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Abstract: Multiway decision graph (MDG) is a canonical representation of a 
subset of many-sorted first-order logic. It generalises the logic of equality with 
abstract types and uninterpreted function symbols. The area of satisfiability 
(SAT) has been the subject of intensive research in recent years, with 
significant theoretical and practical contributions. In this paper, we propose a 
new design verification tool integrating MDG and SAT, to check the safety of a 
design by invariant checking. Using MDG to encode the set of states provides a 
powerful mean of abstraction. We use a SAT solver to search for paths of 
reachable states violating the property under certain encoding constraints. In 
addition, we introduce an automated conversion-verification methodology to 
convert a directed formula (DF) into a conjunctive normal form (CNF) formula 
that can be fed to a SAT solver. The formal verification of this conversion is 
conducted within the HOL theorem prover. Finally, we present experimental 
results and a case study to show the correctness and the efficiency of our 
proposed methodology. 
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1 Introduction 

Faulty systems (bugs in digital systems) can be very dangerous and expensive; especially 
for safety critical systems such as magnetic resonance imaging (MRI) machines, space 
shuttles, microprocessors, etc. There is a great advantage to being able to verify the 
correctness of such systems, whether they are hardware, software, or a combination of 
both. In the case of safety-critical systems, this is most obvious, but it also applies to 
commercially-critical systems, such as mass-produced chips, mission critical systems, 
etc. Formal verification methods have recently become usable by industry and there is a 
growing demand for professionals able to apply them, since the detection of bugs in a 
design by alternative techniques usually involves extra effort, time and cost. The 
overhead is even worse if the bug is detected late in the design cycle, thus increasing the 
overall cost of a project. In VLSI design, the traditional debugging technique is 
simulation. However, due to the increasing size and complexity of VLSI circuits, it is 
impossible to simulate large designs properly. To overcome these limitations, formal 
verification comes into play as a complement to simulation to detect errors in the design 
as early as possible. 

Multiway decision graphs (MDGs) (Corella et al., 1997), are a special kind of 
decision diagrams that subsumes binary decision diagrams (BDDs) and extends them by 
canonically and compactly representing a subset of first-order functions. The MDG tool 
is a decision diagram-based verification tool, primarily designed for hardware 
verification that supports both equivalence and model checking. With MDG, a data value 
is represented by a single variable of an abstract type and data operations are represented 
as uninterpreted functions. 

Satisfiability checking (SAT-based tools to perform several forms of model checking 
have achieved a lot of attention these days (Déharbe and Moreira, 1997, Abed et al., 
2007), as they are less sensitive to problem size and the state explosion problem of 
classical BDD-based model checkers (Bryant, 1986). Expressing transition relations 
using the conjunctive normal form (CNF) along with SAT is an alternative to decision 
graphs and BDD-based approaches. Such an approach, performance-wise, is less 
sensitive to problem size. Moreover, it does not suffer from state space explosion. As a 
result, various researchers have developed methods for performing bounded model 
checking (BMC) (Ganai and Gupta, 2008, Strichman, 2001) using SAT. The common 
theme in these works is to convert the problem of interest into a SAT problem, by 
figuring out an appropriate propositional Boolean formula, and to utilise other  
non-canonical representations of state sets. These methods exploit the ability of SAT 
solvers to find a single satisfying solution, when it exists. In recent years, the SAT solver 
technology has improved significantly and a number of sophisticated packages are now 
available. Some of the well known state-of-the-art SAT solvers include CHAFF 
(Moskewicz and Madigan, 2001), GRASP (Silva and Sakallah, 1996) and SATO (Zhang, 
1997). Most model checking techniques involve state set manipulations for their 
implementations. The state set manipulation problem can be transformed into a SAT 
problem. SAT solvers, thus, have the potential of enormously boosting the speed and 
applicability of model checking techniques. 

In Abed et al. (2007), a methodology that integrates SAT and MDG model checker 
was presented with preliminary experimental results. A SAT solver has been used as a 
reduction engine to prune the transition relation of the circuits to produce a smaller one 
that is fed to the MDG model checker. In this work, we propose a new methodology to 
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build a verification tool for invariant checking where SAT is used as a verification 
engine. MDG as a data structure for representing transition systems or set of state, 
provides a powerful mean of abstraction for large models intended for model checking. A 
SAT solver is used to search along the decision diagram to look for bad states violating 
the properties specified by the user. As an alternative of using MDG as a stand alone tool 
for invariant checking, we explore the benefits of combining SAT and MDG in our 
proposed methodology. In addition, we also propose a methodology to convert MDG 
directed formula (DF) to CNF with automated verification of the conversion using HOL 
theorem prover (Hoque et al., 2010). 

The paper is organised as follows: Section 2 gives a survey of some related works in 
this area; Section 3 gives some preliminaries on MDG, SAT and HOL. Section 4 
concentrates on our main contribution integrating SAT and MDG. Experimental results 
and a case study using the proposed methodology are presented in Section 5. Section 6 
concludes the paper providing some future research directions. 

2 Related works 

Related research in the area of SAT-based verification can be divided in three different 
categories. The first category focuses on different techniques to translate equality with 
uninterpreted functions (EUF) to propositional logic, the second category describes 
several algorithms for the conversion of propositional formula to CNF, and the last 
category discusses some related SAT-based verification techniques. 

