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Abstract: We present an architecture of a hosting system consisting of a set
of hosted Web Services subject to QoS constraints, and a certain number of
servers used to run users demand. The traffic is session-based, while provider
and users agree on SLAs specifying the expected level of service performance
such that the service provider is liable to compensate hist/her customers if the
level of performance is not satisfactory. The system is driven by a utility function
which tries to optimize the average earned revenue per unit time. The middleware
collects demand and performance statistics, and estimates traffic parameters in
order to make dynamic decisions concerning server allocation and admission
control. We empirically evaluate the effects of admission policies, resource
allocation and service differentiation schemes on the achieved revenues, and we
find that our system is robust enough to successfully deal with session-based
traffic under different conditions.
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1 Introduction

The increasing use of the Internet as a provider of services and a major information media
has changed significantly, in the last decade, users expectations in terms of performance.
It is simply considered no longer acceptable to wait a number of seconds to access a
service or an information. Users, these days, expect a browser to perform like a home
TV or a radio, completely ignoring the basic differences between the functioning behind,
and sometime cultivating unrealistic desires, especially regarding failures and robustness.
This is one of the consequences of interpreting IT systems as information providers (due
to the explosions of sites like Wikipedia or on-line encyclopedias) instead of a means for
running calculations, as occurred 10 or 15 years ago. A perfect example of this situation is
described in Linden (2006) and Shankland (2008): they found out that an extra 0.5 seconds
in search page generation would kill user satisfaction, with a consequent 20% traffic drop
(Linden (2006)), while trimming the page size of Google Maps by 30% resulted in a traffic
increase of 30% (Shankland (2008)).

1.1 Performance-related Social Aspects and IT Consequences

During the events of September 11, 2001 almost every news website became unavailable
for hours (LeFebvre (2001)) showing the weaknesses (but it would be better to say the
differences) of the Internet compared to the traditional information media. Situations like
these certainly require a deeper investigation of the social impact of such approach in
information retrieval (and “keyboard dependency”) but this topic is definitely out of scope
for this paper. Thus, given this “embedded human behavior”, IT scientists can only interpret
this need as a new challenge for performance requirements: customers expect not only
resilience (i.e., the capacity of the system to recover from damage), but also performance.
Besides, under-performing systems are rarely profitable.

These aspects easily trigger an important discussion regarding resilience and
performance in this context. Given the higher and higher expectations in terms of
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performance, how will an average user be able to distinguish between a slow service and
a stuck or failed one? Although apart from Linden (2006) we are not aware of any other
proper study in this field, it is not difficult to imagine that any under-performing system
will simply be ignored and treated like a failed one. Thus, in the authors’ point of view, it
would be simply unrealistic to consider resilience and performance as two characteristics
that can be analyzed separately. The nature of the problem forces us to consider Quality
of Service (QoS) as part of system robustness. Our opinion is that the issues related to
service quality will eventually become a significant factor in distinguishing the success or
the failure of service providers.

1.2 Technology Adopted and Motivations

Web Services are self-describing, open components that support rapid, low-cost
composition of distributed applications. The system architecture presented in this work is
based on this technology since their adoption looks like a promising solution to low cost
and immediate integration with other applications and partners. The use of Web Services, in
fact, eases the interoperability between different systems because they use open protocols
and standards such as SOAP and HTTP. On the other hand, as this technology proliferates
more and more widely, the issues related to service quality become very relevant and
will eventually become a significant factor in distinguishing the success or the failure of
service providers. Unfortunately, it is extremely difficult for service providers to meet
the promised performance guarantees in the face of unpredictable demand. One possible
approach is the adoption of Service Level Agreements (SLAs), contracts that specify a level
of performance that must be met and compensations in case of failure. It is worth saying
that the notions of compensations and failure here are different from the ones discussed in
Lucchi and Mazzara (2007) and Dragoni and Mazzara (2009). Here the compensation is
a penalty to pay and the failure is intended as a failure in meeting the specified level of
performance, while there compensation was instead a process with a designer-dependent
logic with the goal of partially recover a transaction made of a composition of different
services. There are certainly analogies but a deeper investigation here it is not possible due
to space constraints. The basic idea is that the theory presented in Mazzara and Lanese
(2006) and the mechanism used there to dynamically trigger a compensation process can
be exploited also to model the kind of scenarios presented in this work but with the evident
open issue of time modelling (this topic has been discussed in Mazzara (2005)).

