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Abstract: Cyber-physical systems represent a challenge to conventional
security and safety analysis techniques due to their complexity and the
need to consider both safety and security equally. It is also important
that the requirements generated to mitigate against safety and security risks
are clear and adequately address the underlying issue. A methodology is
presented in this paper to allow for integrated safety and security analysis
of cyber-physical systems, particularly in a critical infrastructure context.
This methodology uses a modified form of STPA, which has been coupled
with our concept of adversarial modelling, to analyse for security and
safety hazards which are then mitigated against by the creation of critical
requirements. These critical requirements are then validated through their
application to an Event-B formal model, allowing for their completeness to
be verified. The output of the methodology is a set of critical requirements
that guide iteration of and improvements to the system design to ensure its
safety and security are maintained.
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1 Introduction

With the increasing use of cyber-physical systems in a critical infrastructure context, a
need has arisen to ensure that these systems are inherently secure and safe in their design
due to the significant risks of harm that are posed by such systems being undermined
by motivated attackers. There are a raft of methodologies that allow for the analysis
of safety and security risks in the design of systems, but many of these methodologies
only consider safety or security separately, and do not utilise concepts that can be easily
understood in other contexts. This can result in ambiguity in the design of the system or
– worst still – conflicting safety and security requirements that have not been reconciled
adequately. For systems in such a critical context, this can introduce unacceptable
compromises, which may ultimately result in an increased safety or security risk.

Our approach in addressing this lack of an integrated methodology covering both
security and safety and using unified concepts and processes is therefore centered around
the creation of a new methodology that is designed both for use in the context of
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highly-critical national infrastructure systems, and which allows for the analysis of
security and safety issues to be undertaken in a harmonised manner.

We developed our methodology by modifying the existing systems theoretic process
analysis (STPA) technique (Leveson, 2011) and adding a security analysis process to
it, as well as providing higher assurance that the artefacts of the analysis meaningfully
mitigate against identified hazardous and adversarial behaviours through the use of a
formal model. The approach described in this paper has been developed directly from
existing work (Howard et al., 2017) in order to bolster the security aspect of the analysis
– this is a result of a detailed exploration of the standard features and concepts of
security analysis methodologies within the literature – this aspect receives a detailed
exploration in Sebsection 3.2.

Our aim is therefore to provide a highly traceable approach to performing security
and safety analysis in one methodology, utilising unified concepts and terminology to
bring together security and safety meaningfully and robustly.

2 Background and related work

In this section, we consider three relevant areas of literature to our work – existing
safety/hazard analysis methodologies, security/privacy analysis methodologies and
finally the use of formal methods in system analysis methodologies. We then discuss
some related work that attempts to broadly address the same issues we’ve identified.

Safety analysis techniques such as HAZOP (Dunjó et al., 2010), fault tree analysis
(Lee et al., 1985) and failure modes and effect analysis (Dhillon, 1992) all originate
from the middle of the last century and were designed to deal with the highly analogue
systems of the time. However, as systems have become more digital and the focus
has shifted from a large number of analogue components to systems being comprised
of more complicated and dynamic components with a huge spectrum of possible
interactions, these methodologies have struggled to identify an increasing number of
hazards and dangerous interactions between components within a system (Leveson,
2011). This has led to the creation of new methodologies, such as STAMP and its
associated analysis technique of STPA (Leveson, 2011) which seek to take a more
systems theory-based approach to analysing systems for hazards. This approach is rooted
in work by Rasmussen, a human factors expert, who understood that the migration of
a system from safe behaviour to unsafe behaviour was due to a combination of factors,
including human factors issues, more than a linear sequence of ‘errors’ (Rasmussen,
1997). The primary output of an STPA analysis is therefore focused on the generation
of constraints either on system behaviours or that of its human operators to ensure
that mitigation is built not only into the design of systems, but equally into training,
maintenance, etc. around systems such that they do not ‘drift’ into unsafe behaviours.

Security and privacy analysis also has a selection of useful techniques and
approaches to security such as CORAS (den Braber et al., 2007) and LINDDUN (Deng
et al., 2011) which are designed to take a much more top-down view on system security,
and which exist in complement to more specific techniques such as formal protocol
analysis which are still highly prevalent in the literature [i.e., analysis of Yubikey
security tokens (Künnemann and Steel, 2013)]. Techniques have been developed such
as attack trees which seek to identify and mitigate all possible attacks on a given system
through combinations of both technical and human-based attack paths (Schneier, 1999).
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This approach resembles fault tree analysis in its usage of a hierarchical set of nodes
which may have Boolean relationships between each other.