2.1 EUF elimination 

Their exist two possible ways to eliminate EUFs – while enforcing their property of 
functional consistency, Ackermann constraints (Ackermann, 1954) and nested  
if-then-else operators (ITE) (Bryant and Velev, 2001; Lahiri et al., 2004). In 
Ackermann’s approach, the UF is replaced with a new domain variable and the next 
application of UF with respect to the previous one is enforced by extending the resulting 
formula with constraints. Such constraints are added with the formula expressing 
functional consistency. Bryant and Velev presented an approach to eliminate the 
applications of UF with nested ITEs (Bryant and Velev, 2001). In the nested ITE scheme, 
the first application of the UF is still replaced by a new domain variable. However the 
subsequent applications are eliminated by introducing nested ITEs with new domain 
variables while preserving functional consistency. For our methodology, we prefer the 
nested ITE scheme which directly captures the functional consistency and readily exploit 
the maximal diversity property while Ackermann’s cannot (Bryant and Velev, 2001). 
However, we add small modifications to match the MDG DF syntax (Hoque et al., 2010). 

2.2 CNF conversion 

The lack of a fast and efficient CNF generation algorithm has always been a bottleneck 
for CNF-based SAT solvers. Hence researchers have paid much attention to this point. 
Until recently (Bryant et al., 2009), most of the CNF generation algorithms used in 
practice were minor variations of Tseitin linear time algorithm (Tseitin, 1968). Another 



   

 

   

   
 

   

   

 

   

   8 K.A. Hoque et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

CNF conversion algorithm came from Velve (2004) showing an efficient CNF generation 
technique with identifying gates with fan-out count of 1 and merging them with their  
fan-out gate to generate a single set of equivalent CNF clauses. Nested ITE chain, where 
each ITE is used only as else argument of the next ITE, are similarly merged and 
represented with a single set of clauses without introducing intermediate variables. Such 
an approach is good for pipelined machine verification problems, identifying certain 
patterns arising in formulas. Another algorithm for CNF generation is based on 
technological mapping (Eén et al., 2007) and is implemented in ABC tool. Their 
algorithm computes the mapping sequence, partial functions from and-inverter-graph 
(AIG) nodes in order to cut-off the graph for minimisation of the heuristics cost function. 
The CNF is then generated for the cuts of the nodes with respect to the final mapping by 
using their sum of products representation. Very recently an algorithm was presented 
(Chambers et al., 2009) for converting negation, ITE, Conjunction and equivalence 
(NICE DAGS) to CNF. The new data structure called NICE DAG subsume AIGs. 

All the algorithms described above, use an intermediate representation or data 
structure to represent the Boolean formula (either AIG or NICE DAG). The MDG DF is 
itself a DAG; so an intermediate DAG representation is not required to facilitate the 
conversion. More interestingly none of the works mentioned above attempted an 
automated proof of their proposed conversion algorithm. This motivated us to build an 
automated tool for the verification of conversion as well. 

2.3 SAT and BDD-based verification 

Most of the efforts today are spent on developing SAT-based tools to perform several 
forms of model checking as they are less sensitive to problem size and the state explosion 
problem of classical BDD-based model checkers. As a result, various researchers have 
developed routines for performing BMC (Ganai and Gupta, 2008, Strichman, 2001) using 
SAT. 

BDD and SAT-based verification have been of great interest to researchers for a long 
time. Given that both techniques perform an implicit search in the underlaying Boolean 
space, it is no surprise that different approaches have been explored recently to combine 
both of them for target applications. Their benefits have been combined in many 
applications such as BMC (Ganai and Aziz, 2002, Abdulla et al., 2000) and model 
checking (Gupta et al., 2003). In Gupta et al. (2000), the authors used BDDs to represent 
state sets, and a CNF formula to represent the transition relation. All valid next state 
combinations are enumerated using a backtracking search algorithm for SAT that 
exhaustively visits the entire space of primary input, present state and next state 
variables. However, rather than using SAT to enumerate each solution all the way down 
to a leaf, they invoked BDD-based image computation at intermediate points within the 
SAT decision procedure, which effectively obtains all solutions below that point in the 
search tree. In a sense, their approach can be regarded as SAT providing a disjunctive 
decomposition of the image computation into many subproblems, each of which handled 
in the standard way using BDDs. For checking invariant properties of the form AGp (P is 
globally true for along paths) of transition systems using induction (Déharbe and 
Moreira, 1997), Déharbe and Moreira modified a standard model checking algorithm. 
The set of states and image computation are expressed using BDD. Velev presented an 
indirect method to automatically prove the safety and liveness of for a pipelined 
microprocessor. The term-level simulator TLSim (Velev and Bryant, 2005), used for the 
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symbolic simulation of the implementation and specification and a EUFM correctness 
formula is produced. The decision procedure EVC (Velev and Bryant, 2005) exploits the 
positive equality, performs some other optimisations and converts the EUFM formula to 
an equivalent Boolean formula. An efficient SAT solver proves the formula to be a 
tautology in order for the implementation to be correct. In Sheeran et al. (2000), a safety 
property checking technique of finite state machines using SAT solver was presented. 
Their approach demonstrates the practicality of combining a SAT-solver-based safety 
property checking in a real design flow using induction. All the works described above 
relies on BDD-based state encoding. In our case, we use MDG to compactly encode the 
set of sates. 

