
 

This is an electronic reprint of the original article. This reprint may differ from the original 
in pagination and typographic detail. 

 
Applying guidelines for system modelling in Event-B

Olszewska, Marta; Shokri-Manninen, Fatima; Edmunds, Andrew; Walden, Marina

Published in:
International Journal of Critical Computer-Based Systems

DOI:
10.1504/IJCCBS.2020.108668

Published: 01/01/2020

Document Version
Accepted author manuscript

Document License
Publisher rights policy

Link to publication

Please cite the original version:
Olszewska, M., Shokri-Manninen, F., Edmunds, A., & Walden, M. (2020). Applying guidelines for system
modelling in Event-B: A systematic literature review. International Journal of Critical Computer-Based Systems,
10(1), 1–36. https://doi.org/10.1504/IJCCBS.2020.108668

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 13. May. 2024

https://doi.org/10.1504/IJCCBS.2020.108668
https://research.abo.fi/en/publications/395f7850-5ffe-474c-92fa-526620cf0f0c
https://doi.org/10.1504/IJCCBS.2020.108668


International Journal of Critical Computer-Based Systems



International Journal of Critical Computer-Based Systems, Vol. x, No. x, 2019 1

Applying guidelines for system modelling in Event-B - A
Systematic Literature Review

Marta Olszewska
Faculty of Science and Engineering,
Åbo Akademi University,
Turku, Finland

E-mail:Marta.Plaska@abo.fi

Fatima Shokri-Manninen
Faculty of Science and Engineering,
Åbo Akademi University,
Turku, Finland

E-mail:Fatemeh.Shokri@abo.fi

Andrew Edmunds
Faculty of Science and Engineering,
Åbo Akademi University,
Turku, Finland

E-mail:andy.ed.edmunds@gmail.com

Marina Waldén
Faculty of Science and Engineering,
Åbo Akademi University,
Turku, Finland

E-mail:Marina.Walden@abo.fi

Abstract: Developing safety-critical systems is an intricate task since it involves the application of
well-established and rigorous methods, supported by good practices. The modelling is merely a part
of this undertaking. However, it plays a significant role in the description of the system, how it will
behave and what properties it will have. Formal methods, for instance Event-B, are utilised in such
cases to assure that the system is correct-by-construction and functions as required. In this work
we use a literature review method to collect a body of knowledge that would support the Event-B
practitioners with modelling guidelines. We first define the domains in which the guidelines fall and
divide them into two categories: beginners and advanced. Then we provide a collection of guidelines
as reinforcements for domain-specific applications of Event-B.

Keywords: Event-B, Formal modelling, Guidelines, Lessons learned, Practitioners.

1 Introduction

Development of safety-critical or mixed-criticality systems
requires a high degree of rigour of the methods in use.
For the assurance of their quality, herein correctness, as
well as for the standardization purposes, formal methods
are employed (Olszewska, 2011). Formal methods are
mathematical techniques for specification, development and
verification of software and hardware systems. They can be a
foundation for describing complex systems, aid in reasoning
about systems and support system development.

Systems are increasingly dependent on software
components and the complexity of components (and systems
in general) is growing. Formal methods facilitate control
of the complexity and providea a correct-by-construction

system development, so that the system functions as required
(Almeida et al., 2011). Moreover, maintaining the reliability
in software-intensive systems, including embedded systems,
becomes more difficult by the time. Modelling and proving
such systems in a rigorous manner helps to describe their
properties accurately, and thus gives confidence in how
the system behaves. This is vital in cases where human
losses or large financial gains are at stake, e.g. in space or
transportation domains (Bowen and Hinchey, 2012).

Modelling in Event-B provides many benefits, such as
obtaining a correct-by-construction system, control over the
specified requirements, as well as sound management of the
early stage development process (Abrial, 2010). However,
it is considered as a challenging and time-consuming task,
in particular for the beginners, since it involves a steep

Copyright © 201X Inderscience Enterprises Ltd.



2 M. Olszewska et al.

learning curve. The challenges with creating the initial model
in Event-B and then refining it according to certain formal
rules are balanced out by the certainty that the model is
proven correct according to given requirements and specified
assumptions, once the skill is mastered (Su et al., 2014).
In order to build the model in an efficient and sustainable
way, a feasible strategy is needed to help with the process
all the way. Thus, providing a collection of guidelines to
facilitate the early-stage development would improve the
experience of modelling. Currently, this experience depends
vastly on the level of proficiency of modellers (Abrial, 2010).
In this paper we mainly focus on the Event-B formal method
and supplement it with some material regarding the B-
Method (for historical reasons of Event-B being a descendant
of the B-Method). We use the systematic literature review
method (Kitchenham and Charters, 2007; Kitchenham et al.,
2009) to obtain a body of knowledge that would serve to
improve the Event-B modelling experience. The guidelines
we collect are meant for Event-B users, who have barely
begun to apply this particular formal method, as well as
experienced developers, who can use the material as a quick-
roadmap on how to manoeuvre in the Event-B ecosystem. To
our knowledge, there exist guidelines for managing the Rodin
tool (Jastram and Butler, 2014), however, the information on
strategies and best practices for modelling in Event-B is very
much spread over the literature. The goal of this paper is to
show the breadth of the topic and possibilities, pointing to the
literature, which can be exploited in-depth, when needed.

This paper, apart from being a literature study, is based
on the results from a 4-year project ADVICeS (Adaptive
Integrated Formal Design of Safety-Critical Systems) funded
by Academy of Finland (ADVICeS Project, 2013-2017). The
aim of the project was to make the formal design process
for developing complex systems more efficient, flexible
and maintainable. A combination of an adaptive design
framework, based on concepts of an agile methodology, with
formal methods (in particular Event-B) was to augment the
development flexibility and give faster response to changes
in requirements and design decisions. As a consequence,
this aids to achieve a feasible formal development process
that enhances maintainability. As an integral part of the
development process, metrics and quality measurements
specific to the context will provide additional guidelines for
the modelling process. Furthermore, they will enable the
assessment of the suitability of the proposed hybrid method.

This paper is structured as follows. In Section 2 we
present the Event-B method and modelling language and
motivate why it was chosen in our work. Next, in Section 3,
follows the description of the context of our study, including
the research questions. Section 4 presents the review method
including a quality assessment. Sections 5 and 6 answer the
research questions. We continue to discuss our findings and
validity issues in Section 7 and conclude in Section 8 with
some general remarks.

2 Background – Event-B

Development of safety-critical systems requires a high degree
of rigour to be able to prove that the system will behave
as expected. Correctness by construction is obtained with
the use of formal methods, which are the mathematical
means to describe the system to be developed together
with its properties. There are various formal methods that
can be utilised, depending on the application domain or
the type of the modelled system. We chose to focus on
Event-B (Abrial, 2010), as it is not only investigated in
the project ADVICeS (ADVICeS Project, 2013-2017), but
also because we have long experience with using this
method for development of safety-critical systems, including
distributed and reactive systems, and it has gained an
industrial interest (ENABLE S3 Project, 2016-2019).

Event-B is derived from the B-Method, a formal language
for specifying software systems, which covers all stages of
development from requirements (specification) and design
(refinement) to implementation and code generation. The
B-Method uses abstract machines that include states and
operations, whereas in Event-B the operations are substituted
by events that have no explicit parameters. At most one event
is executed non-deterministically at a time. Event-B was
designed to allow development of distributed systems and is
used for the development of complete systems, encapsulating
hardware, software and environment. The refinement in
Event-B is more flexible when compared to the classical
B-method, since adding new events, merging or splitting
events are allowed. Moreover, model decomposition has been
introduced in Event-B to reduce the complexity of modelling
big systems by dividing them into smaller submodels (Abrial,
2010).

Event-B uses refinements (Back, 1990; Back and von
Wright, 1998), which enables the system to be created in a
stepwise fashion, starting from an abstract model, where each
refinement step must shown to preserve the correctness of
previous steps (Back, 1978; Back and Sere, 1994). If model
A is refined by model B, then all behaviour present in B
should be present in A as well. The developer defines his or
her own abstract model and refinements and then uses proofs
to check the correctness of the refinement. The refinement
approach can be perceived as a rigorous development process
which clarifies the system specification and manages the
complexity of specification. Since the refined models are
tightly dependent on the more abstract models, an inaccuracy
or error in one level can cause an inconsistency in the
whole model. Therefore, tools for maintaining the refinement
process are crucial for the system development.

Event-B is well supported by the Rodin platform (RODIN
Project, 2004-2007; Rodin Platform, 2006), which is an
Eclipse-based, open-source, rich client platform, extendable
with plug-ins. A diversity of plug-ins is available to provide
a more flexible and adaptable environment for Event-B
development. For instance, ProB (Leuschel and Butler, 2008)
and the model decomposition plug-in (Said et al., 2015),
include both a separate animator and an Eclipse plug-
in for animating and model checking of B and Event-B
models. Property violations in the model can be detected



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 3

by finding counterexamples. Furthermore, ProB can be
used in automated refinement checking. The refinement
error detection capability in ProB discovers inconsistent
behaviours. A model decomposition plug-in (Butler, 2009) is
available for breaking a model into sub-models in Event-B.
Two approaches are available: shared variable decomposition
and shared event decomposition (Hoang et al., 2011). The
user can optimise the decomposition style, depending on the
user preference and the system.

However, not only is Event-B well supported by the
tool, but also by the community which extends the Event-
B ecosystem. The Event-B ecosystem can be understood as
co-operative of developers, software organisations, and third
parties that share a common interest in the development
of the Event-B language, software that supports it (Rodin
platform with plug-in extensions), as well as advertising its
application. Event-B is a technology that is developed and
co-evolved by a community based on shared information
and resources to fit contemporary development processes and
practices, and at the same time scaling up to the needs of
industry. In fact, Event-B has been gaining recognition in an
industrial setting. Recently, it was one of the methods used
in the European project ENABLE S3 (ENABLE S3 Project,
2016-2019), which was an industry-driven undertaking that
aimed to provide more advanced and efficient methods
to commercialise highly automated cyber physical systems
(ACPS).

3 Context and research questions

The goal of this paper is to review existing approaches and
give recommendations for the use of Event-B in modelling of
systems to create a best-practices roadmap for practitioners.
From this goal, we derive the following two research
questions:

• RQ1: How to effectively support the developers using
Event-B both at the beginners and advanced levels?