Paper Contribution and Organization

This paper addresses some of the performance problems arising when IT companies sell
the service of running jobs subject to QoS, and thus robustness, constraints. We focus on
session-based traffic because, even though it is widely used (e.g., Amazon or eBay), it
is very difficult to handle; session-based traffic requires ad-hoc techniques, as job-based
admission control policies drop requests at random and thus all clients connecting to the
system would be likely to experience connection failures or broken sessions under heavy
load, even though there might be capacity on the system to serve all requests properly for
a subset of clients. Also, since active sessions can be aborted at any time, there could be an
inefficient use of resources because aborted sessions do not perform any useful work, but
they waste the available resources.

The contributions of the paper are threefold. First, we provide a formal model
describing the problem we want to tackle, that is to measure and optimize the performance
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of a QoS-aware service provisioning system in terms of the average revenue received
per unit time. According to this model, we then propose and implement an SLA-driven
service provisioning system running jobs subject to QoS contracts. The middleware
collects demand and performance statistics, and estimates traffic parameters in order to
make dynamic decisions concerning server allocation and admission control. The system
architecture presented in this work is based on Web Services technology and when we
mention the word “service” we actually mean the specific technology. Anyway, this is just
an implementation choice that we will explain later. Other solutions would be certainly
possible. Finally, we evaluate and validate our proposal through several experiments,
showing the robustness of our approach under different traffic conditions.

The rest of the paper is organized as follows. Relevant related work is discussed in
Section 2, the problem we want to tackle is formally modelled in Section 3 and policies for
dynamic reconfiguration are discussed in Section 4. Section 5 then presents the system’s
architecture and discusses how the system deals with session-based traffic, while Section 6
presents a number of experiments we have carried out. Finally, Section 7 concludes the
paper highlighting possible directions for future work.

2 Related Work

There is an extensive literature on adaptive resource management techniques for
commercial data centers (e.g., Rajkumar et al. (1997), Ghosh et al. (2003), Hansen et al.
(2004) to mention only a few). Yet, since previous work does not take into account the
economic issues related to SLAs, service providers would still need to over-provision
their data centers in order to address highly variable traffic conditions. Moreover, existing
studies do not consider admission policies as a mechanism to protect data centers against
overload conditions (LeFebvre (2001)). However, as will become clear later in this paper,
admission control algorithms have a significant effect on revenues.

The problem of autonomously configuring a computing cluster in order to satisfy
SLA requirements is addressed in several papers. Some of them consider the economic
issues occurring when services are offered as part of a contract, however they do not
address the problems affecting overloaded server systems (e.g., Chandra et al. (2003), Li
et al. (2005), Zhang and Ardagna (2004)), while others include simple admission control
schemes without taking any economic parameter into account.

Finally, while there is an extensive literature on request-based admission control
(e.g., Urgaonkar et al. (2005), Mazzucco et al. (2007)), session-based admission control
is much less well studied. Also, nobody has studied the effects of combining admission
control, resource allocation and economics when trying to model a commercial service
provisioning system subject to QoS constraints. For example, Villela et al. (2007),
Urgaonkar et al. (2005) and Levy et al. (2003) consider some economic models dealing
with single jobs, but they focus on allocating server capacity only, while admission policies
are not taken into account. Yet, revenues can be improved very significantly by imposing
suitable conditions for accepting jobs. To our knowledge, the most closely related work
is perhaps Mazzucco et al. (2007), that studies the effects of SLAs and allocation and
admission policies on the maximum achievable revenues in the context of individual jobs.
However, in E-business systems such as Amazon or eBay, requests coming from the
same customer are related and thus they can be grouped into sessions. Unfortunately, if
admission control policies like the one discussed in Mazzucco et al. (2007) are in operation,
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a user trying to execute several related jobs would not know in advance whether all jobs
will be accepted or not. In this paper, instead, we implement some admission policies
specifically designed to deal with session-based traffic; our approach uses a combination
of admission control algorithms, service differentiation, resource allocation techniques and
economic parameters to make the service provisioning system as profitable as possible.