A model checking methodology integrating SAT and MDG, was proposed in  
Abed et al. (2007), while using SAT solver as a reduction engine. They used a rewriting-
based SAT solver to prune the transition relation of the circuits to produce a smaller one 
that is fed to the MDG model checker. Our work concentrates on SAT-based invariant 
checking methodology for MDG models, using SAT solver as a verification engine. 
Moreover, we implement SAT encoding technique (CNF conversion) for MDG DF and 
propose another automated methodology to formally verify the correctness of the 
conversion. For the conversion part, we use Tseitin (1968) approach while introducing 
‘fresh variables’ only for AND gates and for the verification part we use the HOL 
theorem prover (Gordon and Melham, 1993). Implementation of SAT for model checking 
with MDG distinguishes our approach from others. 

3 Background 

In this section, we give a brief introduction to the MDG system, SAT solver and the HOL 
theorem prover. The intent is to familiarise the reader with the main ideas and notations 
used in the rest of the paper. 

3.1 Multiway decision graph 

MDG is a graph representation of a class of quantifier-free and negation-free first-order 
many-sorted formulae. It subsumes the class of ROBDDs (Bryant, 1986) while 
accommodating abstract data and uninterpreted function symbols. MDG can be seen as a 
DAG with one root, whose leaves are labelled by formulae of the logic true (T) (Corella 
et al., 1997), such that: 

1 every leaf node is labelled by a formula T, except if the graph G has a single node, 
which may be labelled T or F 

2 the internal nodes are labelled by terms, and the edges issuing from an internal node 
v are labelled by terms of the same sort as the label of v. 

As in ordinary many-sorted first order logic (FOL), terms are made out of sorts, 
constants, variables, and function symbols. Two kinds of sorts are distinguished: concrete 
and abstract. A concrete sort is equipped with finite enumerations, lists of individual 
constants. Concrete sorts are used to represent control signals. An abstract sort has no 
enumeration available. A signal of an abstract sort represents a data signal. MDGs 
represent and manipulate a certain subset of first-order formulae, which we call DFs  
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(Aït-Mohamed et al., 2003). DFs are used for two purposes: to represent sets (sets of 
states as well as sets of input vectors and output vectors) and to represent relations (the 
transition and output relations). 

The MDG-tool (Corella et al., 1997) supports invariant checking, sequential 
equivalence checking, and model checking. The MDGs tool uses a Prologue-style 
hardware description language called the MDG-HDL (Corella et al., 1997). MDG-HDL 
supports structural, behavioural and mixed styles of coding. A structural specification is 
usually a netlist of components connected by signals. A behavioural description consists 
of a tabular representation of the transition and output relations in the form of a truth 
table. 

The first step in the verification is to describe the design specifications and 
implementation are using MDG-HDL, as shown in Figure 1. An MDG-HDL algebraic 
specification consist of sorts, function types, and generic constants. Rewrite rules needed 
for interpreting function symbols are also provided. Symbol ordering (like for ROBDD) 
can either be specified by the user, or can be dynamically generated by the MGD tool. 
Symbol ordering can critically affect the size of the generated MDGs and the 
performance of the verification. 

Figure 1 The structure of the MDGs-tool 

 

3.2 Boolean satisfiability 

SAT problem is a well-known constraint satisfaction problem with many applications in 
computer aided design, such as test generation, logic verification and timing analysis. 
Given a Boolean formula, the objective is to either find an assignment of 0–1 values to 
the variables so that the formula evaluates to T, or establish that such an assignment  
does not exist. The Boolean formula is typically expressed in CNF, also called  
product-of-sums form. Each sum term (clause) in the CNF is a sum of single literals, 
where a literal is a variable or its negation. 

In practice, most of the current SAT solvers are based on the Davis-Putnam algorithm 
(Davis and Putnam, 1960). The basic algorithm begins from an empty assignment, and 
proceeds by assigning a 0 or 1 value to one free variable at a time. After each assignment, 
the algorithm determines the direct and transitive implications of that assignment on other 
variables, typically called Boolean constraint propagation (BCP). If no contradiction is 
detected during the implication procedure, the algorithm picks the next free variable, and 
repeats the procedure. Otherwise, the algorithm attempts a new partial assignment by 
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complementing the most recently assigned variable for which only one value has been 
tried so far. This step is called backtracking. The algorithm terminates either when all 
clauses have been satisfied and a solution has been found, or when all possible 
assignments have been exhausted. The algorithm is complete in that it will find a solution 
if it exists. 

3.3 HOL theorem prover 

The HOL system is an logic of computable functions (LCF) style proof system. 
Originally intended for hardware verification, HOL uses higher-order logic to model and 
verify a variety of applications in different areas; serving as a general purpose proof 
system. We cite for example: reasoning about security, verification of fault-tolerant 
computers, compiler verification, program refinement calculus, software verification, 
modelling, and automation theory. 