An addition area of consideration for our work is formal methods/formal modelling.
The use of formal methods can benefit both security and safety analyses as they
represent “an effective way to improve the quality of large-scale software and reduce
the cost of software development ... formal methods also enable accountable validation
and verification of the resulting system, which reduces or even eliminates possible
defects in the software...” (Cai et al., 2014). Formal methods have been used in order
to develop systems from parts of Amazon Web Services (Newcombe et al., 2015)
to assurance of the software powering safety-critical aspects of a line of the Paris
Metro system (Behm et al., 1999). We pay particular attention to a development of
the B-method, known as Event-B (Abrial, 2010), which has been leveraged for both
security analysis (Gawanmeh et al., 2012) as well as safety analysis (Rezazadeh et al.,
2007) and has therefore proven itself useful in both domains. Furthermore, Event-B has
been paired with an STPA methodology in the past which has demonstrated synergies
between STPA’s constraint-based approach and Event-B’s modelling techniques (Colley
and Butler, 2013).

The concept of an integrated security and safety analysis is by no means novel
within the literature and attempts have been made with methodologies such as CHASSIS
(Raspotnig et al., 2013) and attack-fault trees (Kumar and Stoelinga, 2017) – these
methodologies seek to treat security and safety as first class citizens, but lack the
formalism that we are endeavouring to provide. Work has also been undertaken such
as STPA-Sec (Young and Leveson, 2014), STPA-SafeSec (Friedberg et al., 2017) and
SAFE and Secure (Procter et al., 2017) which are all in some way developments or
inspired by STPA and attempt to introduce security as a first-class citizen into an
STPA-style analysis with varying degrees of completeness. Many of these methodologies
are not specifically targeted at the national infrastructure context and once again lack
the formal analysis capability that our methodology seeks to provide. Finally, STPA has
also been extended with formalisms in the past in order to enable automated generation
of model-based requirement specifications (Thomas, 2013).

It is therefore clear from the literature that there is a research gap in terms of a fully
integrated security and safety analysis methodology, which leverages formal methods in
order to provide stronger traceability of the generated constraints through formal proof.
As we are seeking to design a methodology which is particularly applicable to critical
systems, it is important that the traceability of the any design changes/decisions and
constraints are backed up as substantially as possible, and the usage of formal methods
aid substantially in this regard.

3 Development of our methodology

3.1 ‘Standard STPA’ compared to our methodology

In STAMP – systems-theoretic accident model and processes – the understanding of
systems is based primarily on a view that accidents are due to any combination of
“external disturbances, component failures, or dysfunctional interactions among system
components that are not adequately handled by the control system ... they result from
inadequate control or enforcement of safety-related constraints on the development,
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design, and operation of the system” (Leveson, 2004). It is on top of this model of
accidents that the STPA technique is designed, and consists of two primary steps:

1 identify the potential for inadequate control of the system that could lead to a
hazardous state, through the analysis of all control actions identified within the
system

2 determine how each potentially hazardous control action identified in Step 1 could
occur (Leveson, 2011).

The primary ‘output’ of the STPA analysis is therefore a set of constraints that are to
be taken forward to either further improve upon the system design and build-in as many
of the constraints into the system design as possible or alternatively for the constraints
to be taken forward to guide implementation, training and other aspects of the system
during its useful life.

This model and analysis process works well for purely safety-based concerns but it
can find itself wanting when it is directly applied to security issues, such as in STPA-Sec
(Young and Leveson, 2014), as the STAMP model does not consider – at its core – the
risks to a system based on motivated adversaries with intent. In addition, some security
issues that have no bearing on system safety can be missed in a standard STPA analysis,
such as concerns about confidentiality of information between controllers.

We therefore seek to augment the standard STPA approach with an explicit model of
adversarial behaviours in order to ensure that the security risks of malicious control are
considered alongside the risks posed to system safety by hazardous control. By doing
so in a way that leverages unified concepts, the ultimate output of our process is still
constraints – which we term critical requirements – though these should meaningfully
mitigate against both malicious behaviours and hazardous control.

Furthermore, we seek to add the Event-B formal method at two steps of the analysis
– described later – in order to model the system under consideration and to integrate
proposed critical requirements into the formal model in order to verify their effectiveness
in mitigating against identified hazardous/adversarial behaviours. This adds a degree of
formalism that is not present in baseline STPA approaches.

Our methodology therefore differs from STPA in the following substantive ways:

• The addition of adversarial modelling to the analysis to consider explicit security
risks to the system from a range of sources.

• Modifications to terminology to unify some elements of the analysis together, as
well as the renaming of ‘constraints’ to ‘critical requirements’.