3 Problem Formulation

In this section we present a mathematical model of the real world problem we intend to
tackle. The reason for having a formal model is to abstract from the details we do not
want to investigate, focusing only on those that are of interest for this work. The risk
of formal models is always the over abstraction of problems; furthermore, interactions
between aspects that are included in the model and aspects that are excluded can complicate
the situation. We intend to keep the model manageable and thus the proposed model is
based on the concept of utility functions, a simple and common way for achieving self-
optimization in distributed computing systems. While different kinds of utility functions
can be employed, in this paper the average revenue obtained by the service provider per
unit time is the considered metric. In a nutshell, the model can be defined as follows: the
user agrees to pay a specified amount for each accepted session, and also to submit the jobs
belonging to it at a specified rate. On the other hand, the provider promises to run all jobs
belonging to the session, and to pay a penalty if the average performance for the session
falls under a certain threshold.

More formally, the provider has a cluster of N servers, used to run m different type of
services, while the traffic is session-based. A session is defined as follows:

Definition 3.1 (Session) A session of type i is a collection of ki jobs, submitted at a rate
of γi jobs per second.

One strong assumption behind this model is the request of session integrity (i.e., if a
session is accepted, all jobs in it will be executed), as it is critical for commercial services.
From a business perspective, the higher the number of completed sessions, the higher
the revenue is likely to be, while the same does not apply to single jobs. Apart from the
penalties resulting from the failure to meet the promised QoS standards, sessions that are
broken or delayed at some critical stages, such as checkout, could mean loss of revenue
for the service owners. From a customer’s point of view, instead, breaking session integrity
would generate a lot of frustration because the service would appear as not reliable. We
assume that the QoS experienced by an accepted session of type i is measured by the
observed average waiting time:

Wi =
1

ki

ki∑
j=1

wj , (1)

wherewj is the waiting time of the jth job of the session, i.e, the interval between its arrival
and the start of its service. Also, we assume that the provisioning contract includes an SLA
specifying clauses related to charge, obligation and penalty.

Definition 3.2 (Charge) For each accepted session of type i, a user shall pay a charge of
ci.
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How to determine the amount of charge for each successfully executed session is
outside the scope of this paper. However, intuitively, this could depend on the number of
jobs in the session, ki, and their submission rate, γi, or on the obligation. It is certainly
expected that for stricter obligations there will be higher charges.

Definition 3.3 (Obligation) The observed average waiting time, Wi, of an accepted
session of type i shall not exceed qi.

Definition 3.4 (Penalty) For each accepted session of type i whose average waiting time
exceeds the obligation (i.e., Wi > qi), the provider is liable to pay to the user a penalty of
ri.

While the performance of computing systems can be measured using different metrics,
in this paper we are interested in the average revenue received per unit time, as it is
more meaningful from a business perpective than values such as the throughput or average
response times. Thus, as far as the provider is concerned, the performance of the system is
measured by the average revenue,R, received per unit time. That quantity can be computed
using the following expression:

R =

m∑
i=1

ai[ci − riP (Wi > qi)]. (2)

About Equation (2), it is perhaps worth noting that while it resembles the utility
function discussed in Mazzucco et al. (2007), here ai refers to the average number of
type i sessions that are accepted into the system per unit time, while P (Wi > qi) is
the probability that the observed average waiting time of a type i session exceeds the
obligation qi. Also, while no assumption about the relative magnitudes of charges and
penalties is made, the problem is interesting mainly if ci ≤ ri. Otherwise one could
guarantee a positive (but not optimal) revenue by accepting all traffic, regardless of loads
and obligations. Finally, Equation (2) uses a “flat penalty” factor: if Wi > qi the provider
must pay a penalty ri, no matter what the amount of the delay is. Such a model can be
easily extended. For example, one could introduce penalties that are proportional to the
amount by which the waiting time exceeds the obligation q (the effect of that would be to
replace the term P (Wi > qi) in Equation (2) with E(min(0,Wi − qi))).