HOL provides a wide range of proof commands, rewriting tools and decision 
procedures. The system is user programmable which allows proof tools to be developed 
for specific applications (Gordon and Melham, 1993). The basic interface to the system is 
a standard meta language (SML) interpreter. The HOL system supports two main 
different proof methods: forward and backward proofs in a natural-deduction style 
calculus. 

4 Integrating SAT with MDG 

We propose and implement a methodology for SAT-based invariant checking. As a 
solution for state explosion problem, SAT has already been integrated with MDG tool as 
a reduction engine in Abed et al. (2007). Our work is motivated by the goal – to integrate 
SAT with MDG for verification purpose. The following subsections provide a  
step-by-step description of the complete methodology using SAT as verification engine 
with MDG. 

4.1 Formalisation of the problem 

Given a state machine M with initial states I and transition relation Tr, we would like to 
check whether a property P holds for all the reachable states. The reachable states can be 
defined as states that can be reached by Tr transitions starting from an initial state. A 
system is safe, where all the reachable states satisfy P. We write Tr(x, y) to indicate that x 
is related to y by a transition relation Tr. We define the state sequence to be a path 
through Tr. 

( ) ( )[0 ] 10
,n i ii n

path s Tr s s +
≤ ≤

≡… Λ  (1) 

In equation (1), ‘≡’ sign means ‘is defined to be’ and s(0…n) denotes a sequence of states 
(set of state), e.g., s0, s1, s2 … sn. A path can have a length n, if it makes n transitions. In 
this work, we are interested in showing that, starting from an initial state and repeated 
application of transition relation always leads to a state that satisfies P. We want to show 
that, 
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( ) ( ) ( )( )0 0 [0 ]. .i i ii s s I s path s P s∀ ∀ ∧ →……  (2) 

In equation (2), i ≥ 0 and si ∈ S. Similarly, proving backward from bad states involves 
showing that, starting from a state that violates P and going backwards through Tr always 
leads to a non-initial state, which is 

( ) ( ) ( )( )0 0 [0 ]. .i i ii s s I s path s P s∀ ∀ ¬ ← ∧¬……  

More symmetric view at the problem can be achieved saying that, there are no paths that 
start in an initial state and end in a state violating P, that is, 

( ) ( ) ( )( )0 0 [0 ]. .i i ii s s I s path s P s∀ ∀ ¬ ∧ ∧¬……  

4.2 Proposed methodology 

We propose a methodology (Figure 2) to formulate and verify a formula (we call this 
formula correctness formula), to check the safety of a system or design. Hence, we are 
interested in checking if the formula, 

( ) ( ) ( )( )0 0 [0 ]. .i i ii s s I s path s P s∀ ∀ ¬ ∧ ∧¬……  

holds for i = 0, i = 1, i = 2 and so on. This is similar to checking that 
( ) ( ) ( )0 [0 ]i iI s path s P s∧ ∧¬…  is a contradiction for each i, for a path s0 to si; i.e., 

( ) ( ) ( )( )0 [0 ]i iI s path s P s¬ ∧ ∧¬…  is a tautology. If the property P is violated in a 

reachable state, then, ( ) ( ) ( )0 [0 ]. i ii I s path s P s∃ ∧ ∧¬…  is satisfiable. A satisfiable 

solution refers that there exists a path of length i starting from initial states that violates P 
and it can be used for tracing errors. 

Figure 2 Verification methodology using MDG tool and SAT solver 
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Automation of this approach with MDG involves four main tasks: 

• Compute the reachable states, starting from the initial state. This gives us the path by 
which each possible reachable states can be reached, by each transition, until all the 
reachable states has been visited. 

• Remove uninterpreted functions and introduce Boolean encoding to convert the 
formula suitable for Boolean SAT solvers. 

• Perform the CNF conversion of the Boolean formula using a linear algorithm to 
avoid exponential blow up (direct conversion from DNF to CNF has exponential 
blow up). 

• Feed the formula to a SAT solver to check the satisfiability. 

Using SAT solver with MDG tool is a new and efficient approach for invariant checking. 
The steps in the methodology are as follows: 

1 We use MDG tool to compute the sets of reachable states for the given MDG model 
(behavioural/RTL) written in MDG-HDL language. Any other C/C++ 
implementation of MDG reachability analysis algorithm can be used instead of MDG 
tool. We conjunct all the sets of states which gives us the set Sreachable consisting of all 
the reachable states for the system in DF format. 

2 Boolean encoding is imposed by the preprocessor to reduce the DF in propositional 
logic. After removal of uninterpreted functions the encoder generates a pure Boolean 
formula DFbool with certain encoding constraints. 

3 We get formula BDF after conjunction of DFbool with encoding constrains and 
negated invariant property. 

4 The BDF is converted into CNF using Tseitin algorithm. The output is SAT encoded 
CNF formula in DIMACS format. At this stage we call this formula correctness 
formula. 

5 The SAT encoded correctness formula is fed to a SAT solver to prove  
¬(Sreachable ∧ ¬P ∧ constraints) is a tautology or (Sreachable ∧ ¬P ∧ constraints) is a 
contradiction. 

Detail description of these steps is explained in the following subsections. 