• The addition of the Event-B formal method to help verify the completeness of
critical requirements in mitigating against the hazards that generated them, and to
guide improvement of the critical requirements such that they do fully mitigate
against identified hazards. We believe this to be a more complete method of
producing useful critical requirements than simply utilising subject-matter experts
(SMEs) as is often recommended in STPA documentation.

• More explicit traceability between the variety of artefacts throughout the analysis
process.
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We believe these modifications serve to realise our aims of a fully unified methodology
that considers both security and safety issues as first-class citizens, as well as providing
significant traceability for ensuring the origin and development of critical requirements
are clear.

3.2 Development from initial concept

The authors have already put forward a prototypical version of the methodology (see
Howard et al., 2017) in which the methodology had integrated the formal model into
the analysis process at key points, but the security analysis aspect was not fully proven.
We found that safety dominated the analysis process and that many of the critical
requirements generated were ultimately safety-centric and that many security issues did
not arise easily where they might have been entirely divorced from any safety impacts.
As an example, exposure of information contained within a controller’s process model
may not pose any significant safety risk in isolation, but may represent an unacceptable
breach of security because it may further the understanding that an attacker is developing
in preparation for an attack on the system.

The initial version of the methodology took the view that “many security issues
revealed by the analysis are likely to be a result of the causal analysis rather than the
control action analysis” (Howard et al., 2017) but it was clear from carrying out even
rudimentary case studies that the causal factors analysis did not adequately address the
innate difference between security and safety analysis, which is around the nature of the
hazards.

Addressing this involved a review of security analysis methodologies within the
literature and identification of common steps/ideas therein. This guided significantly the
development of the security aspect of the analysis while attempting to maintain the
principles that our methodology should be:

• sufficiently high-level such that it could be applied at as much of the system
life-cycle as possible

• particularly applicable to cyber-physical systems, particularly those in a national
infrastructure or critical-systems context

• providing robust traceability from identification of a given security issue to
critical requirement, as well as any associated formal method representations that
demonstrate the completeness of the requirement.

Based on these principles, we developed our concept of adversarial modelling which sits
between more formal representations of adversarial behaviours such as the Dolev-Yao
model (Dolev and Yao, 1983) and more implementation-focused approaches such as
misuse cases (Sindre and Opdahl, 2000) or CORAS (den Braber et al., 2007). An
important point to note is that our analysis does not seek to replace analyses such as
formal security protocol analysis but instead seeks to allow for security (and safety)
issues inherent within the requirements or the design of the system to be highlighted
and corrected as early as possible (when it is far less expensive and much more robust
to do so) than at a later point when one may have committed to specific protocols or
implementations.

More detail on the actual process of adversarial modelling appears in
Subsection 4.2.6.
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4 An overview of the methodology

4.1 Clarification on the illustrative example

The illustrative example used to highlight each step of the methodology within
Subsection 4.2 is based on an abstracted and simplified version of the end-to-end
technical architecture of the UK’s smart meter system (Department of Energy and
Climate Change, 2015). The system therefore consists of a multitude of smart meters
on consumers’ premises, as well as a central system which they report to.

4.2 Methodology steps

4.2.1 Step 1 – Establishing the system engineering basis

We begin by taking the system under analysis and defining its boundaries as well as the
underlying purpose of the system. The underlying purpose of the system (or multiple
purposes where the system may require this) and system boundaries should be explained
in plain English, in the form of a statement.

In our example, the purpose statement is:

The system purpose is to maintain an accurate and up-to-date record of the
electricity usage by a cluster of Meters and additionally keep track of any issues
arising from Meters failing to report their correct and current usage value in a
timely manner. The system will additionally be responsible for keeping track of
registered and retired meters, managing billing for each Meter, and for sending
disconnect commands to Meters that have fallen behind on their billing.

The purpose statement(s) then allow the determination of what we would categorise
as a system losses which essentially represents a failure of the system to carry out
its purpose. These are essentially once more plain language statements representing an
inability to meet any aspect of the purpose statement.

One of the losses associated with our example is therefore “loss of accurate
registration/retired data for meters.” This loss represents a failure of the system to meet
the second sentence within its purpose statement.

The final part of this step involves the identification of system-level hazards which
are inferred from the losses. Hazards are essentially system states which may lead to
losses and are therefore what we seek to develop mitigations against. As per the STAMP
model, one cannot control the environment in which a system operates so preventing
hazards from occurring becomes fundamental to ensuring that systems do not experience
a loss, as losses are often just the result of a hazard occurring at the same time as some
combination of negative environmental conditions.