The main goal of RQ1 is to first categorise the Event-
B modelling guidelines and then to create guidelines
within these categories to be able to support the Event-B
practitioners regardless of their familiarity and skill in the
method. We aim at dividing the guidelines for the beginners
and advanced levels, where the beginners-level is merely a
subset of the guidelines anticipated for the more advanced
modellers. Our reasoning is to provide the beginners with the
get go knowledge and not overwhelm them with modelling
nuances, i.e, to (i) introduce them to Event-B modelling in
a stepwise manner (steep learning curve of formal methods)
and to (ii) sustain their motivation.

• RQ2: How can modellers in different modelling areas
take advantage of the guidelines proposed in this
paper?

Research question RQ2 is meant to tackle the issue of
deepening the knowledge of the modelling process with
respect to the modelling area, the application domain or

the type of the modelled system. This approach uses the
findings of RQ1 (categorization of guidelines) to provide
more detailed knowledge with respect to the chosen case
study. We demonstrate how modellers can use the proposed
guidelines in each step. While RQ1 gives a horizontal
knowledge on the modelling with Event-B, RQ2 presents a
vertical, step by step approach and shows the issues that need
to be addressed when modelling and proving a system.

4 Review method

This review has been undertaken according to the guidelines
proposed by Kitchenham (Kitchenham and Charters, 2007;
Kitchenham et al., 2009) for a systematic literature review
which aims at analayzing all the relevant studies in a way
that is unbiased. We followed the process for conducting
systematic literature reviews: 1) Research questions, 2)
Search process, 3) Inclusion and exclusion criteria, 4) Quality
assessment, 5) Data extraction, 6) Data synthesis.

4.1 Search process

We used the following search engines for our reviews:
ACM Digital Library, Google Scholar, IEEE Xplore, Elsevier
ScienceDirect, and SpringerLink. For the search, we used
the following terms: “Event-B ”, “Formal methods”, “Agile”,
“industrial case study”, “guidelines”, “lessons learned” as
the aim was to extract existing methods and guidelines
for formal modeling in Event-B. To help modellers, we
also searched for experience reports and case studies and
then draw conclusions from their experiences and/or lessons
learned. Therefore, we created five search strings:
1. “Event-B” AND “Formal methods”
2. “Event-B” AND “Agile”
3. “Event-B” AND “Industrial case study”
4. “Event-B” AND “Guidelines”
5. “Event-B” AND “Lessons learned”

Figure 1 shows the process of study selection and the
number of papers identified at each step. When searching for
papers according to the above search strings in the electronic
databases and conference proceedings (step 1), we found
about 300 studies. After that, we did the practical screening
for excluding papers based on the title and abstract in case
of being irrelevant (step 2) and ended up with almost 150
papers. For refining our studies, we applied the inclusion and
exclusion criteria (step 3).

To guarantee a comprehensive extraction of data for
covering the most important studies related to our research
questions, we also searched for literature via a technique
called “snowballing” (Wohlin, 2014) where we identify
new papers from the reference lists or citations, either
backward or forward, based on the papers being examined.
Moreover, we contacted the most active researchers in the
area. Furthermore, for including more papers on the topic,
we searched in specific journals and conferences, for example
the ABZ conference (step 4). Table 1 outlines primary studies
for conducting the review. For example, studies [S26, S29
and S30] found by the reference list or citations while studies



4 M. Olszewska et al.

Figure 1 Overview of the study selection process

[S7, S37 and S40] are collected by contacting the active
researchers in Event-B.

4.2 Inclusion and exclusion criteria

In step 3, of Figure 1, we applied inclusion and exclusion
criteria and the number of papers dropped to 41. The main
criterion for the choice of papers was introducing a new
method or plug-in for the Event-B platform and also the
practicality of the suggested guidelines. The requirement for
the papers that were included in this work was that they
should be supported by a (preferably industrial) case study
or an example. Moreover, we included the work that was
industry-driven, either via international projects or executed
in the R&D site of an organisation. In cases of surveys, a
strong justification of usability of the suggested approach
sufficed. Yet another criterion was based on the approaches
already well-developed and verified. Moreover, we included
all studies that indicated some form of experience with Event-
B development.

Studies were excluded if their focus, or main focus, was
not modelling in Event-B. Another criterion for exclusion
was being non-peer reviewed studies. We also excluded
duplicated and purely theoretical studies. Concerning the new
version of the Rodin tool, we also exclude the studies and
works not maintained anymore. There was a team of four
experts involved in choosing the literature, among which
there was a senior researcher, two postdoctoral researchers
and one PhD student. The preliminary selection was executed
within the group of early-career researchers and then iterated
with the senior researcher for approval.

4.3 Quality assessment

We have defined a list of questions to assess the reliability and
usability of the study. The Quality assessment (QA) questions
are as follows:

• QA1: Are all model construction methods fully defined
concerning tools and methods used?

• QA2: Does the paper introduce a new method and
plug-in for Event-B?

• QA3: Are there adequate guidelines for formal
modelling of the case study?

• QA4: Does the paper contain a “lessons learned” report
(based on expert opinion)?

Each of the 47 studies that remained after step 4 was assessed
by the authors according to the above four QAs. These four
criteria can be considered as a measurement for providing
confidence that the findings in a particular study can make a
valuable contribution to the review. The grading of each of the
four criteria was done on a (“yes”,“partly ” and “no”) scale.
The questions were scored as follows:

• QA1: Y (yes), all model construction methods are
explicitly defined in the study; P (Partly), the model
construction methods are only implicit; N (no), the
model construction methods are not defined.

• QA2: Y (yes), the paper introduces a new method and
plug-in for Event-B; P (Partly), the paper introduces
either a method or a plug-in for Event-B; N (no), the
paper does not introduce a method nor a plug-in for
Event-B.

• QA3: Y (yes), there are adequate guidelines for formal
modelling of the case study; P (Partly), the guidelines
for formal modelling of the case study are implicit; N
(no), no guidelines are defined.

• QA4: Y (yes), the paper contains a “lessons learned”
report; P (Partly), lessons learned are mentioned
implicitly in the conclusions; N (no), the paper does not
mention “lessons learned”.

The scoring procedure was Y (yes) = 1, P (partly) = 0.5, N
(no) = 0. The grading process has been performed by the
authors of this paper. When there was a disagreement, it was
resolved by discussion. The results of the quality assessment
are shown in Table 1.

The results of the quality analysis show that most of the
studies scored 2 or more and only three studies scored less
than 2 ([S26], [S27] and [S34]). They are concerned with the
tool support and considered valuable for this paper, in spite of
their low score. Three studies reached almost full score, 3.5
out of 4 ([S8],[S19] and [S47]).



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 5

Table 1 Quality assessment
Study Author QA1 QA2 QA3 QA4 Total score

S1 (Jastram and Butler, 2014) 1 0.5 1 0.5 3

S2 (Abrial, 2010) 1 0.5 1 0.5 3

S3 (Siqueira et al., 2017) 1 0.5 1 0 2.5

S4 (Hallerstede et al., 2014) 1 1 0.5 0 2.5

S5 (Snook and Butler, 2008) 1 1 0 0.5 2.5

S6 (Kobayashi et al., 2014) 0.5 0.5 0.5 0.5 2

S7 (Fathabadi et al., 2018) 1 1 0.5 0 2.5

S8 (Hoang et al., 2013) 1 1 1 0.5 3.5

S9 (Butler and Maamria, 2013) 1 1 0 0.5 2.5

S10 (Olszewska et al., 2016) 0.5 0.5 0 1 2

S11 (Fotso et al., 2018) 1 0.5 0 0.5 2

S12 (Said et al., 2015) 1 1 0.5 0.5 3

S13 (Rodriguez, 2013) 1 0.5 1 0.5 3

S14 (Edmunds et al., 2016) 1 0.5 0 0.5 2

S15 (Prokhorova and Troubitsyna, 2012) 1 0.5 0.5 0.5 2.5

S16 (Lopatkin et al., 2011) 1 0.5 0.5 0 2

S17 (Cofer et al., 2012) 1 0.5 0.5 0 2

S18 (Ponsard and Devroey, 2011) 1 1 0 0 2

S19 (Butler, 2009) 1 1 1 0.5 3.5

S20 (Hoang et al., 2011) 1 0 1 0.5 2.5

S21 (Fathabadi et al., 2012) 1 1 0.5 0 2.5

S22 (Edmunds et al., 2016) 1 0.5 0.5 0.5 2.5

S23 (Silva and Butler, 2009) 1 1 0.5 0 2.5

S24 (Iliasov et al., 2010) 1 1 0 0 2

S25 (Hoang et al., 2017) 1 1 1 0 3

S26 (Servat, 2007) 0 1 0 0.5 1.5

S27 (Ladenberger et al., 2009) 0 1 0 0 1

S28 (Ostroumov and Waldén, 2017) 1 0.5 0.5 0 2

S29 (Leuschel and Butler, 2008) 1 1 0.5 0 2.5

S30 (Yang et al., 2013) 1 1 0 0 2

S31 (Savicks et al., 2014) 1 1 0.5 0 2.5

S32 (Sato and Ishikawa, 2015) 1 0.5 1 0 2.5

S33 (Déharbe et al., 2014) 1 1 0.5 0.5 3

S34 (Dinca et al., 2012) 0.5 1 0 0 1.5

S35 (Lanoix, 2008) 1 0 1 0.5 2.5

S36 (Yeganefard et al., 2010) 1 0 1 0.5 2.5

S37 (Hoang et al., 2016) 1 0 1 0.5 2.5

S38 (Cansell et al., 2007) 1 0.5 1 0 2.5

S39 (Rezazadeh and Butler, 2005) 1 0 1 0 2

S40 (Snook et al., 2017) 1 0 1 0.5 2.5

S41 (Mashkoor and Jacquot, 2011) 1 0 1 0.5 2.5

S42 (Su and Abrial, 2017) 1 0.5 1 0.5 3

S43 (Comptier et al., 2019) 1 0.5 0.5 0.5 2.5

S44 (Eschbach, 2019) 1 0 0.5 0.5 2

S45 (Dieumegard et al., 2017) 1 0 0.5 1 2.5

S46 (Mammar and Laleau, 2017) 1 0 1 1 3

S47 (Méry et al., 2015) 1 0.5 1 1 3.5

4.4 Data extraction

During the data extraction stage, data was extracted from each
of the 47 primary studies included in this systematic review
and was performed by all of the authors of this paper. The data
extraction divided the studies into three categories; the first
category of papers consists of studies introducing tools and
methods for formal modelling, the second category includes
papers that propose guidelines for modelling, and the last
category covers experience reports from modelling in Event-
B.

We collected the data for the articles that were published
until the end of September 2019. We found relevant work in
books, journals, conferences, and workshops with a referee
process. Table 2 shows the number of publications found
for each venue. The reviewed empirical articles consist of

3 books, 9 journal articles, 31 conference articles and 4
workshops articles with the earliest article from year 2005
and the latest from 2019.