4.3 Using MDG for reachability analysis 

The presence of uninterpreted symbols in the logic means that we must distinguish 
between a state machine M and its abstract description D in the logic. This is called 
abstract state machine, a state machine given an abstract description in terms of DFs, or 
equivalently MDGs, as defined in Corella et al. (1997) and Abed (2008). 

The MDG tool applies the reachability algorithm (Abed et al., 2009) and gives all the 
possible sets of reachable states in terms of DF. For our work, we conjunct initial state 
with frontier sets (Abed et al., 2009) and output relations computed by MDG tool for 
each transitions to construct the complete DF, representing all the sets of reachable states, 
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e.g., DFcomplete = DF0 ∧ DF1 ∧ DF2 ∧ DF3 …… ∧ DFn. Here n is the number of 
transitions the reachability analysis algorithm needs to terminate. DF0 indicates  
initial state and rest of each of the DFs is the conjunction of frontier sets and outputs 
relations. 

4.4 Preprocessing to impose Boolean encoding 

The naive structure of DF contains UF and predicates. We convert the DF formula to a 
Boolean formula. The preprocessor eliminates the EUF applications and introduces 
Boolean encoding with adequate constraints. 

4.4.1 Boolean encoding for clauses with constraints 

Consider a DF (r = 0) ∧ (f = 1) ∨ (r = 1) ∧ (f = 0). We introduce Boolean variables r0, f1, 
r1 and f0 respectively for abstracting the clause (r = 0), (f = 1), (r = 1) and (f = 0). 
Constraints are introduced at the same time. For this example, we know that  
(r = 0) and (r = 1) can not be true at the same time. Meanwhile, one of them must be true, 
forcing them to be mutually exclusive, otherwise, the equation will not be satisfiable. A 
similar constraint is also applicable to (f = 0) and (f = 1). So, after reduction to 
propositional logic the DF looks like: 

( ) ( ) ( ) ( )0 1 1 0r f r f∧ ∨ ∧  

The constraints for the this example are: r0 ⊕ r1 and f0 ⊕ f1. 

4.4.2 EUF elimination 

The logic of EUF was first presented by Burch et al. (1994). The syntax of EUF logic in 
DF is given in Aït-Mohamed et al. (2003). Our EUF elimination approach is inspired  
by using nested ITEs (Bryant and Velev, 2001). We introduce domain variables replacing 
each function application term with a nested ITE structure that directly holds the 
functional consistency. For example, if g(x1, y1), g(x2, y2) and g(x3, y3) are three 
applications of UF g(), then the first application will be eliminated by a new term variable 
c1. The second one will be replaced by ITE((x2 = x1) ∧ (y2 = y1), c1, c2), where c2 is a  
new term variable. The third one will be replaced by ITE((x3 = x1) ∧ (y3 = y1) c1,  
ITE((x3 = x2) ∧ (y3 = y2) c2, c3)), where c3 is a new term variable. For ITE terms, we 
define encITE as: 

( )( ) ( ) ( )1 2 1 2, , ( ) ( )encTr ITE G T T encDF G encTr T encDF G encTr T= ∧ ∨¬ ∧  

where encTr(T1) and encTr(T2) represent Boolean encoded terms and encDF(G) 
represents an encoded propositional formula G. For some cases, we modified Bryant’s 
encoding slightly for the MDG DF case. For example, if the formula inside ITE contains 
a comparison between two different constants (such cases sometime occurs in MDG DF), 
then it is always false. So, we define the encoding for such cases as: 

( )( ) ( )
1 2 1 2 2, ,const constencTr ITE G T T encTr T= =  
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4.5 CNF conversion for DF 

The encoder takes the Boolean encoded DFbool as input and conjunct the encoding 
constrains and the negated property ¬P with it. In this step, the formula to be converted 
to CNF can be expressed as: 

DF boolB DF Constraints P= ∧ ∧¬  

Algorithm 1 CreateCNFFormula(DF) 

1: Formula = MDG Direct Formula; 

2: DFbool = Replace UF’s by introducing term variables; 

3: Infer constraints between predicates; 

4: Transform predicates to Boolean variables; 

5: for each DNFi in DFbool do 

6: Convert to CNF DNFi DNFiCNF CNF=  

7: end for 

8: Conjunct all complete DNFiCNF CNF=  

9: ReturnCNFcomplete; 

After CNF conversion, we call this formula a correctness formula: 

( ) DFCorrectness formula CNF B=  

Algorithm 1 shows the complete steps for the encoding and conversion. A BDF can be a 
single DNF formula (representing the set of states) or conjunction of several individual 
DF, where each of these DF is in DNF format (representing transition relations): 

complete i
DF DF≡Λ  (3) 

where i is the number of transitions and DFi is a DNF. So, it is enough to get the 
equivalent CNF for each DFi and conjunct them because conjunction of CNF is also a 
CNF. 