An example of a hazard within the context of our example is “meter registration
is not correctly recorded by the system”. It is easiest to represent these in a table –
for extremely large collections of purposes, losses and hazards, it is easier to allocate
identifiers to each item and then use tables to map identifiers alone. An example of a
simple table format can be found in Table 1.

System-level losses and hazards will also be mapped to by component-level hazards
to create a hierarchy of possible ways of reaching a loss state. We seek, in later steps,
to generate critical requirements and verify their effectiveness at mitigating against each
potential ‘path’ of hazards to a loss. This aids the traceability of the analysis.
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Table 1 Example purposes, hazards and losses mappings

Purpose Loss Hazard

P1: The system will be
responsible for keeping
track of registered and
retired meters.

L1: Inaccurate registration/
retirement data is held by
the system.

H1: Meter registrations are
not correctly recorded by the
system.
H2: Meter retirements are
not actioned by the system.

4.2.2 Step 2 – Build the control structure

The construction of the functional control structure seeks to create a representation of all
entities involved in the control of the system and any underlying processes with which
the system interfaces. This may not necessarily map to individual components if the
system design is moderately finalised – in fact, this step is designed such that it could
be performed against a system that only consists of a set of requirements from which
entities may be inferred.

Controllers (i.e., components that communicate with other components or control
some underlying process) have both responsibilities (which can be viewed as a form of
component purpose if this aids in visualisation) as well as process models which model
the understanding that a controller has of aspects of the system state or underlying
process that are relevant to it and its responsibilities. Controllers may also be passing
commands around to one another and feedback may also be passed between either
controllers and processes, or controllers and other controllers. We do not seek to be too
explicit in what exactly represents commands versus feedback, as this can be unduly
restrictive.

Figure 1 Functional control structure for smart meter example (see online version for colours)

Billing System (singular)

Process Model:
- For each Meter:
- Tracks Registered OR 

Retired state
- Collection of Meter 

readings and date sent
- If Bill exists for Meter
- If Bill has been paid
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Electricity supply
(underlying process) [one per meter]

Commands:
- Disconnect 
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Feedback:
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- Electricity 
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Whatever the state of the system in terms of how finalised the system design or
architecture is, an abstract functional control structure should be developed from the
available information on the system.

Going back to our smart meter example, an exemplar control structure for it is given
in Figure 1. As can be seen, there are essentially two tiers of controllers, which pass
commands/feedback between themselves. The meter controller is directly interfacing
with the underlying process, which is the electricity supply.

It can also be useful to express the cardinality of elements within the control
structure rather than duplicating controllers/processes unnecessarily. This could be
expressed through UML-like multiplicity, or alternatively simply through annotations on
each controller/process as has been used in our example.

4.2.3 Step 3 – Identify control actions

The development of the functional control structure should aid the identification of
control actions – commands and feedback passed around the control loops are extremely
likely to comprise the bulk of control actions available within the system. The purpose
of this step is two-fold: to identify the control actions such that they can be analysed
in later steps is one element, but the identification also permits us to create an initial
formal model of the system in the next step.

Going back once more to the example, we find that some clear control actions have
arisen, such as:

• register meter

• retire meter

• generate bill.

Once all control actions have been identified, we can continue with the next phase of
the analysis.

4.2.4 Step 4 – Building the initial formal model

At this stage, we can construct an initial formal model of our system using Event-B and
its associated tool, Rodin. The purpose of this step is to allow for an abstraction of the
system behaviours to be modelled (broadly in line with the functional control structure)
and to ensure that all control actions that exist have been identified.

There is generally a straightforward transposition of control actions into one or
more events within Event-B, while process models can be most easily modelled as
combinations of variables and invariants. Restrictions or conditions on control actions
can be modelled through guards on events. We seek to model sensible constraints on the
system where these may already exist in requirements or practically within the system
design already – if control actions may only occur in certain circumstances, this should
be modelled accurately.

The construction of the formal model can also aid in determining whether the
understanding of the system is adequate – if it is unclear what effect a given control
action may have on the receiving controller/process, or perhaps the process model
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seems incomplete, then this indicates that the system under analysis has been scoped
incorrectly or that the functional control structure is incomplete.

We have not provided the formal model in the interest of conciseness but a simple
model was created in Event-B which essentially represented all of the functionality
displayed in the functional control structure (as shown in Figure 1).

4.2.5 Step 5 – Control action analysis and identification of critical requirements

The control actions as determined in Step 3 (Subsection 4.2.3) are then subjected to
analysis through considering if any insecure/unsafe system states (or hazards) can occur
if:

1 the control action is issued

2 the control action is not issued

3 the control action is issued too soon or too late within the expected sequence of
system events

4 the control action is continuous and is issued for too long/too short a period of
time.