Table 2 Distribution of studies according to the publication
venue.

Publication source Type Number
CreateSpace Independent Publishing Platform Book 1
Cambridge University Press Book 1
PhD Thesis Book 1
Theories of Programming and Formal Methods Journal 1
Software & Systems Modeling Journal 2
Science of Computer Programming Journal 2
Journal of Systems Architecture Journal 1
Software Tools for Technology Transfer Journal 3
Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ) Conference 7
Product-Focused Software Process Improvement (PROFES) Conference 1
Advances and Trends in Software Engineering (SOFTENG) Conference 2
NASA Formal Methods Symposium (NFM) Conference 4
INFormatique des ORganisations et Systèmes d’Information et de
Décision (INFORSID)

Conference 1

Integrated Formal Methods (iFM) Conference 2
Software Engineering and Formal Methods (SEFM) Conference 1
International Conference on Engineering of Complex Computer
Systems (ICECCS)

Conference 1

Asia-Pacific Software Engineering Conference (APSEC) Conference 1
International Conference on Formal Engineering Methods (ICFEM) Conference 1
International Conference of B Users Conference 1
International Conference of B and Z Users (ZB) Conference 1
IFIP/IEEE International Symposium on Theoretical Aspects of
Software Engineering (TASE)

Conference 1

The IASTED International Conference on Software Engineering (SE) Conference 1
High-Assurance Systems Engineering (HASE) Conference 1
Reliability, Safety, and Security of Railway Systems (RSSRail ) Conference 1
International Symposium on Formal Methods (FM) Conference 2
International Conference on Model and Data Engineering (MEDI) Conference 1
International Symposium on High-Assurance Systems Engineering
(HASE)

Conference 1

Software Engineering for Resilient Systems (SERENE) Workshop 1
Automated Verification of Critical Systems (AVoCS ) Workshop 1
Formal Methods in Software Engineering (FME) Workshop 1
Formal Methods for Industrial Critical Systems (FMICS) Workshop 1

4.5 Data synthesis

Data synthesis includes assembling and organising the
results of the included primary studies. We have selected a
descriptive synthesis and display the information extracted
from the primary studies in figures and tables. For research
question RQ1, we have collected literature for drawing
Figuers 2,3 and 4 containing new methods and/or plug-ins for
modelling in Event-B according to the two first search strings;
1. “Event-B” AND “Formal methods” 2. “Event-B” AND
“Agile”. We took into consideration the two experience levels
- Beginner and Advanced. The division into modeling levels
is the contribution of the authors as from a long modelling
experience where two of the authors are from verification and
validation and the other two are from modelling development,
agile and measurement. The snowballing technique was used
at this stage as we contacted a researcher who is active in
developing the Rodin plug-ins and methods in Event-B for
the current status of the plug-ins. Tables 3 and Tables 4 (in
Section 5.3) shows the result of the collected literature for
particular methods or Event-B plug-ins with references to
publications and their classification according to Fig. 2, 3 and
4.

For research question RQ2, we searched studies based
on two seach strings 3; “Event-B” AND “Industrial case
study” and 4. “Event-B” AND “Guidelines” to extract the
guidelines offered for modelling in Event-B in terms of
industrial case studies in different domains. Our objective was
to provide self-contained packages in the form of research
paper reference concentrating on the application context



6 M. Olszewska et al.

or domain. We created a table with a list of 15 entries
(publications) that can be used as a handbook for modelling
in Event-B depending on the application domain (see Table 5
in Section 6.1).

As the goal of this study was to provide an as extensive
as possible body of knowledge for developers, we dedicated
Section 6.2 to lessons learned which is based on experience
reports of Event-B modellers found via the last search string
5. “Event-B” AND “Lessons learned”.

5 Guidelines

The collection of guidelines is meant to facilitate the
modelling process, either by providing the knowledge of the
tools to be used or the literature that is available for a certain
problem or application domain. In our work we focussed both
on (i) building the correct models and providing guidelines
for these (product-oriented guidelines), and (ii) the modelling
process itself. This includes iterative evolutionary methods
(agile methods) as well as techniques that support efficient,
continuous development, integration and deployment (reuse
and modularisation).

In order to be able to effectively support developers using
formal methods, in particular Event-B and the B-Method,
we divided them into the ones that are meant for beginners
and the ones that target more experienced modellers. We
planned the support in the most practical way by dividing the
guidelines into categories, which are represented as a tree-like
structure. The leaves of the tree represent particular methods
or Event-B plug-ins that can enable the fulfilment of certain
modelling demands or facilitate the modelling process.

In this section, we address RQ1, i.e., ”How to effectively
support the developers using Event-B both at the beginner
and advanced levels”. We divide the guidelines with respect
to the level of experience of potential users, beginners and
more advanced modellers. The purpose of the division is
to motivate newcomers. Since modelling in Event-B can
be challenging for someone who has just started learning
it, we have collected studies that introduce guidelines for
lightweight modelling using proved patterns and animations
for validation rather than proofs. Furthermore, we cannot
expect beginners to model the system completely and then
verify the model. For this reason, we do not include the
V&V techniques at the beginners level. Once modellers learn
more regarding modelling Event-B, they can move from the
beginners level to the advanced level.

The classification of the guidelines have crystalized from
the collected literature, as well as from the long (more than
fifteen years) modelling experience of the authors. To show
only the most vital information in the plethora of literature
on the subject, the guidelines for beginners are a limited
subset of those for the more experienced modellers. They
are enriched with the sources for knowledge acquisition that
enable a smooth start with modelling using Event-B. In the
following subsections we describe the guidelines for the two
target groups.

Figure 2 Collections of guidelines for the beginners level

5.1 Beginner support

In Figure 2 we have divided the type of guidelines into
categories with respect to the modelling challenges, such as
knowledge acquisition, requirements specification, modelling
starting- and end-points, reuse strategy, show and tell strategy,
as well as agile practices. In this section we will describe
them in detail, focusing on the means to tackle them when
modelling. In each category we also included a “disclaimer”
stating “Other”, which means that there might be another
source of guidelines regarded as more suitable for the
beginner, depending on the case.

Knowledge acquisition, which is in particular needed at
the beginning of the modelling journey with Event-B, has
multiple sources, starting from the Rodin Handbook (Jastram
and Butler, 2014) and Rodin (Event-B, 2001). Moreover,
there is a noteworthy literature source available coming
from three European projects RODIN (RODIN Project,
2004-2007) and DEPLOY (DEPLOY Project, 2008-
2012), ADVANCE (ADVANCE Project, 2011-2014), as
well as from the Academy of Finland funded project
ADVICeS (ADVICeS Project, 2013-2017). Furthermore, the
guidelines on refinement and building the models can be
found in the literature by the founder(s) of the method, e.g.,
(Abrial, 2010).

The requirements specification, which is the baseline for
the formal modelling process, can be expressed in various
ways from organized, formal listings, which is desirable in
formal modelling, to descriptions given in natural language.
The most common way of requirement description seems to
be the collection of user stories – an informal depiction of
a feature (or more features) of a software system, usually



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 7

provided in natural language (Siqueira et al., 2017; Cohn,
2004).

In the requirements specification category, we also
included the tool support for requirements editing, called
ProR (Hallerstede et al., 2014; ProR tool, 2014), which can
be used. The requirements can be elicited and processed with
the support of the ProR tool. They are presented in a table
format, in which the relations between the requirements are
enabled as annotated links.

There are many modelling starting points to consider.
For example, there is begin with the choice of editor.
They range from text-based editors, like standard Rodin
or Camille text editors, the Event-B editor, text editor or
tree-like EMF editor, to graphical ones like iUML-B (and
the older version UML-B) (Said et al., 2015; Snook and
Butler, 2008). After choosing the environment for modelling,
the initial structure of the system (level of abstraction)
needs to be identified. Finally, the refinement plan needs to
be decided, meaning that the sequence of introducing and
detailing the features or requirements should be prearranged.
The plan should take into consideration how easy it will
be to model and prove the system which later on, can be
based on experience, but for a beginner should be based
on some already existing guidelines, like in Kobayashi et
al. (Kobayashi et al., 2014), Sato et al. (Sato and Ishikawa,
2015) or Rodriguez (Rodriguez, 2013).

As modelling end-points we understand the “end-game”
for the model, i.e., the last refinement step or the stage of
the model when the modelling process is considered to be
complete. It can either be the case that in the next step code
will be generated, or that the model is ready in terms of
what is to be implemented and what is to remain as assumed.
In the case of the former, modellers are able to generate
executable C/C++ code from Event-B formal models by
using the PRiME code generation plug-in (Code Generation
Activity, 2018; Dalvandi et al., 2018).

The latter case refers to the process of deciding what
parts of the system are being modelled explicitly and which
the abstractions of the environment are. For example, if
the purpose of a model is primarily the correctness of the
specification of software components, all external device
drivers and sensors may be considered to be abstractions of
the environment. If building a model involves pre-existing
modelling components, then the component interfaces form
part of the boundary (Edmunds et al., 2016).

The system under development is more likely to be
implemented by a development team than by one particular
developer. It is beneficial for the team members to understand
the ’scope’ of the model. Invariably the abstraction of
the environment contains assumptions that are out of the
developer’s control. It would, therefore, be important to
consider all the assumptions, and to consider how they might
affect the integrity of the model.

Since reuse is considered to be good practice in coding
and modelling, it is also encouraged in Event-B. It can be
achieved for instance with the application of patterns or the
so-called theories enabled via the Theory plug-in for reuse of
proofs. The former is not only tool supported, but also some
guidelines are given for the general purpose (Hoang et al.,

2013) or introducing timing patterns in Event-B (Cansell
et al., 2007). The latter extend the Event-B language and
the proving infrastructure in a fashion familiar to Rodin
users. The Theory extension provides a way to add new
data types, operators, inference and rewrite rules, as well as
code generation translation rules (Butler and Maamria, 2013).
There is also an extension of the theory of Real Numbers
for embracing discrete and continuous functionalities of
hybrid systems in Event-B where all the relevant definitions,
theorems and proof rules related to continuous functions are
defined (Dupont et al., 2018).