Finally, instead of allocating whole servers to one of the m offered services, the
provider might want to share servers between different job types. If this is the case, it is
possible to control the fraction of service capacity each service type is entitled to use, for
example via block of threads. Those threads would thus play the role of servers.

4 Policies for Dynamic Reconfiguration

Because of the random nature of Internet traffic and changes in demand pattern over time,
accurate capacity planning is very difficult in the short time period and almost impossible
in the long time period. On the other hand, if servers are statically assigned to the provided
services, some of them might get overloaded, while others might be underutilized. It is
clear that in such scenarios it could be advantageous to reallocate unused resources to
oversubscribed services, even at the cost of switching overheads, either in terms of time or
money.
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The question that arises in that context is how to decide whether, and if so when, to
perform such system dynamic reconfiguration. Posed in its full generality, this is a complex
problem which does not always yield an exact and explicit solution. Thus, it might be better
to use some heuristic policies which, even though not optimal, perform reasonably well and
are easily implementable. Within the control of the host are the “resource allocation” and
“job admission” policies. The first decides how to partition the total number of servers, N ,
among them service pools. That is, it assigns ni servers to jobs of type i (n1 + n2 + . . .+
nm = N ). The allocation policy may deliberately make the decision to deny service to one
or more job types (this will certainly happen if the number of offered services exceeds the
number of servers). The server allocation policy is invoked at session arrival and session
completion instants, while the admission policy is invoked at session arrival instants in
order to decide whether the incoming session should be accepted or rejected. Of course, the
allocation and admission policies are coupled: admission decisions depend on the allocated
servers and vice versa. Moreover, they should be able to react to changes in user demand.

During the intervals between consecutive policy invocations, the number of active
sessions remains constant. Those intervals, which will be referred to as “observation
windows”, are used by the controlling software in order to collect traffic statistics and
obtain current estimates, as the queueing analysis carried out at each configuration epoch
requires estimates of the average arrival rates (λi) and service times (bi), and squared
coefficient of variation of request interarrival (ca2i ) and services times (cs2i ). Please note
that all of the above parameters are time varying and stochastic in nature, and thus their
values should be estimated at each configuration interval. However, if the estimates are
accurate enough, the arrival rates and service times can be approximate as independent
and identically distributed (i.i.d.) random variables inside each window, thus allowing for
online optimizations.

In this paper, we implement and experiment with various heuristic policies. As
allocation algorithm we use the ‘Offered Loads’ heuristic (see Fig. 1), a simple adaptive
policy that, using the traffic estimates collected during the previous observation window,
allocates the servers roughly in proportion to the offered loads, ρi = λibi, and to a set of
coefficients, αi, reflecting the economic importance of the different job types (for service
differentiation purposes):

ni =

⌊
N

ρiαi∑m
j=1 ρjαj

+ 0.5

⌋
, (3)

(adding 0.5 and truncating is the round-off operation). Then, if the sum of the resulting
allocations is either less or greater than N , adjust the number of allocated servers so that
they add up to N .

For admission purposes we have embedded into our system three heuristics, ‘Current
State’, ’Threshold’ and ‘Long-Run’. The first two algorithms are formally described
in Mazzucco et al. (2008), and thus we only summarize them here. The ‘Current State’
policy estimates, at every arrival epoch, the changes in expected revenue, and accepts the
incoming session (possibly in conjunction with a reallocation of servers from other queues)
only if the change in expected revenue is positive. In order to compute that value, it uses
the state of each queue, which is specified by the number of currently active sessions, the
number of completed jobs and average waiting time achieved so far (for each session).

The ‘Threshold’ heuristic uses a threshold, Mi, for each job type, and an incoming
session is accepted into the system only if less than Mi sessions are active. Each threshold
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Figure 1 Dynamic resource allocation. Resources are allocated in proportion to the measured
load.

Mi is chosen so as to maximize Ri. We have carried out some numerical experiments, and
found that Ri is a unimodal function of Mi. That is, it has a single maximum, which may
be at Mi =∞ for lightly loaded systems. That observation implies that one can search for
the optimal admission threshold by evaluating Ri for consecutive values of Mi, stopping
either when Ri starts decreasing or, if that does not happen, when the increase becomes
smaller than some ε. Such searches are typically very fast.