If there is the potential for a control action to cause an unsafe/insecure system state as
a result of one of these conditions, the hazard is noted down (a tabular form is often
used for this in STPA – with the four conditions as columns, and each control action
as a row). All the hazards discovered through analysis of each control action can then
be used to generate critical requirements which represent constraints or limits in natural
language on when/how control actions may be issued; these critical requirements should
seek to constrain the system such that the identified hazards may not arise.

Going back once more to our example, one can take the ‘register meter’ control
action and subject it to analysis as is shown in Table 2 .

Table 2 Control action analysis results

Control
action Is issued Is not issued Is issued out of

sequence
Is issued for

incorrect duration

Register
meter

An invalid meter
is re-registered.

A meter fails to
be registered.

A meter is
registered

multiple times.

N/A –
registration is

discrete.

The first output from this step is the information in each row which represents a set
of hazards associated with each control action. Many of these will map back to the
identified system-level hazards – this is intentional. Due to the fact that STPA works
on a model of inadequate control, we do not directly generate critical requirements for
system-level hazards as these would essentially be vague and not beneficial to future
stages of the system life-cycle. Instead, we seek to identify all ways that hazardous
control can produce contributory hazards towards system-level hazards, and we seek to
mitigate the hazardous control through critical requirements.

The second output from this step involves generating critical requirements to address
the identified hazards. The generation of critical requirements is once again centred
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around natural-language statements that seek to address a given hazard. The critical
requirements should be specific enough to address the hazard directly but without being
too prescriptive in terms of actual implementation. Some example hazards and critical
requirements are given in Table 3.

Table 3 Critical requirement generation from our example

Hazard Generated critical requirement

H3: An invalid meter is
re-registered.

CR1: Meters, once retired, may not be returned to a state
of registration.

H4: A meter is registered
multiple times.

CR2: Registration for a given meter may only occur once.

We will integrate these critical requirements into the formal model in order to validate
them in a later step.

4.2.6 Step 6 – Adversary modelling and generation of further critical requirements

The next aspect of our analysis involves the notion of adversarial modelling. An
adversary is essentially an abstraction of any unauthorised party interacting with the
system in a way that might undermine the system’s purpose, including any implicit
security requirements a system may have.

A given adversary consists of the following properties:

1 An identifier, such that other aspects of the analysis may be mapped back to this
adversary.

2 A name/categorisation.

3 The intent of the adversary, ranging from something as minor as ‘curiosity’ all the
way to ‘denial of service’ or ‘permanent damage’.

4 The access or perspective of the adversary, which will ideally consist of some
number of manipulation points – described later in this section.

5 The information held by the adversary, which may be expressed explicitly or more
generically in terms on a scale such as ‘minimal’ to ‘complete’.

6 The actions that an adversary may undertake. This may be a linear flowchart but
may also consist of multiple paths of action that the adversary may carry out.

The system’s functional control structure itself must also be annotated with manipulation
points – essentially these are any communication links between controllers, or
controllers and processes, that may feasibly be accessible to any adversary. Not all
adversaries will utilise all manipulation points, but all interfaces between different
entities in the functional control structure should be tagged with an identifier in order
to facilitate the adversary modelling process.

The purpose of the adversary modelling is essentially to provide a traceable and
explicit security assurance case – an indication that a given type of adversary has been
considered, and has had sufficient mitigations against their behaviours in the form of
critical requirements.
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Figure 2 Annotated functional control structure for smart meter, with manipulation points
(see online version for colours)

Billing System

Meter

Electricity supply
(underlying process) [one per meter]

MP1 MP3MP4

MP2

MP5 MP7MP6

Going back to our example, we therefore have the annotated version of the functional
control structure for the smart meter system in Figure 2, as well as a table containing
the definition of an adversary in Table 4.

Table 4 Adversary description from the smart meter example

Detail Example adversary detail

Identifier Adversary 1 (A1)
Name/categorisation Fraudulent user
Intent Adversary intends to reduce their bill through tampering with the

meter.
Access Adversary can see and manipulate MP5 and MP7.
Information Adversary is aware that feedback channel MP7 reports electricity

usage by the consumer.
Actions Single step: Adversary intercepts and modifies MP7 result at all

times. This has the net effect of putting the meter out of sync
with the underlying process.