When modelling, it is beneficial to be able to visualise
the progress of the development and the current state
of the model. The Event-B ecosystem also provides the
developers with the “show and tell” tool support. The ProB
Animator (constraint solver and model checker) (Leuschel
and Butler, 2003) allows fully automatic animation of
specifications, and can be used to systematically check a
specification for a wide range of errors. Moreover it can
be used for deadlock checking and test-case generation.
ProB was originally developed for the B-Method and is
now extended to also support Event-B (Leuschel and Butler,
2008; ProB, 2018). It can be installed with Rodin, where
it comes with BMotionStudio (Ladenberger et al., 2009;
BMotionWeb, 2018) to easily generate domain specific
graphical visualizations. On the other hand, the State-diagram
Animator (Said et al., 2015; Snook and Butler, 2008) provides
visual animation of UML-B state-machine diagrams. It
“executes” the model so that the modeller can check that
the state changes as expected and that the correct events are
enabled for the next animation step, and thus validates the
model. Multiple diagrams can be animated simultaneously so
that the behaviour of refinements and/or nested statemachines
can be explored. Both strategies visually inform the modeller
if the constructed model is as intended.

Creating a correct-by-construction formal model has
been supported by methodologies like refinement (Back,
1978; Back and von Wright, 1998; Back, 1990), tools
(the Rodin platform and the associated plug-ins), and best
practices, which we mentioned earlier. The experience in
formal modelling can be further improved by tailoring the
modelling process to the needs of the modeller himself.
This can be enabled by employing agile practices, which
provide a flexible and adaptive development process that
is project-specific. Amongst the plethora of agile practices
and processes, we focus here on Scrum (Olszewska et al.,
2016; Wolff, 2012). The formal approach supports an iterative
development of models, while the agile one adapts Scrum-
based management of product development to the modelling
phase in terms of providing time frames for the modelling and
prioritizing the requirements.

5.2 Advanced support

The developer who is more experienced with formal
development is also more demanding when it comes to
guidelines and might have more in-depth questions regarding
development issues. Hence, the collections of guidelines
for the advanced level are more extensive than those at



8 M. Olszewska et al.

Figure 3 Collections of guidelines for the advanced level (part 1)

the beginners level and consider more alternatives for each
category as can be seen in Figures 3 and 4.

We widen the means to tackle requirements specification
with Problem Frames (Jackson, 2001), which is an
approach to software requirements analysis to be used
when gathering requirements and creating specifications for
computer software. A clear separation of the requirements,
the environment and the system to be built can be achieved.
Moreover, it is possible to define the requirements and
identify the missing ones more precisely (Romanovsky and
Thomas, 2013). This approach was acknowledged as one
facilitating the early stage development and requirement
elicitation in the automotive domain for developing a cruise
control system (Gmehlich et al., 2011).

For representing functional and non-functional
requirements, SysML/KAOS is an ideal option (Mammar
and Laleau, 2016; Gnaho et al., 2013). The requirements
specification is created using the goal-oriented methodology
KAOS while the modelling process is performed within
SysML, which is a UML profile (Ahmad et al., 2015).
Translation between SysML/KAOS domain models and B
system specifications has been formally validated in Event-
B (Fotso et al., 2018).

Yet another approach to handling requirements, by
following their evolution throughout the modelling process
and over refinement steps, is requirements traceability. The
control over requirements is available for instance via the
ProR (Hallerstede et al., 2014) and UML-B (Said et al., 2015)
tools. Moreover, Event-B, and formal modelling in general,

is considered to be useful for requirements engineering, in
particular for invariant elicitation (Rodriguez, 2013).

Since formal methods are most useful when applied to
the safety-critical domain, often a safety and hazard analysis
is needed in order to model the right properties in the right
way. With Event-B it is possible to do this in a variety of
ways, such as safety cases (Prokhorova and Troubitsyna,
2012; Prokhorova et al., 2015), safety stories (Edmunds et al.,
2016; Ricketts, 2015) or FMEA (Failure Modes and Effects
Analysis) patterns (Lopatkin et al., 2011; Prokhorova, 2015).
Safety cases are used for instance in the certification process
to justify why a system is safe and if the systems properly
tackles safety requirements defined in a system requirement
specification. Safety stories, on the other hand, are given in an
easy to understand narrative, which can be modelled formally.
The latter category of guidelines is FMEA patterns. They
form the risk identification and are most commonly used
in combination with Event-B for rigorously examining the
causes and the consequences of hazards.

When compared to the Beginners level, modelling starting
points have been extended with more editors, e.g., the text-
based editors, which may be appropriate for those who are
familiar with the Event-B notation and for whom it might
be more efficient to directly code the model. As a modelling
starting point, one can consider creating architectural models,
which are high level representations of a system from the
viewpoint of software architecture (Cofer et al., 2012).
Furthermore, invariant prioritization is needed to know which
properties of the system are important (and which are more
important than others) and when they should be introduced to
the model (at what levels of the refinement chain) (Rodriguez,
2013).

Modelling, as a stage of development and an activity, may
have an “end-point”, when it is considered to be complete
either by the developer or by the requirements for a project.
The developer might for example decide that it is sufficient to
know the properties of the system and that they are defined
correctly, while project requirements need to be fulfilled
for instance for the standardization purposes. Modelling
endpoints, when framed within the model-driven engineering
philosophy, can also touch upon requirements engineering
resulting in a concept called the design model (Ponsard and
Devroey, 2011). The implementation models, on the other
hand, are the models to be obtained when planning the code
generation from Event-B. The implementation models have
certain assumptions about the environment, which may not
be universally valid. This means that the properties of the
implementation model are proven for the given case, which
may suffice for some systems in their “typical” mode and
be an adequate rationale in a certification process (Fathabadi
et al., 2018).

The refinement of the system and how it evolves
depends on the decomposition strategy which is chosen. The
decomposition of the Event-B model is particularly important
if the model is of significant size and more than one person is
involved in modelling. It provides a mechanism for splitting
a large model into several sub-models. The shared event
style (Butler, 2009; Hoang et al., 2011) and shared variable
style (Hoang et al., 2011) are the two main decomposition



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 9

styles supported by the Rodin platform. In the former, a set
of events are synchronised and shared by sub-components
(synchronization and communication via shared parameters),
while in the latter part of the information (variables) is shared
among sub-components as in the rely/guarantee approach.
The atomicity decomposition (Fathabadi et al., 2012) is
yet another technique to help with the structuring of the
refinement-based development of complex systems in Event-
B. It enhances Event-B refinement with the graphical notation
that denotes the relationships between the abstract and
concrete (new) events explicitly. In this approach, modelling
typically begins with a single atomic event of the system
which is split to two or more sub-events in the next refinement
step. As a complementary approach to decomposition, there
is composition which is used in the bottom-up approach
or modularity and reuse scenarios. Such a composition
mechanism for refinement based methods has been presented
in (Hoang et al., 2017), where both top-down and bottom-
up approaches can be used to combine existing models.
The work focuses on providing mechanisms for proving
the correctness of machine inclusion. The modeller can use
CamilleX for this purpose which supports machine inclusion.

While for the beginners level we described patterns
and theories which contribute to the model reuse in
the Event-B modelling, for the advanced level we
enhance it with a concept of components, generic
instantiation and modularization. Modelling with the use of
components (Edmunds et al., 2016; Ostroumov and Waldén,
2017) is quite an intuitive way to tackle reuse and scalability.
Each component is formally developed and proved correct, at
the same time supported by the compositionality mechanism.
It can be treated as a higher-level placeholder for a “real”
component to be developed. Generic instantiation, on the
other hand, is meant to instantiate generic models and extend
the instantiation to a chain of refinements and is supported by
a Rodin plug-in. Sufficient proof obligations are defined to
ensure that the proofs associated with a generic development
remain valid in an instantiated development, so that there is
no need for re-proving (Silva and Butler, 2009). Furthermore,
modularization (Iliasov et al., 2010; Hoang et al., 2011)
defines a set of interfaces that are shared and accessed by
different components. Interfaces provide callable operations
and guarantee that these operations can deliver a result for
any given circumstance. The implementation of an operation
should guarantee that the promises are fulfilled for any given
circumstance (Hoang et al., 2011).

For discussing the model among team members or with
customers there are a number of show and tell strategies
that can support the modeller with his work except for
the ProB Animator (Leuschel and Butler, 2008) and State-
Diagram Animator (Said et al., 2015; Snook and Butler,
2008). For instance, the B-Motion Studio, also referred to
as BMotionWeb (BMotionWeb, 2018), is a tool built on
top of ProB for creating interactive visualisations of Event-
B models (Ladenberger et al., 2009). By using Brama,
an animator that is an Eclipse-based plug-in, it is also
possible for modellers to discover problems in a specification.
Modellers create B models with, for example, the Rodin

Figure 4 Collections of guidelines for the advanced level (part 2)

platform on which they use the Brama animation tool to test
these models (Servat, 2007; Brama, 2011).

Finally, there are other ways of visualizing models that
can facilitate the Event-B development, e.g., via a library
of visual components (Ostroumov and Waldén, 2017), or
illustrating the refinement process itself (Pląska et al., 2007).

On the advanced level, there are broader verification and
validation practices (V&V techniques) offered, such as JeB,
co-simulation and model based testing. For the purpose of
validating a model, modellers can use the JeB simulator.
This Java-based framework helps users to generate and
execute simulations of Event-B models. By validation of the
formal models, the adequacy of the requirements during the
development process can be evaluated (Yang et al., 2013;
Mashkoor et al., 2017; Jacquot and Mashkoor, 2018). Co-
simulation can be utilized as the development progresses to
simulate a continuous model of parts of the system with a
continuous representation of the environment. For example,
for simulation of cyber-physical systems multi-simulation
tools can be used, such as that based on the Functional Mock-
up Interface (FMI) (Savicks et al., 2014). This approach
facilitates modelling, by using a combination of continuous
and discrete models, which can offer more confidence that
non-functional requirements will be satisfied. Model-based
testing is supported in Event-B by a tool that generates test-
cases from the Event-B models based on ProB (Dinca et al.,
2012). It can be used as a follow up after code generation,
as the code generators may not be certified and thus do not
provide an appropriate level of confidence. Moreover, the test
can be further used as part of a continuous integration process
for faster delivery and continuous demonstrations of systems
(Edmunds et al., 2016).

When building a formal model, not only are modelling
strategies needed to guide the developer, but also proving
strategies. The major and minor iteration review concepts
stand for the necessity of proofs to be discharged (Edmunds



10 M. Olszewska et al.

et al., 2016). In the case of minor review not all proofs need
to be discharged. It only needs to be argued on a general
level that the model is correct. However, a major review
requires the complete discharge of proofs. It is motivated
by the fact that the major revision is meant for a “release”
or proper deployment of the model, e.g., for building a
safety case. Yet another facilitator for proving is the Dividing
Strategy Tree (DST) (Sato and Ishikawa, 2015), which helps
to design how to prove the safety requirement in a natural
language separately from the Event-B formalism. DST has
a hierarchical tree-structure of specification descriptions
similar to Fault Tree and thus is supposed to make refinement
more accessible and motivating for developers in learning
Event-B.