Finally, the ‘Long-Run’ heuristic assumes that jobs of type i are submitted with the
same arrival rate, that all sessions of type i have the same number of jobs, and that each
queue is subject to a constant load of sessions Li. Suppose that queue i is subjected to a
constant load of Li streams (i.e., as soon as one session completes, a new one replaces
it) and has ni servers allocated to it. Since each session consists of ki jobs submitted at
rate γi, the average period during which a session is active is roughly ki/γi while, from
Little’s theorem, the rate at which streams are initiated is Liγi/ki. The above observations
imply that, if over a long period, the numbers of active streams in the system are given
by the vector L = (L1, L2, . . . , Lm), and the server allocation is given by the vector n =
(n1, n2, . . . , nm), the total expected revenue earned per unit time can be computed using
Equation (2), where the average number of type i sessions accepted per unit time, ai, is
replaced by Liγi/ki.

5 System Architecture

Today’s service provisioning systems are usually designed according to a three-tier
software architecture. The first layer translates end-user markup languages into and out of
business data structures, the second tier performs computation on business data structures
while the third level provides storage functionality. Requests traverse tiers via synchronous
communication over local area networks and a single request may revisit tiers more than
once. Business-logic computation are often the bottleneck for Internet services, and thus
this paper focuses on this tier. However, user-perceived performance depends also on disk
and network workloads at other tiers. Front-end servers are not typically subject to a very
high workload, and thus over-provision is usually the cheapest solution to meet service
quality requirements. Moreover, different solutions exist to address some of the issues
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occurring at both the presentation and database tiers (Stewart and Shen (2005); Doyle et al.
(2003)), while McWherter et al. (2004) have shown that smart scheduling can improve the
performance of the database tier.

The three-tier software architecture presented in this work is based on Web Services
technology. Web Services are self-describing, open components that support rapid, low-
cost composition of distributed applications and their adoption looks like a promising
solution to low cost and immediate integration with other applications and partners. The
use of Web Services, in fact, eases the interoperability between different systems because
they use open protocols and standards such as SOAP and HTTP. Computing systems
are usually designed according to this three-tier software architecture (front-end, business
logic and storage) but in this paper we focus mainly on the second one, as business
logic computation is often the bottleneck for Internet services. Of course, user-perceived
performance depends also on disk and network workloads at other tiers. However, front-
end servers are not typically subject to a very high workload, and thus over-provision is
usually the cheapest solution to meet service quality requirements, while different solutions
exist to address some of the issues occurring at both the presentation and database tiers
(see Stewart and Shen (2005) and Doyle et al. (2003) for more details).

(2)

Service Handlerm

Dispatcher
Spare pool 
m

anager*

(4)(3)

Clients

Repository

(6)

(1)

Resource 
allocator

(7)

Controller

(5)

Cluster

Poolm

Pool2
Pool1

AB

Service Handler2
Service Handler1

Profiler

Adm
ission Control

Active 
sessions

Scheduler

Figure 2 Architecture overview. Dotted lines indicate asynchronous messages.

The architecture we propose, shown in Figure 2, uses a dedicated hosting model and
follows the mediation service pattern (Hohpe and Woolf (2004)). The middleware hides the
IT infrastructure from the clients, creating an illusion of a single system by using a Layer-
7 two-way architecture (Cardellini et al. (2002)), while the load balancer uses a packet
double-rewriting algorithm (i.e., it forwards packets in both directions, client-to-server and
server-to-client) and takes routing decisions using only the information available at the
application layer of the OSI stack, such as target URL or cookie. This makes adding or
removing servers at runtime straightforward, as clients do not know where their requests
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will be executed. All incoming jobs are sent to the Controller (arrow 1), which performs the
resource allocation, admission control and monitoring functions. For each type of service
there is a corresponding Service Handler, which schedules incoming jobs for execution,
collects traffic statistics through a profiler, and manages the currently allocated pool of
servers. If the admission policy does not require global state information (e.g., threshold-
based policies), then it too may be delegated to the Service Handlers. If the same service
is offered at different QoS levels and a threshold-based admission policy is employed, the
Service Handler will be instantiated at differentiated service levels. Each level will have
its own SLA management function instantiated that strives to meet that level of service
specified by the differentiation. If the load is too high for any of the differentiated services,
then the admission policy will start rejecting incoming traffic in order to maintain an
adequate level of performance. For policies that take into account the state of all queues
at every decision epoch (i.e., state-based policies), instead,there is no need to use different
Service Handlers to deal with different QoS levels, as sessions can specify their own QoS
requirements.