We take the view that adversary actions are analogous to hazards as we cannot directly
control the adversary or their actions. Instead, much like hazards, the actions of an
adversary are a result of a combination of factors that manifest themselves as a hazard –
the adversary essentially can just be seen as a malicious environment. We therefore seek
to generate critical requirements as with any other type of hazard in order to ensure
that control over the system can be maintained in a meaningful way in spite of the
identified hazard. This differs from the later causal factors analysis, which is focused
on the derivation of possible contributing factors to a loss of control to ensure that
identified factors can be mitigated in the design or processes around the management
of the system – adversaries seek to directly undermine system control with a malicious
intent and therefore performing it at this step is a more meaningful way of modelling
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the true way that adversarial behaviour works rather than simply viewing it as a mere
causal factor.

To generate critical requirements, we can use a summary of the adversary behaviours
in lieu of the hazard column used in Table 3 and once again reuse the table to
generate critical requirements. For hazards that have originated from the adversarial
modelling, it can be simpler to summarise in terms of the functional control structure
than discussing manipulation points, though occasionally the use of manipulation points
in the description may bring greater clarity, so this is situational. Going back once more
to the example, we present some hazards and their associated critical requirements in
Table 5.

Table 5 Critical requirement generation from our example

Hazard Generated critical requirement

H5: Adversary
manipulates data between
electricity supply and
meter to reduce reported
electricity usage.

CR4: Meter will receive local average usage and will raise an
alert if readings are more than 25% below this in a month’s
period.
CR5: Billing System flags any meters that send alerts or
provide readings that are more than 20% below the projections
for that meter over a month’s period.

Once we have collected a set of critical requirements through this generation process,
we would ordinarily proceed to the next step, however, if the critical requirements
generated propose a significant modification of the design of the system – such as
the addition of new entities to the control structure – then it may be worthwhile to
iterate the design/requirements and begin the process once more from Step 1. We have
in our example identified new commands between the two controllers in the form of
the ‘flagging’ and the ‘alert’ control actions that are implicitly defined by our critical
requirements and so this could inform a change to the functional control structure, which
would necessitate beginning again.

4.2.7 Step 7 – Integration of critical requirements into the formal model

The integration of the critical requirements leverages the existing initial formal model,
represented in Event-B using the Rodin tool, to validate each critical requirement. We
integrate each critical requirement into the model in its own distinct refinement of the
model in order to enable greater traceability.

The integration may consist of the following aspects which seek to extend and refine
the model:

• Addition of invariants to the machine element of the model in order to constrain
variables. An example below is an invariant indicating that the variables of
registered meters and retired meters may not overlap:

MetersRetireOverlapInvariant:
RegisteredMeters ∩RetiredMeters = ∅
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• Addition of guards to events to narrow the circumstances in which they may
occur. We can restrict the RegisterMeter event through the guard below to ensure
that retired meters may not be re-registered, for instance:

NotAlreadyRetiredGuard:
meter /∈ RetiredMeters

where meter is a parameter of type METER and RetiredMeters is the set of all
retired meters.

• Addition of more actions to events. As part of our illustrative example, we
determined that the use of ‘tokens’ were a sufficiently-capable abstraction of the
notion of encryption between a meter and the billing system. We therefore have to
store a valid token when registering a meter as demonstrated by the following
action:

tokenAssignAction:
RegisteredTokens(meter) := token

• Addition of axioms to the context element of the model to add properties to the
constants and carrier sets represented therein. Our example did not leverage any
axioms but one of the most commonly used axioms is an axiom to partition a
given set – such as a MeterType set being partitioned into two for electricity and
gas meter types:

MeterTypePartitionAxiom:
partition(METERTYPE, {Electricity}, {Gas})

• Addition of new events, variables and other elements to the model and restricting
existing variables, events, etc. Our example created new variables to model the
token concept by storing all tokens seen by the system and all currently registered
tokens:

VARIABLES:
AllTokens

RegisteredTokens

Additionally we made extensive use of event extension in our refinements to
allow for additional events to be reused but have further guards and actions added
to them.

The goal of the integration of critical requirements is to ensure that they mitigate against
their associated hazard sufficiently. Many critical requirements will result in invariants
being created and violation of these will be indicated by the tool through an inability
to discharge all of the proof obligations associated with that invariant or alternatively
through the identification of counterexamples through model checking.

The strength of the formal method in this regard is that one has both mathematical
– i.e., proof obligations either being discharged or remaining undischarged – and
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operational – i.e., counter-examples being generated during model simulations –
demonstrations that a critical requirement either prevents the system from reaching
the hazard state or is unable to prevent the system from entering the hazard state.
These can guide either further iteration on the critical requirements to ensure they do
fully mitigate against the system entering the hazardous state through becoming more
descriptive/detailed, or the iteration of the design itself to ensure critical requirements
can be generated to sufficiently mitigate hazards.