Hand in hand with proving strategies, there are
supplementary proof tools which are meant to support the
modeller in model creation. Examples of such proof tools
are SMT solvers (plug-in to Rodin) (Déharbe et al., 2014)
and Atelier B Provers plug-in for the Rodin tool (Jastram and
Butler, 2014; Atelier B, 2016).

When working with a formal model, one needs to define
the acceptance criteria for the model. They can either be
predefined in the project or decided upon by the modeller
himself. Utilising the agile philosophy of the “done” status
for the implemented and well-functioning software, the “done
criteria” were also defined for formal models, meaning an
Event-B model that is “modelled and proven” (Edmunds
et al., 2016; Olszewska et al., 2016; Olszewska and Waldén,
2015).

Agile practices, which can facilitate the development
process, were enhanced for the advanced level with
Disciplined Agile Delivery (DAD) framework (Ambler and
Lines, 2012). It is a high-level agile framework, which
embraces agile methods in a broader perspective. It can be
described as a pick-and-mix approach which, apart from the
process of actually building the system, tackles additional
process goals, works on the requirements and plans the
project, up to delivering a consumable solution (meaning
something more than executable code). DAD has been
investigated in terms of feasibility for Event-B (Edmunds
et al., 2016).

5.3 Result for the first category

For supporting our proposed guidelines, we collected the
primary studies related to each category according to
Figures 2, 3 and 4. Table 3 and Table 4 show the result
of the collected literature referring to either particular
modelling techniques or Event-B plug-ins. Each publication
is assigned a classification (guidelines category) according to
the beginers and advanced levels, presented in the paper in
Sections 5.1 and 5.2.

It should be mentioned that for some specific plug-ins we
referred to tool support where the primary study was non-
existent, e.g. "Atelier B Provers". Therefore, in order to be
able to add the meaningful plug-ins to our list of guidelines,
we followed a process: we contacted the developer of a plug-
in and asked if the plug-in is actively maintained. In this way
we excluded the studies related to the plug-ins which are not

maintained any more. To the best of our knowledge the plug-
ins and methods presented in this paper are supported by the
current version of Rodin tools (as of the end of September
2019).

6 Applying guidelines for system modelling

In this section we focus on answering the second research
question RQ2, namely: ”How can modellers in different
modelling areas take advantage of the guidelines proposed in
this paper”?

According to the collection of guideline categories for
more advanced modellers presented in Section 5.2 (Figures 3
and 4), we will present the road map for system modelling.
Since we are focusing on the construction of a complete
system here, it requires the modeller to be on advanced level
(Dieumegard et al., 2017).

The main advantage of using Event-B is to enable
modellers to build models gradually by refinement. Users do
not need to implement the whole system at the beginning.
When modellers have a deeper understanding of the system
requirements they can develop the abstract model as a first
step. After that they can extend the model via refinement
mechanisms by introducing more details to the system or
using a decomposition or reuse strategy. Subsequently, the
model can be verified and validated by verification and
validation techniques which lead to a complete target model.

Figure 5 shows the whole modelling process with the
main steps in blue. The features connected to each main step
correspond to the guidelines at advanced level in Figures 3
and 4. In Figure 5 we show Agile Practices as a context for
modelling systems in the form of a grey background for the
whole modelling process, its steps, iterations and associated
methods. Agile practices serve as a catalyst for faster delivery
of artefacts, in shorter release cycles, which as a consequence
aims to improve quality control and lower the delivery costs.

Figure 5 Overview of the modelling process



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 11

Table 3 Primary studies regarding methods or Event-B plug-ins for proposed guidelines(part 1)

Study Author Paper title Guidelines category Figure

S1 (Jastram and Butler, 2014) Rodin User’s Handbook: Covers Rodin V.2.8 Knowledge acquisition (Rodin
Handbook)
Supplementary Proof Tools (Atelier B
Provers)

Figures 2,4

S2 (Abrial, 2010) Modeling in Event-B: System and Software
Engineering

Knowledge Acquisition (Guidelines)
Modelling Starting Points (Defining
Initial Abstraction)

Figure 2

S3 (Siqueira et al., 2017) Using BDD and SBVR to refine business goals into
an Event-B model: a research idea

Requirement Specification (User
Stories)

Figures 2,3

S4 (Hallerstede et al., 2014) A Method and Tool for Tracing Requirements into
Specifications

Requirement Specification (ProR)
Requirement Traceability (ProR)

Figures 2,3

S5 (Snook and Butler, 2008) UML-B and Event-B: an integration of languages
and tools

Modelling Starting Points (Graphical
iUML-B)

Figures 2,3

S6 (Kobayashi et al., 2014) Understanding and Planning Event-B Refinement
through Primitive Rationales

Modelling Starting Points (Refinement
Plan)
Requirement Specification (Problem
Frames)

Figures 2,3

S7 (Fathabadi et al., 2018) A model-based framework for software portability
and verification in embedded power management
systems

Modelling End Points (Implementaion
Models, Automatic Code Gen)

Figures 2,3

S8 (Hoang et al., 2013) Event-B patterns and their tool support Reuse Strategy (Patterns) Figures 2,3

S9 (Butler and Maamria, 2013) Theories of Programming and Formal Methods Reuse Strategy (Theory) Figures 2,3

S10 (Olszewska et al., 2016) Using Scrum to Develop a Formal Model – An
Experience Report

Agile Practices (Scrum) Figures 2,3

S11 (Fotso et al., 2018) Event-B Expression and Verification of Translation
Rules Between SysML/KAOS Domain Models and
B System

Requirement Specification
(SysML/KAOS)

Figure 3

S12 (Said et al., 2015) A method of refinement in UML-B Requirement Traceability (UML-B)
Show and Tell Strategy (State-diagram
Animator)

Figures 2, 3

S13 (Rodriguez, 2013) Invariant discovery and refinement plans for formal
modelling in Event-B

Requirement Traceability (Invariant
Elicitation)
Modelling Starting Points (Invariant
Prioritization)

Figure 3

S14 (Edmunds et al., 2016) Using the Event-B Formal Method for Disciplined
Agile Delivery of Safety-critical Systems

Safety and Hazard Analysis (Safety
stories)
Acceptance Criteria (Done Criteria)
Agile Practices (DAD)
Proof Strategy (Major and Minior
Iteration Review)
V&V Techniques (Continuous
Integration)

Figures 3,4

S15 (Prokhorova and
Troubitsyna, 2012)

Linking Modelling in Event-B with Safety Cases Safety and Hazard Analysis (Safety
Cases)

Figure 3

S16 (Lopatkin et al., 2011) Patterns for representing FMEA in formal
specification of control systems

Safety and Hazard Analysis (FMEA
Patterns)

Figure 3

S17 (Cofer et al., 2012) Compositional Verification of Architectural Models Modelling Starting Points
(Architectural Models)

Figure 3

S18 (Ponsard and Devroey, 2011) Generating High-Level Event-BSystem Models
from KAOS Requirements Models

Modelling End Points (Design Model) Figure 3

S19 (Butler, 2009) Decomposition Structures for Event-B Decomposition Strategy (Shared Event
Style)

Figure 3

S20 (Hoang et al., 2011) Event model decomposition Decomposition Strategy (Shared-
Variable Style, Shared-Event Style)
Reuse Strategy (Modularisation)

Figure 3

S21 (Fathabadi et al., 2012) A Systematic Approach to Atomicity
Decomposition in Event-B

Decomposition Strategy (Atomicity
Decomposition)

Figure 3

S22 (Edmunds et al., 2016) On Component-Based Reuse for Event-B Reuse Strategy (Component)
Modelling End Points (Modelling
Boundaries)

Figures 2,3

S23 (Silva and Butler, 2009) Supporting Reuse of Event-B Developments
through Generic Instantiation

Reuse Strategy (Generic Instantiation) Figure 3



12 M. Olszewska et al.

Table 4 Primary studies regarding methods or Event-B plug-ins for proposed guidelines (part 2)

Study Author Paper title Guidelines category Fig

S24 (Iliasov et al., 2010) Supporting reuse in Event B development:
modularisation approach

Reuse Strategy (Modularisation) Figure 3

S25 (Hoang et al., 2017) A composition mechanism for refinement-based
methods

Reuse Strategy (Composition) Figure 3

S26 (Servat, 2007) Brama: A new graphic animation tool for B models Show and Tell Strategy (Brama) Figure 4

S27 (Ladenberger et al., 2009) Visualising Event-B Models with B-Motion Studio Show and Tell Strategy (B-Motion
Studio)

Figure 4

S28 (Ostroumov and Waldén,
2017)

Visual Component-Based Development of Formal
Models

Show and Tell Strategy
(Visuallisations)

Figure 4

S29 (Leuschel and Butler, 2008) ProB: an automated analysis toolset for the B
method

Show and Tell Strategy (ProB
Animator)

Figures 2,3

S30 (Yang et al., 2013) JeB: safe simulation of Event-B models in javascript V&V Techniques (JeB) Figure 4

S31 (Savicks et al., 2014) Co-simulation Environment for Rodin: Landing
Gear Case Study

V&V Techniques (Co-simulation) Figure 4

S32 (Sato and Ishikawa, 2015) Separation of Considerations in Event-B
Refinement toward Industrial Use

Proof Strategy (DST) Figure 4

S33 (Déharbe et al., 2014) Integrating SMT solvers in Rodin Supplementary Proof Tools (SMT
Solvers)

Figure 4

S34 (Dinca et al., 2012) Learn and Test for Event-B – A Rodin Plugin V&V Techniques (Model-based
Testing)

Figure 4

Between the stages specifying the requirements and
design of the abstract model there are circular arrows, since it
might take many iterations for constructing a feasible abstract
model based on specified requirements. The circular arrows
are also applied for the stages refinement and verification
which indicate that the correctness of each refinement step
should be verified. In general, down-arrows are used for
the development process, while up-arrows are used for
traceability.

In the beginning of the modelling process when specifying
the requirements safety and hazard analysis should also be
performed. The abstract model can be obtained via the
modelling starting point guidelines, while decomposition and
reuse strategies can be taken into account when refining the
system. In the verification and validation stage, a modeler
can use animation tools in Event-B for animating the
model in order to detect errors. With the proving strategy
guidelines modellers can be assisted in proving the failed
automatic proofs, which indicate how the model should be
improved (Krings et al., 2015). At the end of the refinement
process the implemented target model is reached and can be
validated with the acceptance criteria.