Session Arrival

Here we discuss the steps taken at session arrival instants by state-based policies. In order
to guarantee the correctness of the computation (multiple threads could see the system
in different states), consecutive requests are serialized by using a pipeline with a single
executor. Every time a new session of type i enters the system, the program sketched in
Algorithm 1 is executed. The algorithm first estimates the current arrival rates and the
potential arrival rates if the session was accepted (the only arrival rate which changes is
the one of queue i, line 3), and simulates a new server allocation using the potential arrival
rates (line 4). Then it computes the expected change in revenue, ∆R. The decision of
accepting the new session, eventually with a reallocation of servers from other queues to
queue i, would increase the amount of charges by ci, but it will also increase the arrival rate
at queue i by γi. Thus, if the session was accepted, there would be a possible penalty of ri
in case the performance of the new session was not met, and also different probabilities of
paying penalties for all the active sessions.

Denote by g(x, λ, k, n) the probability that the average waiting time for k jobs exceeds
the threshold x, given that the arrival rate is λ and that there are n servers. Having defined
g(), the expected change in revenue resulting from a decision to switch servers among
queues and to accept a new session is computed in lines 5–12 as:

∆R = ci − rig(qi, λi + γi, ki, n
′
i)−

m∑
j=1

rj

Lj∑
t=1

∆gj(·t), (4)

where ∆gj(·t) is the change in probability of paying a penalty for session t at queue j,
see line 9, while Lj is the number of active sessions at queue j. For session t at queue j,
the number of completed jobs is identified by lt, while the average waiting time over those
jobs is ut. Thus, the overall waiting time that should not be exceeded over the remaining
kj − lt jobs, trouble a penalty of rj , is

qj,t =
qjkj − utlt
kj − lt

. (5)
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Input : A session arriving at queue i, si
Output: The cookie for the session, if accepted, −1 otherwise

1 Phase I: Estimate ∆R;
2 (λ1, . . . , λm)← EstimateCurArrRate();
3 (λ′1, . . . , λ

′
m)← (λ1, . . . , λi−1, (λi + γi), λi+1, . . . , λm) ;

4 (n′1, . . . , n
′
m)← SimulateAllocation(λ′1, . . . , λ

′
m);

5 ∆R← ci − [ri × g(qi, λ
′
i, ki, n

′
i)];

6 for j ← 1 to m do
7 foreach session t in queue j do

8 qj,t ←
qjkj − utlt
kj − lt

;

9 ∆gj ← g(qj,t, λ
′
j , kj − lt, n′j)− g(qj,t, λj , kj − lt, nj) ;

10 ∆R← ∆R− (rj ×∆g);
11 end
12 end
13 Phase II: generate the cookie and re-allocate servers;
14 if ∆R > 0 then
15 cookie← GenerateCookie(i);
16 AddSession(queuei, session);
17 SetAllocation(n′1, . . . , n

′
m);

18 else
19 cookie← −1;
20 end
21 return cookie;

Algorithm 1: Session arrival, state-based policies.

At the end of the for loop, if the expected change in revenue is positive the new session
is accepted, the cookie is generated, and server reallocation is put in operation (lines 14–
17). Otherwise, the session is rejected and the server reallocation remains unchanged, see
line 19.