4.2.8 Step 8 – Causal factors analysis

This step seeks to address how many of the identified hazardous behaviours in
the system have arisen. This is less of a concern with the hazards identified as
a result of adversarial modelling as security is often framed as being an issue of
“intentional actions by malevolent actors” (Young and Leveson, 2014) but is instead
a more significant and meaningful task when undertaken against the hazards found
through control action analysis, as safety concerns and analysis focus on preventing
“unintentional actions by benelovent actors” (Young and Leveson, 2014) and therefore
these hazards sometimes lack much in the way of context or causality. This stage of the
analysis attempts to investigate this aspect.

The core process for undertaking this step of analysis should involve selecting each
hazard in turn and subjecting it to causal factors analysis through considering how
a series of actions or contexts in the control loop could lead to the hazard arising.
A guidance diagram for this can be found in a variety of STPA sources which give
guidance on exactly what may be considered a ‘causal factor’. The analyst then attempts
to generate further critical requirements or design changes in order to mitigate against
any causal factors that are deemed to be reasonable. Each ‘causal factor’ can therefore
essentially be viewed as a contributing sub-hazard to a larger hazard – examples of
causal factors tend to be around ways in which sensors may misreport information, how
communications can be disrupted, or how controller understanding can fall out of sync
with the process they are modelling with their process models.

The importance of this step is that it should provide an opportunity of how the
design may not be optimal for ensuring control can be maintained of the underlying
process or between control entities within the system design, and how this degradation
in control can eventually lead to a hazard. This allows aspects of hazardous control that
are commonly overlooked, such as human factors in terms of interfaces or understanding
of feedback, to be considered in a meaningful way.

Going back once more to the example, we can take the hazard of “a retired meter is
re-registered” as a hazard to subject to this analysis – this can be seen in Figure 3. We
have annotated controllers with what causal factors might cause the hazard, as well as
any commands/feedback that may be passed that may also lead to the hazard. We then
address the causal factors in Table 6.

This example is not the best example of the causal factors analysis process – if a
human operator was included, acting as a controller that sits hierarchically above the
Billing System, it may perhaps be that meters that are correctly reporting readings and
appear in every way to be active (despite being retired previously) may be assumed
to have been mistakenly retired, which can cause a retired meter to be re-registered
erroneously. The causal factors analysis can then reveal how the human operator
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(or indeed, any controller) can come to such a conclusion, and ensure that design
modifications and constraints are generated to ensure this does not happen.

Figure 3 Causal factor analysis of one hazard from the example (see online version
for colours)

Billing System

Meter

- Billing System never actions retirement of meter.
- Billing System moves retired meter into registered meter category 

unprompted.
- Billing System actions a registration request from a retired meter.

Billing System:
- spuriously notifies 

meter that it is 
registered when it 
has been retired.

- fails to notify meter 
of retirement.

Hazard: 
A retired meter is re-registered

No causal factors beyond continuing to operate as unretired meter despite 
notification of retirement.

Meter:
- sends registration 

requests despite 
being retired.

- sends data as though 
it is registered 
despite being 

retired.

Table 6 Causal factors and the resulting critical requirements/design changes

Causal factor Critical requirement or design change

H6: Meters continue to send data and
take no notice of their retirement which
may cause the billing system to
erroneously respond to commands.

CR6: The Billing System will ignore all
communications from meters once they have
been retired.

4.2.9 Step 9 – Iteration and re-scoping

One key element of the STPA family of methodologies is their focus on not simply
carrying out analysis as a one-off effort but as a continuous process to iterate the design
to a state where as much of the hazardous behaviour is mitigated against as possible
within the system design. It may be that the identification of the hazardous behaviours
and the resultant critical requirements indicate that the underlying system architecture
requires a significant review. In this circumstance, it would be appropriate to begin this
process from the beginning as any design changes will likely modify the functional
control structure or the control actions within the system under analysis, which will
necessitate beginning again. This analysis can additionally be begun again from the
initial step but be scoped in down to specific subsystems or portions of the functional
control diagram to generate component-level hazards.

Analysing in this way allows for component-level losses, hazards and critical
requirements to be identified but also allows the analyst to connect these artefacts of
the analysis to those of the system as a whole. This is further supported by the formal
model’s support for decomposition of the overall abstract model into specific models
for each component.
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In the context of our example, it may therefore be useful to further scope down the
analysis to individually analyse the meter and billing system individually, to consider
candidate designs/architectures for how these entities may function that is less abstract
and closer to an implementation-sufficient model. Each iteration of the system design
should eventually result in a system with an adequate number of innate design elements
that mitigate many identified hazards, as well as a set of critical requirements, for those
hazards that cannot be trivially mitigated through design changes, to take forward to
guide implementation work.