When modeling a case study in a particular domain,
the user can follow the development guidelines proposed in
Figures 3 and 4. Even if different case studies may require
different packages as indicated in Table 5, the main steps still
remain the same.

6.1 Result for second category

The collection of modelling guidelines, apart from being
classified according to the experience of the modeller, can
also be classified according to the specifics of a certain
domain. The characteristics of the modelled system or
the application domain might require some more specific

modelling tactics or strategies. For the purpose of our
investigation on the system-specific guidelines, we did a
systematic literature review and concentrated solely on the
published scientific literature (disregarding non-scientific and
non-reviewed web content).

We searched for articles based on the two following
search strings; “Event-B” AND “Industrial case study”, as
well as “Event-B” AND “‘Guidelines” to provide a collection
of guidelines. Currently there is no holistic method that
guides the developer specifically in the modelling of different
domains in Event-B. The collection of modelling guidelines
presented in this section are given in form of a table, where
the studies are ordered in terms of the type of the modelled
system or the application domain. The table displays the
paper title with reference, as well as guidelines categories.
The categories originate from the guideline categories at
beginners and advanced levels presented in Sections 5.1
and 5.2. At times we also specify the detailed guideline
classification (a leaf in the guidelines tree), when it is
particularly important in the scope of the referenced paper.
The papers included needed to be supported by a, preferably
industrial, case study or an example and a strong justification
of the suggested approach. Yet another criterion was that the
presented work should be relatively recent (2005 - 2019) and
based on the approaches already well-developed and verified.
The results are presented in Table 5.

The domains that are in the scope are mainly the
safety-critical ones, like transportation, automotive, banking,
spacecraft, aerospace and medical domains. Moreover,
guidelines for modelling communication and network
protocols are provided, as well as best practices for modelling
systems where security is a priority. Among the studies
representing the system specific guidelines there are also ones
used for enhancements of the development process.



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 13

Table 5 System-specific modelling guidelines

Study Type of system (Domain) Paper title Guidelines category

S35 Multi-Agent System / Control
System
(Transportation)

Event-B Specification of a Situated Multi-
Agent System: Study of a Platoon of
Vehicles (Lanoix, 2008)

Modelling Starting Points
Decomposition Strategy

S32 Multi-Agent System
(Network Protocols)

Separation of Considerations in Event-B
Refinement toward Industrial Use (Sato and
Ishikawa, 2015)

Requirement Specification
Modelling Starting Points (Refinement Plan)
Proof Strategy (DST)

S36 Control System
(Automotive)

Evaluation of a Guideline by Formal
Modelling of Cruise Control System in
Event-B (Yeganefard et al., 2010)

Modelling Starting Points
Decomposition Strategy

S37 Control System
(Medical)

Validating the Requirements and Design of
a Haemodialysis Machine Using iUML-B,
BMotion Studio, and Co-Simulation (Hoang
et al., 2016)

Modelling Starting Points
Show & Tell Strategy (BMotion Studio)
V&V Techniques (Co-simulation)

S28 Control System
(Aerospace)

Visual Component-based Development of
Formal Models (Ostroumov and Waldén,
2017)

Modelling Starting Points
Reuse Strategy (Component)
Show & Tell Strategy (Visualisation)

S24 Embedded Software
(Spacecraft)

Supporting Reuse in Event-B Development:
Modularisation Approach (Iliasov et al.,
2010)

Reuse Strategy (Modularisation)
Decomposition Strategy (Shared-Variable Style)
V&V Techniques

S38 Time Constraint System
(Firewire Network Protocol)

Time Constraint Patterns for Event-B
Development (Cansell et al., 2007)

Modelling Starting Points
Reuse Strategy (Patterns)
Proof Strategy

S39 Web-Based Application
(E-commerce)

Some Guidelines for Formal Development
of Web-Based Applications in B-
Method (Rezazadeh and Butler, 2005)

Modelling Starting Points

S40 Network Protocols
(VLAN Security)

Analysing Security Protocols Using
Refinement in iUML-B (Snook et al., 2017)

Modelling Starting Points
Proof Strategy
V&V Techniques
Show & Tell Strategy (iUML-B, ProB)

S41 Domain Modelling
(Transportation)

Guidelines for formal domain modeling in
Event-B (Mashkoor and Jacquot, 2011)

Requirement Specification
Modelling Starting Points
Proof Strategy
Show & Tell Strategy
Reuse Strategy (Time Patterns)

S25 Components
(Transportation)

A composition mechanism for refinement-
based methods (Hoang et al., 2017)

Reuse Strategy (Inclusion)
Decomposition Strategy (Composition)

S20 A Master Data Updating
System (User and Server’s
Database)

A Survey on Event-B Decomposition (Hoang
et al., 2011)

Modelling Starting Points
Decomposition Strategy (Shared-Variable Style, Shared-
Event Style)
Reuse Strategy (Modularisation)
V&V Techniques

S42 Aircraft Landing
(Aerospace)

Aircraft landing gear system: approaches with
Event-B to the modeling of an industrial
system (Su and Abrial, 2017)

Requirement Specification (ProR)
Modelling Starting Points (Refinement Plan)
Supplementary Proof Tools (Atelier B provers and SMT
Solvers)
Show and Tell Strategy (ProB Animator)
Modelling End Points (Implementaion Models, Automatic
Code Gen)

S43 Control System
(Automotive)

Property-Based Modelling and Validation of a
CBTC Zone Controller in Event-B (Comptier
et al., 2019)

Modelling Starting Points (Refinement Plan)
Show and Tell Strategy (ProB Animator)
Supplementary Proof Tools (Atelier B provers)

S44 Control System
(Automotive)

Industrial Application of Event-B to a
Wayside Train Monitoring System: Formal
Conceptual Data Analysis (Eschbach, 2019)

Agile Practices (Scrum)
Modelling Starting Points (Refinement Plan)
Proof Strategy (Iteration Review)



14 M. Olszewska et al.

6.2 Lessons learned

In spite of the popularity of Event-B, some modellers
decline to use formal methods. Even with the advent of
iUML-B which allows modellers to build a model through
graphical design, we still notice that developers in industry
hesitate to use formal methods for developing safety-critical
applications. Abrial mentions in (Abrial, 2018) that the main
reason for poor adoption of formal modelling by some
industries such as automotive, aeronautics and space industry
is the difficulty to integrate existing development cycles with
formal methods (Lecomte et al., 2017).

Below we present some reports on the difficulties
encountered by modellers applying formal methods. We
believe that this feedback would be constructive for the
modellers who want to develop a system through a correct
by construction methodology. According to the experience
reports the following tips are worthy of consideration during
the modelling process:

• Due to lack of guidance provided by the tools and
inexperience with the formalism, proving is a difficult
task. A short training time such as crash courses on the
Event-B methodology, formalism and proof techniques
are needed (Dieumegard et al., 2017) (S45 in Table 1).

• For interactive proofs, the Rodin plug-ins Atelier B
and SMT provers are good candidates to consider.
These tools help not only during the verification steps,
but also during the model development (Mammar and
Laleau, 2017) (S46 in Table 1).

• Having a good understanding of system requirements
leads you to correct implementation of a
system (Dieumegard et al., 2017).

• It would be good that the refinement strategy is
constructed by the person in charge of writing the
Event-B model (Dieumegard et al., 2017).

• Making use of explicit types for numerical units (rather
than treating them as subsets of N) makes the model
easier to understand for the stakeholders and results in
clearer proofs from the modelling perspective (Méry
et al., 2015) (S47 in Table 1).

• Considering time constraints only later in the design
facilitates the proof activities (Mammar and Laleau,
2017).

• Before proceeding to the software design phase,
the formal models should be proven correct with
respect to their (correctly and unambiguously stated)
requirements specifications (Méry et al., 2015).

• A refinement-based modelling method has an
important role in requirement traceability and detection
of missing and contradicting requirements (Méry et al.,
2015).

• Using animation and validation tools such as ProB,
B-Motion, and JeB for visualising a model helps

stakeholders a lot to understand how requirements are
modelled formally and validated (Dieumegard et al.,
2017).

• Having discussions with domain experts helps to
validate the modelling decisions. Besides, it reveals
new, subtle yet important, properties that the model was
lacking (Méry et al., 2015).

It is beneficial to investigate in advance what method
should be applied for modelling a given system and its
features. Clearly, the implementation of the formal method
is not a straightforward task. It requires a lot of experience,
skills, time and effort to verify and validate the model.
Formal methods should mainly be used for the critical parts
of a system; Event-B does not have to be the only method
for modelling the system. By using lightweight approaches,
we can model safety critical parts of a system in a formal
manner verifying particularly critical properties (Jackson,
1996), while the rest of the system is modelled with a semi-
formal method. This is called mixed criticality approach.
Formal methods can also be combined with techniques,
which make the process of modelling faster and shortens the
time of delivery. In our previous work (Olszewska et al.,
2016), we combined Agile methods with Event-B in order to
increase the efficiency of modelling.

7 Discussion

The papers in the previous section show that for every case
study there are different guidelines with various approaches
for modelling, which can be difficult for a developer to
choose from. In order to increase the efficiency of modelling,
we need to have a good overview of specific guidelines,
which would advise the potential modeller on how to obtain
comprehensive guidelines whenever needed. The present
review is aimed at providing that information and serving as
a roadmap for Event-B developers at beginners, as well as
advanced levels.

7.1 General findings

Our work shows that there is a considerable body of
knowledge that can serve for building the skillset of Event-
B developers and for improving their modelling experience.
While the practitioners still mostly rely on gut feeling,
experience and prototypes, having a roadmap for modelling
in the form of a literature review would greatly improve their
work, even in cases where they would not use it as a step-by-
step guide, but more on a need-be basis.

This review has a number of implications for research
and practice. For research, the review shows a clear need
for more empirical studies of Event-B developments in
order to (i) facilitate the take up of Event-B in industry,
(ii) answer to industrial needs, and (iii) provide structured
learning material for students. There is a clear indication
that formal methods are indispensable in the development of
safety-critical and software-intensive systems. However, its
use should also fit the continuous integration and deployment



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 15

requirements. This opens challenges and possibilities for the
Event-B ecosystem. Therefore, the research becomes more
problem and industry-driven.

For practitioners, this review shows that many promising
studies of the use of Event-B have already been reported.
Naturally, for every approach some limitations have been
identified in the future work sections of the selected papers.
For instance, it is apparent that the learning curve for Event-
B is steep and it is difficult to introduce Event-B into large
and complex projects without having proper background.
Moreover, implementation of the timing in Event-B is not
straightforward and needs to be modelled separately.