5.1 Job Execution

Apart from running the job, the only responsibility of the target machine is to save the
cookie before running the job and to ‘attach’ it to the header of the response once the job
has completed. When a response of type i belonging to stream j arrives, the dispatcher
‘forwards’ it to the ith Service Handler. The handler gets the cookie identifying the stream
as well as the service and waiting time values from the response object, and passes this
3-tuple to the object storing the current state of the handler, via the completion()
method. This increments the number of completed jobs and decreases the number of
pending jobs of type i, and updates the global average values for type i jobs. Finally, it
invokes completion() on stream j with the service and waiting times as arguments.
If the stream is completed, the State computes whether a penalty should be paid or not
(i.e., if the SLA was met or not), then it removes stream j from the set of the active sessions.
If a state-based policy is in operation, the allocation task is executed every time a session
completes.
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6 Experiments

Several experiments were carried out in order to evaluate the robustness of our approach
under different traffic conditions. However, because of space constraints, only some of
them are discussed here. As discussed in Section 3, the metric of interest is the average
revenue earned per unit time. CPU-bound jobs, whose lengths and arrival instants were
randomly generated, queued and executed. We use synthetic load as this makes it easier
to experiment with different traffic patterns. Moreover, we abstract from the hardware
details such as number of cores or amount of memory; this way a job takes the same
time everywhere, no matter on which hardware it is executed. Apart from the random
network delays, messages are subject to random processing overhead, which cannot be
controlled. Also, it could not be guaranteed that the servers were dedicated to these tasks,
as there could be random demands from other users. The server capacity is guaranteed
by a cluster of 20 (identical)servers running Linux with kernel 2.6.14, Sun JDK 1.5.0 04,
Apache Axis2 1.3 (to handle SOAP messages) and Tomcat 5.5 (to handle HTTP requests).
The connection between the load generator and the controller is provided by a 100 Mb/sec
Ethernet network, while the servers of the cluster are connected to the controller via a
1 GBit/sec Ethernet network. Each server can execute only one job at any time, i.e.,
the system does not allow processor sharing. The scheduling policy is FIFO, with no
preemption, while servers allocated to queue i cannot be idle if there are jobs of type i
waiting. Finally, messages are sent using the HTTP protocol, as this is the most widely
used protocol to exchange SOAP messages over the Internet. In order to reduce the number
of variables, the following parameters were kept fixed:

• The server capacity is guaranteed by a cluster of 20 servers offering four job types,
i.e., N = 20, m = 4.

• The obligations undertaken by the provider are that the average observed waiting
time of the session should not exceed the average required service time, i.e., qi = bi.

• All sessions consist of 50 jobs, i.e., k = 50. The job arrival rates are γ1 = γ2 = γ3 =
2, while that for type 4 is γ4 = 1. The average service time for all jobs is b = 1.

• Sessions are submitted with rate δ1 = 0.1, δ2 = 0.04 and δ3 = 0.08.

• The total offered load ranges between 60% to over 100% (i.e., the system would be
overloaded if all sessions were accepted) by varying the submission rate of type 4
jobs, δ4 ∈ (0.02, 0.2).

Markovian Traffic Scenario

In the following two experiments we assume that the traffic is Markovian, that is, the
sessions and jobs enter the system according to independent Poisson processes, while
service times are exponentially distributed.

Charges = Penalties.

The first experiment, shown in Figure 3, measures the average revenues obtained by the
heuristic policies proposed in Section 4 when all charges and penalties are the same, i.e.,
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Figure 3 [Experiment 1] Observed revenues when ci = ri = 10, ∀ i.

ci = ri, ∀ i: if the average waiting time exceeds the obligation, users get their money back.
For comparison, the effect of not having an admission policy is also displayed.

Each point in the figure represents a run lasting about 2 hours. In that time, between
1,400 (low load) and 1,700 (high load) sessions of all types are accepted, corresponding to
about 70,000 – 85,000 jobs. Samples of achieved revenues are collected every 10 minutes
and are used at the end of the run to compute the corresponding 95% confidence interval
(Student’s t-distribution was used). The most notable feature of this graph is that while the
performance of the ‘Admit all’ policy becomes steadily worse as soon as the load increases
and drops to 0 when it approaches the saturation point, the heuristic algorithms produce
revenues that grow with the offered load. According to the information we have logged
during the experiments, they achieve that growth not only by accepting more sessions, but
also by rejecting more sessions at higher loads.

Other Metrics

In some cases, values other than the average revenue per unit time might be of interest. A
possible example is the rate at which the sessions of type i are rejected, or the percentage
of accepted sessions whose performance falls below the minimum promised performance
levels. For the the ‘Threshold’ heuristic, the former is given by:

Xi = λipi,Mi , (6)

where pi,Mi
is the probability that a session of type i is rejected, that is, that there are

Mi active sessions in the ith queue (no mathematical formula exists for the state-based
policies).