Our adversarial modelling also indicated the creation of new control actions in the
critical requirements designed to mitigate against our example adversary, and so this is
a valid reason to begin the analysis once more from the beginning with these design
changes included. There are also suggested changes within the causal factors analysis
that may inspire design changes.

5 A multi-UAV case study

To validate our methodology, in particular the developments described in Subsection 3.2,
it was applied to a further case study based on an existing paper which related to the
coordination and control of multiple unmanned aerial vehicles (Bogdiukiewicz et al.,
2017). This case study considers a system consisting of the following three types of
entities:

• Operators which are human actors within the system who provide either plans or
commands to the ground control station which will be validated in the case of the
former and the result of validation fed-back, or acted upon in the case of the
latter (so long as they pass validation).

• The ground control station which contains an interface to both the human
operators and to the aircraft, as well as an intelligent planning system which
receives input from operators and attempts to plan routes for the aircraft to satisfy
this input (within the set of constraints that exist around restricted airspace and
ensuring minimum safe separation distances).

• A number of aircraft which attempt to fulfil their routes with deviations allowed
for obstacle avoidance and report back their progress against their route to the
Ground Control Station.

The methodology was applied as described in the previous section with an aim to
both validate changes made to the methodology, as well as to identify hazardous and
adversarial behaviours and to generate sufficiently-detailed critical requirements which
could be utilised in future refinements of the system design to mitigate these identified
behaviours. This case study appeared to be of a sufficient complexity due to the number
of interactions that can occur between the aircraft and the GCS and the implications of
these from both a safety and security perspective.

The key findings from this case study are summarised below:

• The adversarial modelling concept allowed for more focus to be given to the
security side of the analysis as the case study involved a multitude of entities
communicating – reasoning about adversaries of different capabilities, access and
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intent was useful for identifying some changes to the system design in order to
mitigate against many of the attack vectors.

• The formal model once more allowed for the generated critical requirements to be
verified as they were applied to refinements of the model. Where critical
requirements may have been inadequate to mitigate against their hazards
completely, the use of model simulation and its generation of counter-examples
aided in developing the critical requirements in such a way that they did become
adequate in mitigating the identified hazards.

• We identified that there is some improvement to be undertaken on the use of
adversarial modelling during the iteration/scoping of stage of the analysis as
performing parallel analysis on sub-systems sometimes means that the adversary
cannot be fully modelled. This is due to the fact that scoping the analysis purely
to a sub-system can mean the full spectrum of adversarial actions cannot be
modelled as the other components they may manipulate will be ‘out-of-scope’.
We were able to continue the analysis by either considering all inputs from other
out-of-scope sub-systems to be compromised by default or alternatively isolating
the sub-system such that we did not consider any inputs or outputs as being in
scope.

This could have been avoided by not scoping so narrowly down to sub-system
level, but simply iterating the design to make it more concrete and continuing the
analysis on the system as a whole. This suggests that the analysis may struggle to
scale with larger, more complex systems where the sub-systems are themselves
fairly complicated.

• More work needs to be undertaken in the area of formally modelling some
common security properties of the system using Event-B. It should be possible to
utilise the Event-B theory plug-in for Rodin (Butler and Maamria, 2013) to model
concepts such as secrecy or for demonstrating reasoning about asymmetric
encryption as two examples. There has been some existing work in the literature
on the use of refinement in both B (Butler, 2002) and other formal methods such
as Isabelle/HOL (Sprenger and Basin, 2010) which will be explored in order to
improve this area of the analysis.

Overall, we found the case study to be useful in exploring the existing improvements
made to the methodology, and additionally in contributing to potential future
improvements to the methodology.

6 Conclusions and future work

In conclusion, we have presented a methodology which combines security and safety
analysis in an integrated fashion in order to produce a set of critical requirements
which are traceable to the hazards/adversary actions they seek to mitigate against and
have their validity demonstrated through the formal model. The use of the formal
model seeks to provides a higher degree of assurance that the critical requirements
actually meaningfully mitigate against the hazards that they are intended to address. Our
application of the methodology to both the smart meter example case study and the
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UAV case study indicate that the methodology allows for both safety and security to
be considered within a single methodology in a meaningful way, and that the resultant
critical requirements can be useful in guiding design iterations in order to reduce the
chance of both hazardous control and adversarial action ultimately leading the system
into a loss state.

Future work will focus on applying the methodology to further case studies in the
critical infrastructure domain in order to guide refinement and improvements to the
methodology and to bolster any areas in which the methodology may not be fully
capable at present, such as the previously identified need for further work in modelling
security properties, as well as producing supplementary tooling to support the analysis
process from end-to-end.
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