The continuous integration and delivery concepts, which
are included in the way the companies, also the safety-critical
ones, work nowadays, are also a part of the research for
Event-B. The ideas of having quicker delivery time through
iterative development and strong tool support have recently
been investigated to step up to the industrial needs, e.g. in
the railway domain. Attempts have been made to scale up
the proposed approaches, so that they are feasible in “real”
industrial-size cases.

To increase the applicability and usefulness of the
research for industry and to provide a sufficient number
of studies of high quality on subjects related to Event-
B development, the researchers should integrate more with
industry to identify a common investigation agenda. The
research already seems to be more problem-driven due to
the collaboration with industry via various European and
National projects. Moreover, the technology transfer already
exists; however, it needs to be strengthened so that the
practitioners are reinforced with up to date knowledge.

It has been emphasized many times that incremental
development with small refinement steps, appropriate
abstractions at each level and powerful tool support are all
vital in Event-B developments.

7.2 Validity of the review

The main strength of this review is the holistic perspective it
provides. It embraces modelling guidelines that are generic,
as well as application- or domain-specific, both of which
are meant for diverse experience levels – from beginners to
more advanced modellers. The work contains studies from
2005 until the end of September 2019 and, thus, supports
Event-B modellers with a state-of-the-art body of knowledge
in the Event-B area. The review attempts to provide a
complete view on the modelling with Event-B from the
project perspective. It tackles the models and proofs, which
can be treated as a product type of artefacts, but it also
recognises the modelling and proving activities as parts of
the development process, thus providing process-oriented
guidelines.

As the Rodin Platform is constantly developing, there is
a chance that our review will lack the studies regarding a
plug-ins that are under development. Moreover, there is a risk
that some plug-ins are not supported anymore. There is also
a risk that a certain keyword was omitted in the search, due
to the specifics of the vocabulary used in the Event-B area,
and thus resulted in refuting some relevant literature. To help

us ensure that the process of selection was unbiased, we went
over the selection iteratively, first in a group of early-career
researchers and then with a more experienced researcher.
We used very careful inclusion criteria and eliminated some
promising studies, which have not been evaluated thoroughly
with a case study or an example, or have not been driven
by industry. However, we included “Lessons Learned” and
experience report papers to provide more guidelines to the
practitioners.

Since some of the chosen works might have lacked
sufficiently detailed description of context or the methods
were not explained appropriately in terms of their validity
(e.g. shallow discussion on validity of the approach included
in a paper), there is a possibility that the collected guidelines
also encapsulate some inaccuracy and will require fine-tuning
when applied in different setting or domain. However, we did
our utmost to ensure that the practitioners are provided with
an as vast body of knowledge as possible, so that they are able
to adapt the guidelines for their needs.

One of the limitations of this review is its scope that is
restricted to the Event-B method (with a few exceptions of
the B-Method). Such a decision is, however, well motivated
because the paper is supposed to provide specialised
guidelines for the Event-B modellers, which could not have
been obtained if the review was more generic. Furthermore,
we trust in the applicability of guidelines described given in
the listed papers, since we have not applied all the methods
and strategies ourselves.

8 Conclusions

This literature review provides a set of systematic guidelines
for Event-B modelling, in order to improve the modelling
experience of the Event-B practitioners. We divided the
collection of guidelines according to the advancement level
of the modellers and then according to their specific nature.
The suggested improvements of the modelling experience
are drawn from the product and process related artefacts.
The review identifies a need for even more industry-driven
research, so that the modelling guidelines can be enriched,
tool-supported and possibly integrated with the development
processes used.

8.1 Challenges and directions for future work

Among the challenges described in the papers that were
used in this review, there were many that emphasised the
need for further development and enrichment of suggested
approaches. These mainly regard the library of common
patterns, refinement patterns, general structures, constructs
and components, all to increase the applicability of suggested
methods. The scalability of suggested methods, developed
models or templates, as well as the visual support for them
has also been pointed out as issues to be further investigated.
Moreover, the guidelines for validating the models were
considered as one of the directions for future work.

Furthermore, it was highlighted that there is a need for
more investigations on expressions of temporal properties and



16 M. Olszewska et al.

the tool support for it, since timing is not explicitly included
in the Event-B method. Moreover, the guidelines included in
the reviewed papers emphasized the need for tool support for
the presented approaches. The Event-B research community
understands the need for tooling to facilitate the take up of
Event-B in industry and enable collaboration with industrial
partners.

Finally, there is an immense need for experimentation
expressed in the majority of selected papers. It concerns either
the application of the presented approaches and methods, or
the synergies of existing approaches so that in the result the
modelling is simplified and more flexible for an end user. This
regards for instance the decomposition approaches so that the
complexity of the model can be managed.

8.2 Measurement-guided modelling

Modelling can be supported not only by the patterns,
decomposition strategies or enhancements in the
development processes. It can also be facilitated by
measurements and metrics, so that the modeller is well
informed while creating and proving the model. In general,
future work for the assessment methods for the formal
approaches is quite vast and there are plenty of opportunities
and challenges in this area. Event-B is no different in this
respect.

There is a need for meaningful metrics and measurement
models. Moreover, the desired values of existing metrics
and their thresholds need to be established. More metrics
supporting the modelling are vital to not only evaluate
the current state of the model, but also to indicate
potential problems and modelling trends. They could help
with identification of best practices and feasible modelling
strategies. These can be categorised for the metrics related to
proving or the metrics related to the model itself. Note that
some of these may be overlapping.

Modelling approaches should be further supported by
metrics, by providing the modeller with the indicators of
a “difficult to prove” model. For instance, an invariant
which is complicated may indicate that there is a need
for decomposing the superstate into more states. Additional
complexity may come from having many states in a superstate
(there should be a threshold set for an average number
of states within a superstate) or including an orthogonal
region in the model (many statemachines in one state that
are working in parallel). Moreover, disjunctions are more
complex and trickier to prove than conjunctions. All of these
need to be mapped to the numerical system in order to
establish usable and applicable metrics.

Assessment of difficulty of the proving activity and
predicting the proving effort should be linked to the
complexity of the model and the time spent on proving
a model or a set of its properties. The latter can already
now be tracked with the Rodin tool (the statistics window
in the Rodin platform). For that purpose, the definition of
the difficulty of proving needs to be established. It can be
based either on the number of relations between the artefacts,
e.g. function applications (in terms of iUML-B notation,
for class diagrams and for invariants), which are difficult in

comparison to the set-based approach in terms of proving.
When it comes to human comprehension it is quite the
opposite. Yet other artefacts that impact the difficulty in
proving are the number of indirections running through the
associations, the number of the associations and the number
of loops in associations (similar to cycles in programming).
Therefore, the metric assessing the difficulty in proving is
intricate and needs to be carefully studied and validated.

For this to be at all possible, the factors that impact the
complexity of the model need to be identified. Subsequently,
it will be possible to create the metrics that evaluate
this impact. The metrics can potentially be based on
measurements related to, e.g., splitting guards to different
conjuncts, which can already be complex by itself. Moreover,
the nesting level of subsets could be used and computed as a
ratio of leaf states per level of the hierarchy. This is similar
to the code and design metric in traditional development
called depth of inheritance tree (DIT metric), Furthermore,
complexity of a model is impacted by the complexity of
invariants, which depends for instance on the number of
quantifications (especially the existential ones), sets and
instances (dealing with the “for all” statement), as well as
the number of implies in clauses. Such metrics will lead to
a more feasible modelling experience and would be a useful
tool together with the collection of guidelines presented here.

Acknowledgement

This review was undertaken within the project ADVICeS
funded by the Academy of Finland (grant No. 266373,
https://research.it.abo.fi/ADVICeS/index.html). We would
like to thank Dr Colin Snook for the fruitful discussion on
metrics for Event-B and Dr Thai Son Hoang and Dr Alexei
Iliasov for providing information regarding the Rodin plug-
ins. We also thank the anonymous reviewers for their inputs
and suggestions.

References

Abrial, J.-R. (2010). Modeling in Event-B: System and
Software Engineering, 1st edn, Cambridge University
Press, New York, USA.

Abrial, J.-R. (2018). On B and Event-B: Principles, success
and challenges, International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, Springer, pp. 31–35.

ADVANCE Project (2011-2014). Advanced Model
Development and Validation for Improved Analysis of
Costs and Impacts of Mitigation Policies. [Online;
accessed 16-October-2019].
URL: http://www.advance-ict.eu/

ADVICeS Project (2013-2017). Adaptive Integrated
Formal Design of Safety-Critical Systems, Åbo Akademi
University. [Online; accessed 16-October-2019].
URL: https://research.it.abo.fi/ADVICeS/index.html



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 17

Ahmad, M., Belloir, N. and Bruel, J.-M. (2015). Modeling
and verification of functional and non-functional
requirements of ambient self-adaptive systems, Journal of
Systems and Software 107: 50–70.

Almeida, J. B., Frade, M. J., Pinto, J. S. and Melo de
Sousa, S. (2011). An Overview of Formal Methods
Tools and Techniques, Rigorous Software Development:
An Introduction to Program Verification, Springer London,
London, pp. 15–44.

Ambler, S. and Lines, M. (2012). Disciplined Agile Delivery:
A Practitioner’s Guide to Agile Software Delivery in the
Enterprise, IBM Press.

Atelier B (2016). [Online; accessed 16-October-2019].
URL: http://www.atelierb.eu

Back, R.-J. (1978). On the Correctness of Refinement Steps in
Program Development, PhD thesis, University of Helsinki,
Finland.

Back, R. J. R. (1990). Refinement calculus, Part II: Parallel
and reactive programs, in J. W. de Bakker, W. P. de Roever
and G. Rozenberg (eds), Proceedings of the REX Workshop
on Stepwise Refinement of Distributed Systems Models,
Formalisms, Correctness, The Netherlands May 29 – June
2, 1989, Springer, Berlin, Heidelberg, pp. 67–93.

Back, R.-J. and Sere, K. (1994). From action systems
to modular systems, International Symposium of Formal
Methods Europe, Springer, pp. 1–25.

Back, R.-J. and von Wright, J. (1998). Refinement Calculus:
A Systematic Introduction, Springer Heidelberg, Graduate
Texts in Computer Science.

BMotionWeb (2018). Heinrich-Heine-University. [Online;
accessed 16-October-2019].
URL: https://www3.hhu.de/stups/prob/index.php/BMotion
_Studio

Bowen, J. P. and Hinchey, M. (2012). Ten Commandments
of Formal Methods. . . Ten Years On, in M. Hinchey and
L. Coyle (eds), Conquering Complexity, Springer London,
London, pp. 237–251.