Also, the performance of the various policies can be better understood by observing
other metrics; a policy might under-perform either because it accepts too many sessions,
thus failing to deliver the promised QoS (like the ‘Admit All’ policy in Fig. 6), or
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because it rejects too many sessions, thus missing income opportunities, like in the case
of the ‘Threshold’ policy. Fig. 4(a) shows very clearly that the ‘Threshold’ policy is very
conservative, as almost all of the accepted sessions experience an average waiting time of
less than 0.1 seconds, while the minimum acceptable performance level is set to 1 second.
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Figure 4 [Experiment 1] Other metrics: (a) SLA met for different policies, and (b) Probability
density function (PDF) of the observed average waiting time for type 4 sessions,
δ4 = 0.2.

The second result concerns a similar experiment, except that now charges and related
penalties differ between each job type: c1 = 10, c2 = 20, c3 = 30 and c4 = 40, ci = ri.
The main difference compared to the previous experiment is that now it is more profitable
to run, say, jobs of type 4 than jobs of type 3. Figure 5 shows that the maximum achievable
revenues are now much higher than before in virtue of the higher charge values for type
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2, 3 and 4 streams. Moreover, the ‘Long Run’ heuristic still performs very well, while the
difference between the ‘Current State’ and the ‘Threshold’ policies is about 25%.
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Figure 5 [Experiment 2] Observed revenues when c1 = 10,c2 = 20, c3 = 30,c4 = 40, ri = ci.

High Variability Scenario

Next, we depart from the assumption that traffic is Markovian. A higher variability is
introduced by generating jobs with hyperexponentially distributed service times: 80% of
them are short, with mean service time 0.2 seconds, and 20% are much longer, with mean
service time 4.2 seconds. The overall average service time is still 1 second, but the squared
coefficient of variation of service times is now 6.15, i.e.. cs2 = 6.15. The aim of increasing
variability is to make the system less predictable and decision making more difficult. The
charges are the same as in Figure 5, however if the SLA is not met, users get back twice
what they paid, i.e., ri = 2ci. The most notable feature of the graph shown in Figure 6 is
that now the revenues obtained by the ‘Admit all’ policy become negative as soon as the
load starts increasing because penalties are very punitive. On the other hand, the behavior
of the three policies is similar. The ‘Current State’ and ‘Long Run’ algorithms performs
worse than in the Markovian case (with ri = 2ci, not shown), while the wise ‘Threshold’
heuristic performs almost the same way. Similar results were obtained in the case of bursty
arrivals. They are not shown here for the sake of space.

7 Conclusions and Future Work

In this paper we have presented a SLA-driven Service Provisioning System running jobs
subject to QoS contracts. The system uses a utility function whose aim is to maximize the
average revenue earned per unit time. We have demonstrated that policy decisions such



16 M.Mazzucco, M.Mazzara, N.Dragoni

-10

-5

 0

 5

 10

 0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

R
ev

en
ue

 p
er

 u
ni

t t
im

e

Submission rate for type 4 streams

Admit all
Current State

Static Threshold
Long Run

Figure 6 [Experiment 3] Observed revenues for different policies and two-phase
hyperexponentially distributed service times: cs2i = 6.15, ri = 2ci, charges as in
Figure 5.

as server allocations and admission control can have a significant effect on the revenue.
Moreover, those decisions are affected by the contractual obligations between clients and
provider in relation to the QoS. The experiments we have discussed show that our system
can successfully deal with session-based traffic under different traffic conditions. Possible
directions for future research include sharing a server among several types of services or
expensive system reconfigurations, either in terms of money or time (Amazon EC2, for
example, can take up to 10 minutes to launch a new instance). Also in order to further
improve the efficiency of the available servers, a concurrency level higher than one could
be used. Of course, since the SLAs are still in operation, it is not possible to change the
concurrency level at random: instead, the same QoS level as if jobs were ran alone should
be maintained. Finally, one might want to increase the capacity of a data center by allowing
it to be composed by several clusters. Such clusters may belong to the same organization
or to different entities.
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