CNF DFi
DF CNF≡Λ  (4) 

Linear algorithm for computing CNF(DF) is well known as Tseitin (1968) algorithm. In 
Tseitin, a new variables for every logical gate is introduced. Thus variables impose a 
constraint that preserve the function of that gate. Given a DNF formula 

( ) ( )a b c d∧ ∨ ∧  (5) 

with Tseitin encoding, a new variable for each subexpression is introduced. In this 
example, let us assign the variable x to the first ‘AND’ gate (representing the 
subexpression a ∧ b), y for the second ’AND’ gate (representing the subexpression  
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c ∧ d). We also introduce a new variable z to represent the top most operator. For DF, the 
top most operator which is always an ‘OR’ gate connected with several ‘AND’ gates. 
Figure 3 illustrates the parse tree of our formula. We need to satisfy the two equivalences: 

x a b
y c d
⇔ ∧
⇔ ∧

 (6) 

The overall CNF formula is the conjunction of the two equivalences written in CNF as: 

( ) ( ) ( )
( ) ( ) ( )
x a x b a b x

y x y d c d y
¬ ∨ ∧ ¬ ∨ ∧ ¬ ∨¬ ∨
∧ ¬ ∨ ∧ ¬ ∨ ∧ ¬ ∨¬ ∨

 

Figure 3 Tesitin encoding to convert a propositional formula to CNF linearly 

 

The unit clause (z) which represents the top most operator. Instead of (z) we use (x ∨ y), 
which represents the same. The converter keeps track of the mapping of each Tseitin 
variable for each logic gate. In the example, equation (6) represents this mapping. Such 
mapping will be fed to the goal generator in the next step for verification of the 
conversion. 

4.6 Verification of the conversion 

Application and improvement of different linear algorithms for CNF conversion has been 
a major research interest for researchers (Eén et al., 2007, Chambers et al., 2009). 
However, we could not find any automated methodology to formally verify the 
conversion algorithm. This motivated us to integrate a small tool that formally verifies 
our CNF conversion. 

Our automated conversion-verification methodology is shown in Figure 4 using HOL 
theorem prover demonstrate the correctness of the CNF conversion automatically. The 
obtained CNF formula is compared formally to the original DF using the HOL theorem 
prover. This enhances confidence in the whole verification process. The verification part 
of the methodology contains a goal generator and HOL Theorem prover. The goal 
generator generates the goal to be proved by the HOL theorem prover. At the end, HOL 
provides a decision based on the inputs. 
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Figure 4 Overview of the DF to CNF conversion-verification methodology 

 

4.6.1 Goal generator 

The goal generator takes the CNF formula, Tseitin variable for each logic gate, mapping 
generated by the converter and the Boolean encoded DF as input. Given the Tseitin 
variable for each logic gate mapping, the assumptions are computed by the goal 
generator. The assumptions for the previous conversion example (Figure 3) can be 
written as: 

x a b
y c d
= ∧
= ∧

 (7) 
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Finally, the goal generator generates a goal to be proved in HOL: 

( )Assumptions EncodedDF CNFFormula⇒ ⇔  

4.6.2 Call to the HOL theorem prover 

After generating the goal, the goal generator places a call to the HOL theorem prover. 
Given the input goal, the proof is conducted by applying rewriting rules. Note that the 
goal is generated in such a way that only one tactic is enough to decide the goal. 

4.7 Specification of invariant property and correctness formula 

In our proposed methodology, we check the safety of a design by checking invariant 
property. The specification is in a commonly encountered generic form of safety 
properties, M  Pinit ⇒ AGPs, where Pinit and Ps are instantaneous formulas not 
containing temporal operators. A safety property of this form is called invariant, has the 
intuitive interpretation that every computation of M, which starts in a state satisfying Pinit 
also satisfies Ps at all reachable states. For example, heating should be turned off when 
the door of a microwave-oven is open. This invariant property can be expressed in CTL 
logic as follows: 

(!( ) & ( ))AG door open heating on= =  

In order to build a correctness formula we consider EF(¬P); negation of the property. 
The encoder in Figure 2 conjuncts the negated property with the encoding constraints and 
Boolean encoded DF. The CNF representation of this formula is called correctness 
formula: 

 (     
                                        ).
Correctness formula CNF DF representing all reachable states

Encoding constraints Negated invariant property
=
∧ ∧

 

We use SAT solver to prove the correctness formula UNSAT, i.e., contradictory. For the 
microwave-oven example, we use the SAT solver to prove that there is a state where 
(door = open) and (heating = on). If no such path exist, where such state occurs, SAT 
solver will give an UNSAT decision. 

4.8 Using SAT as a verification engine 

SAT solver integration with MDG as a reduction engine is proposed in Abed et al. 
(2007). Our methodology uses SAT solver as a verification engine for MDG model. 
Given a correctness formula, a SAT solver can be used to search for a path such that the 
property holds true at all the nodes in that path. If at least one such path exists, then the 
formula is satisfiable, indicating that property is true for the given model. Absence of a 
feasible path indicates a violation of the property. We use MiniSAT 2.0 (Eén and 
Sörensson, 2003) as an efficient SAT solver. As our approach is to prove the correctness 
formula as a tautology, so, a satisfiable decision by the solver indicates violation of the 
property and gives a counter example, whereas an unsat decision validates the property. 
If satisfiable, the assignments constitutes a counter example to the original (un-negated) 
formula. Optionally, the satisfiable assignments can be substituted in the negation of the 
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formula and a theorem that the counter example implies the negated formula can be 
derived. 

