K. Chuang, C. H. Wu, and Y. C. Hsu, “A business model for cloud

computing based on a separate encryption and decryption service,” in 2011

International Conference on Information Science and Applications, ICISA 2011,

2011.

[43] I. L’m, S. Szebeni, and L. Butty’n, “Tresorium: Cryptographic File System for

Dynamic Groups over Untrusted Cloud Storage,” 2012 41st Int. Conf. Parallel

Process. Work., pp. 296–303, Sep. 2012.

[44] T. Erl, R. Puttini, and Z. Mahmood, Cloud Computing: Concepts, Technology, &

Architecture. 2013.

[45] “Raspberry Pi - Teach, Learn, and Make with Raspberry Pi.” [Online]. Available:

https://www.raspberrypi.org/. [Accessed: 17-Aug-2015].

100

[46] “Microsoft Azure: Cloud Computing Platform & Services.” [Online]. Available:

http://azure.microsoft.com/en-us/. [Accessed: 11-Aug-2015].

[47] K. Davies, “Virtual machine sizes,” Microsoft Corporation, 2015. [Online].

Available: https://azure.microsoft.com/en-us/documentation/articles/virtual-

machines-size-specs/. [Accessed: 11-Aug-2015].

[48] J. Madureira, “Traffic Manager Overview,” 2015. [Online]. Available:

https://azure.microsoft.com/en-us/documentation/articles/traffic-manager-

overview/. [Accessed: 11-Aug-2015].

[49] J. Madureira, “Manage Traffic Manager profiles.” [Online]. Available:

https://azure.microsoft.com/en-us/documentation/articles/traffic-manager-manage-

profiles/. [Accessed: 11-Aug-2015].

[50] “Apache JMeter - Apache JMeterTM,” The Appach Software Foundation. [Online].

Available: http://jmeter.apache.org/. [Accessed: 11-Aug-2015].

[51] “e-Health Sensor Platform Complete Kit V2.0 for Arduino, Raspberry Pi and Intel

Galileo [Biometric / Medical Applications],” cooking hacks. [Online]. Available:

https://www.cooking-hacks.com/ehealth-sensors-complete-kit-biometric-medical-

arduino-raspberry-pi. [Accessed: 11-Aug-2015].

[52] “Create a Stored Procedure,” Microsoft Corporation. [Online]. Available:

https://msdn.microsoft.com/en-us/library/ms345415.aspx. [Accessed: 11-Aug-

2015].

[53] “UCSF Departments of Pathology and Laboratory Medicine | SFGH Lab Manual |

Reference Ranges & Critical Test Values.” [Online]. Available:

http://labmed.ucsf.edu/sfghlab/test/ReferenceRanges.html. [Accessed: 11-Aug-

2015].

[54] “What is Hadoop in HDInsight: Cloud big data analysis | Microsoft Azure.”

[Online]. Available: https://azure.microsoft.com/en-

in/documentation/articles/hdinsight-hadoop-introduction/. [Accessed: 04-Sep-

2015].

[55] “C# Server Socket program - Print Source Code.” [Online]. Available:

http://csharp.net-informations.com/communications/files/print/csharp-server-

socket_print.htm. [Accessed: 12-Oct-2015].