5 Experimental results and case study 

In this section, we discuss the implementation details and the experimental results of our 
proposed methodology, to integrate SAT as a verification engine with MDG. Unlike 
other researchers, we implement not just the conversion algorithm to convert MDG DF to 
CNF (which is be fed to the SAT solver), but also implement an automated verification 
technique to formally verify the conversion. Finally, we present and analyse the 
experimental results obtained for both the methodologies. 

5.1 Conversion-verification of DF 

We implement our methodology in C++ and run it on several different sized DFs, each of 
which contains different number of clauses and variables. For the experiment, we 
consider DF with minimum 100 clauses to a maximum of 1000 clauses. Each clause 
containing from 38 upto 168 different variable. The experiments are performed under 
Fedora Core 9 on an Intel Xeon 3.4 GHz processor with 3 GB of RAM. 
Table 1 CNF conversion time 

DF size No. of variables Conversion time (sec) Verification time (sec) 

100 38 Less than 0.00 4.010 
200 58 0.01 8.231 
300 78 0.02 14.908 
400 98 0.03 19.042 
500 118 0.04 28.021 
700 148 0.06 53.098 
1,000 168 0.10 93.118 

Table 1 shows the experimental results. For the DF with 100 clauses, the conversion time 
was less than zero second. Hence, we increase both the number of clauses and the 
number of variables with some bigger sized DFs to check the performance. We observe, a 
very fast response time of 0.02 second with larger DF with 300 clauses of 78 variables. 
Conversion time increases to 0.04 second for the DF with 500 clause and 118 variables. 
The largest DF we tested with our methodology is 1000 clauses with 168 variables. Our 
program took only 0.1 second to compute the CNF of that DF. Figure 5 shows a nearly 
linear behaviour for our implementation. The slight deviation from linearity is ignored. 

On the other hand, the verification time in HOL increases with the size of DF. HOL 
took a few seconds for the verification of smaller sized DFs. For larger sized DFs, HOL 
takes a much longer time to prove. As we mentioned earlier, the way we construct the 
goal requires only one Tactic (DECIDE_TAC) for proving the goal, which facilitates to 
completely automate the methodology. Although our conversion took less than 
źerośecond for a DF with 100 clauses, HOL took about 4.010 seconds to verify the same 
conversion. HOL took about 14.901 and 28.021 seconds to prove the conversion of DFs 
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with sizes 300 and 500, respectively, which is more than the expected time. The 
verification time increases sharply for the DF with 1,000 clauses of 168 variables. But for 
all cases, HOL successfully verified the conversion. 

Figure 5 DF size vs. CNF conversion time (see online version for colours) 

 

5.2 Case study: ITC 

The main goal of our work is to integrate SAT with MDG for a new invariant checking 
methodology. We present a case study to show the performance of our approach. 

5.2.1 System description 

The SAT-MDG reduction technique is demonstrated on the example of the island tunnel 
controller (ITC) (Abed et al., 2007), which was originally introduced by Fisler and 
Johnson (1995). We illustrate our SAT-MDG verification methodology on the same 
example. Based on the information collected by sensors installed at both ends of the 
tunnel, the ITC controls the traffic lights at both ends of a tunnel: there is one lane tunnel 
connecting the mainland to an island. 

As depicted in Figure 6, the ITC specification is composed of three communication 
controllers and two counters. The communication controllers are: the island light 
controller (ILC), the tunnel controller (TC), the mainland light controller (MLC). The 
two counters are: the island counter and the tunnel counter [refer to Fisler and Johnson 
(1995) for the state transition diagrams of each component]. The ILC has four states: 
green, entering, red and exiting. The green and red lights on the island side are controlled 
by the outputs igl and irl respectively; iu denotes that the cars from the island side are 
currently occupying the tunnel, and ir denotes that ILC is requesting the tunnel. As shown 
in Figure 6, the input iy requests the ILC to release the control of the tunnel, and ig grants 
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control of the tunnel from the island side. For the MLC, a similar set of signals is defined. 
The requests for access issued by ILC and MLC is processed by TC. The number of cars 
currently on the island and in the tunnel is monitored by the island counter and the tunnel 
counter, respectively. In the case of tunnel controller, the counter tc is increased by 1 
depending on tc+ or decremented by 1 depending on tc– unless it is already 0. The island 
counter functions in a similar way, except that increment and decrement depend on ic+ 
and ic–, respectively: one for the island lights, one for the mainland lights, and one tunnel 
controller to process the access requests issued by the other two controllers. 

Figure 6 The island controller 

 

5.2.2 Verification using SAT-MDG approach 

Property checking is handy to verify that a specification meets the certain requirements. 
In Xu et al. (2004) and Abed et al. (2007), verification of ITC thorough model checking 
is performed. Three different invariant properties are verified for this circuit in  
Aït-Mohamed et al. (2004). We list below those three properties with their corresponding 
CTL formulas: 

• Property 1: cars never travel in both directions in the tunnel at the same time. 

(!(( 1) & ( 1)))AG igl mgl= =  

• Property 2: the tunnel counter is never incremented by the ILC and the MLC 
simultaneously. 

(!(( 1) & ( 1)))AG itc mtc+ = + =  

• Property 3: the island counter is never incremented and decremented at the same 
time. controller requests. 

(!(( 1) & ( 1)))AG ic ic− = + =  
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To check the correctness and efficiency of our proposed methodology, we modified the 
property in a way so that it fails in both: invariant checking by MDG – as a stand alone 
tool and SAT-MDG-based approach: 

• Property 1: AG(!((igl = 1)&(mgl = 0))) 

• Property 2: AG(!((itc+ = 1)&(mtc+ = 0))) 

• Property 3: AG(!((ic− = 1)&(ic+ = 0))) 

The MDG tool computes the reachable states for the given MDG-HDL model of ITC 
tunnel controller. To ensure the correctness of the design, all the reachable states should 
be considered and conjuncted to build the complete Sreachable. We consider the first five 
reachable states and the initial state. We were able to identify the violation of property 
within first five reachable states (the granularity can be adjusted to identify the first 
violation of the property). Also as we use MDG tool for reachability analysis, so we do 
not include the reachable state computation time in the MDG-SAT experimental results. 

To evaluate three different properties, we generate three different correctness 
formulas. An UNSAT decision from SAT solver validates the property whereas a SAT 
decision indicates the violation of the property. Our methodology is implemented in C++. 
For the experiments, Solaris 5.10 workstation was used containing a quad-core processor 
running at 2.5 GHz and having 6 GB of physical memory. 

5.2.3 Experimental results 

Table 2 summarises the results of our MDG-SAT approach. Preprocessor imposes the 
Boolean encoding on it with adequate constraints. For Property 1, the preprocessor took 
only 0.5 seconds and similar time was taken for the other two properties. Correctness 
formula is generated by the encoder. Encoder conjuncts the constraints and the negated 
property with the DF representing the reachable states. Later on, the encoder generates a 
correctness formula, i.e., an equivalent CNF representation. In our experiment, 
correctness formula generation for all the properties took same time, 0.06 seconds, 
because of the similar size of the property. We check the satisfiability of the correctness 
formula using MiniSAT 2.0 (Eén and Sörensson, 2003). MiniSAT took 0.00361 seconds 
to fail Property 1. Property 2 and Property 3 took 0.00538 seconds and 0.00539 to fail 
the property. 
Table 2 Total time for SAT-MDG approach 

Benchmark 
properties 

Preprocessing time 
(sec) 

Encoding time 
(sec) 

Decision time 
(sec) 

Total time  
(sec) 

P1 0.05 0.06 0.00361 0.11361 
P2 0.04 0.06 0.00538 0.10538 
P3 0.04 0.06 0.00539 0.10539 

We verify these properties with MDG tool and summarise the results in Table 3. As we 
use the reachability analysis feature of MDG tool so we do not compare the results 
directly. However, the table clearly shows the efficiency of our MDGSAT approach. 
Property-1 failed in 0.95 seconds using MDG-tool, where as, MDGSAT approach took 
only 0.11361 seconds. For Property-2 and Property-3, MDGtool took 0.92 and 0.91 
seconds to fail them. On the other hand, MDG-SAT approach took only 0.10538 and 
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0.10539 second to fail Property-2 and Property-3. Implementation of MDG reachability 
analysis algorithm will give us a completely new tool combining both SAT and MDG. 
Although the performance of the tool depends on the implementation of the reachability 
analysis algorithm, the time taken by MDG-SAT approach small enough to support our 
claim for a new efficient tool. Use of MDG to represent the circuit behaviour, allows 
design description using a higher level of abstraction. The use of SAT solver and its fast 
search algorithm facilitate efficient property violation checking. 
Table 3 Invariant checking time: SAT-MDG and MDG tool 

Benchmark properties MDG time (sec) MDG-SAT time (sec) 

P1 0.81 0.11361 
P2 0.920 0.10538 
P3 0.910 0.10539 

6 Conclusions and future work 

Integrating SAT with MDG is a new concept to enhance the performance of safety 
checking. The experimental results of ITC case study showed the efficiency of our 
proposed SAT-MDG tool, in terms of performance. In our work, we proposed the 
integration of a SAT solver with MDG as a verification engine. In addition, conversion-
verification methodology for CNF conversion of MDG DF with verification of this 
conversion enhances the confidence in whole verification approach. The automated 
verification technique for the CNF conversion is a new contribution to this field of 
research. Researchers working with CNF conversions inspired by Tseitin algorithm, or 
slight modification/enhancement of Tseitin algorithm can easily apply this automated 
technique to formally verify their conversion. 

Using SAT solver as a verification engine with MDG has a wide range of research 
area. The experimental results showed that with increasing the size of DF, HOL suffers to 
prove the goal with larger runtime. This gives us area to improvise the performance. 
Also, using different algorithms on MDG DF for CNF conversion and comparing the 
SAT solvers performance for invariant checking, can also be interesting. As a 
continuation of this research, future works will concentrate on application of the  
SAT-MDG tool on industrial circuits and comparing the results with other industrial 
model checkers. For the completeness of the SAT-MDG tool, we also aim to implement 
the MDG reachability analysis algorithm. 
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