Brama (2011). Model B animation tool, Clearsy System
Engineering. [Online; accessed 16-October-2019].
URL: http://www.brama.fr

Butler, M. (2009). Decomposition Structures for Event-B,
International Conference on Integrated Formal Methods
(iFM 2009), Vol. 5423 of LNCS, Springer, Düsseldorf,
Germany, pp. 20–38.

Butler, M. and Maamria, I. (2013). Practical theory extension
in Event-B, Theories of Programming and Formal Methods
p. 67.

Cansell, D., Méry, D. and Rehm, J. (2007). Time
Constraint Patterns for Event-B Development, in J. Julliand
and O. Kouchnarenko (eds), Proceedings of the 7th

International Conference of B Users (B 2007), Springer
Berlin Heidelberg, pp. 140–154.

Code Generation Activity (2018). University of
Southampton. [Online; accessed 16-October-2019].
URL: http://www.prime-project.org/prime-code-
generation-tool/

Cofer, D. D., Gacek, A., Miller, S. P., Whalen, M. W.,
LaValley, B. and Sha, L. (2012). Compositional
verification of architectural models, in A. E. Goodloe and
S. Person (eds), Proceedings of the 4th NASA Formal
Methods Symposium (NFM 2012), Vol. 7226, Springer-
Verlag, Berlin, Heidelberg, pp. 126–140.

Cohn, M. (2004). User stories applied: For agile software
development, Addison-Wesley Professional.

Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J. M.
and Mutz, M. (2019). Property-Based Modelling
and Validation of a CBTC Zone Controller in Event-
B, International Conference on Reliability, Safety, and
Security of Railway Systems, Springer, pp. 202–212.

Dalvandi, M., Fathabadi, A. S. and Butler, M. (2018). Using
formal methods for automatic platform-independent code
generation of run-time management, University Booth at
DATE 2018, Dresden, Germany. 19 - 22 Mar 2018.

Déharbe, D., Fontaine, P., Guyot, Y. and Voisin, L. (2014).
Integrating SMT solvers in Rodin, Science of Computer
Programming 94: 130–143.

DEPLOY Project (2008-2012). Industrial deployment of
system engineering methods providing high dependability
and productivity. [Online; accessed 16-October-2019].
URL: http://www.deploy-project.eu

Dieumegard, A., Ge, N. and Jenn, E. (2017). Event-B at
work: some lessons learnt from an application to a robot
anti-collision function, NASA Formal Methods Symposium,
Springer, pp. 327–341.

Dinca, I., Ipate, F., Mierla, L. and Stefanescu, A. (2012).
Learn and Test for Event-B – A Rodin Plugin, Springer,
Berlin, Heidelberg, pp. 361–364.

Dupont, G., Aït-Ameur, Y., Pantel, M. and Singh, N. K.
(2018). Proof-Based Approach to Hybrid Systems
Development: Dynamic Logic and Event-B, International
Conference on Abstract State Machines, Alloy, B, TLA,
VDM, and Z, Springer, pp. 155–170.

Edmunds, A., Olszewska, M. and Waldén, M. (2016). Using
the Event-B Formal Method for Disciplined Agile Delivery
of Safety-critical Systems, in H. Kaindl and R. Meli (eds),
SOFTENG 2016: The 2nd International Conference on
Advances and Trends in Software Engineering, IARIA,
p. 1–9.

Edmunds, A., Snook, C. and Waldén, M. (2016). On
Component-Based Reuse for Event-B, in M. Butler, K.-
D. Schewe, A. Mashkoor and M. Biro (eds), Proceedings
of the 5th International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, ABZ 2016, Springer
International Publishing, Cham, pp. 151–166.



18 M. Olszewska et al.

ENABLE S3 Project (2016-2019). Testing and Validation
of Highly Automated Systems. [Online; accessed 16-
October-2019].
URL: https://www.enable-s3.eu/

Eschbach, R. (2019). Industrial application of Event-B to a
wayside train monitoring system: Formal conceptual data
analysis, International Symposium on Formal Methods,
Springer, pp. 738–745.

Event-B (2001). [Online; accessed 16-October-2019].
URL: http://www.event-b.org/index.html

Fathabadi, A. S., Butler, M. J., Yang, S., Maeda-Nunez,
L. A., Bantock, J., Al-Hashimi, B. M. and Merrett, G. V.
(2018). A model-based framework for software portability
and verification in embedded power management systems,
Journal of Systems Architecture 82: 12–23.

Fathabadi, A. S., Butler, M. and Rezazadeh, A. (2012).
A Systematic Approach to Atomicity Decomposition in
Event-B, in G. Eleftherakis, M. Hinchey and M. Holcombe
(eds), Software Engineering and Formal Methods -
10th International Conference, SEFM 2012, Thessaloniki,
Greece, October 1-5, 2012. Proceedings, Vol. 7504 of
Lecture Notes in Computer Science, Springer, pp. 78–93.

Fotso, S. J. T., Mammar, A., Laleau, R. and Frappier,
M. (2018). Event-B Expression and Verification of
Translation Rules Between SysML/KAOS Domain Models
and B System Specifications, International Conference on
Abstract State Machines, Alloy, B, TLA, VDM, and Z,
Springer, pp. 55–70.

Gmehlich, R., Grau, K., Hallerstede, S., Leuschel, M., Lösch,
F. and Plagge, D. (2011). On Fitting a Formal Method into
Practice, Proceedings of the 13th International Conference
on Formal Engineering Methods, ICFEM 2011, Durham,
UK, October 26-28, 2011, pp. 195–210.

Gnaho, C., Semmak, F. and Laleau, R. (2013). Modeling
the impact of non-functional requirements on functional
requirements, International Conference on Conceptual
Modeling, Springer, pp. 59–67.

Hallerstede, S., Jastram, M. and Ladenberger, L. (2014).
A Method and Tool for Tracing Requirements into
Specifications, Science of Computer Programming 82: 2–
21.

Hoang, T. S., Dghaym, D., Snook, C. and Butler, M. (2017).
A composition mechanism for refinement-based methods,
22nd International Conference on Engineering of Complex
Computer Systems (ICECCS 2017).

Hoang, T. S., Fürst, A. and Abrial, J.-R. (2013). Event-
B patterns and their tool support, Software & Systems
Modeling 12(2): 229–244.

Hoang, T. S., Iliasov, A., Silva, R. A. and Wei, W. (2011).
A survey on Event-B decomposition, 11th International
Workshop on Automated Verification of Critical Systems
(AVoCS 2011).

Hoang, T. S., Snook, C., Ladenberger, L. and Butler,
M. (2016). Validating the Requirements and Design
of a Hemodialysis Machine Using iUML-B, BMotion
Studio, and Co-Simulation, in M. Butler, K.-D. Schewe,
A. Mashkoor and M. Biro (eds), Proceedings of the 5th

International Conference: Abstract State Machines, Alloy,
B, TLA, VDM, and Z, ABZ 2016, Linz, Austria, May 23-27,
2016, Springer International Publishing, Cham, pp. 360–
375.

Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky,
A., Varpaaniemi, K., Ilić, D. and Latvala, T.
(2010). Supporting Reuse in Event-B Development:
Modularisation Approach, in M. Frappier, U. Glässer,
S. Khurshid, R. Laleau and S. Reeves (eds), Proceedings
of the 2nd International Conference: Abstract State
Machines, Alloy, B and Z, ABZ 2010, Orford, QC, Canada,
February 22-25, Springer Berlin Heidelberg, pp. 174–188.

Jackson, D. (1996). Lightweight formal methods, IEEE
Comput. 29(4): 21–22.

Jackson, M. (2001). Problem frames: analysing and
structuring software development problems, Addison-
Wesley.

Jacquot, J.-P. and Mashkoor, A. (2018). The role of validation
in refinement-based formal software development, Models:
Concept, Theory, Logic, Reasoning, and Semantics,
College Publications.

Jastram, M. and Butler, P. M. (2014). Rodin User’s
Handbook: Covers Rodin V.2.8, CreateSpace Independent
Publishing Platform, USA.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M.,
Bailey, J. and Linkman, S. (2009). Systematic literature
reviews in software engineering–a systematic literature
review, Information and software technology 51(1): 7–15.

Kitchenham, B. and Charters, S. (2007). Guidelines
for performing systematic literature reviews in software
engineering.

Kobayashi, T., Ishikawa, F. and Honiden, S. (2014).
Understanding and planning Event-B refinement through
primitive rationales, in Y. Ait Ameur and K.-D. Schewe
(eds), Proceedings of the 4th International Conference:
Abstract State Machines, Alloy, B, TLA, VDM, and Z
(ABZ 2014), Toulouse, France, Springer Berlin Heidelberg,
pp. 277–283.

Krings, S., Bendisposto, J. and Leuschel, M. (2015). From
failure to proof: the ProB disprover for B and Event-B,
SEFM 2015 Collocated Workshops, Springer, pp. 199–214.

Ladenberger, L., Bendisposto, J. and Leuschel, M. (2009).
Visualising Event-B Models with B-Motion Studio, in
M. Alpuente, B. Cook and C. Joubert (eds), Proceedings
of the 14th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS 2009), Eindhoven, The
Netherlands, Springer Berlin Heidelberg, pp. 202–204.



Applying guidelines for system modelling in Event-B - A Systematic Literature Review 19

Lanoix, A. (2008). Event-B Specification of a Situated
Multi-Agent System: Study of a Platoon of Vehicles, 2008
2nd IFIP/IEEE International Symposium on Theoretical
Aspects of Software Engineering, pp. 297–304.

Lecomte, T., Deharbe, D., Prun, E. and Mottin, E. (2017).
Applying a formal method in industry: a 25-year trajectory,
Brazilian Symposium on Formal Methods, Springer,
pp. 70–87.

Leuschel, M. and Butler, M. (2003). ProB: A model checker
for B, International Symposium of Formal Methods
Europe, Springer, pp. 855–874.

Leuschel, M. and Butler, M. (2008). ProB: an automated
analysis toolset for the B method, International Journal on
Software Tools for Technology Transfer 10(2): 185–203.

Lopatkin, I., Iliasov, A., Romanovsky, A., Prokhorova, Y. and
Troubitsyna, E. (2011). Patterns for representing FMEA
in formal specification of control systems, 2011 IEEE
13th International Symposium on High-Assurance Systems
Engineering, IEEE, pp. 146–151.

Mammar, A. and Laleau, R. (2016). On the use of domain
and system knowledge modeling in goal-based Event-
B specifications, International Symposium on Leveraging
Applications of Formal Methods, Springer, pp. 325–339.

Mammar, A. and Laleau, R. (2017). Modeling a landing
gear system in Event-B, International Journal on Software
Tools for Technology Transfer 19(2): 167–186.

Mashkoor, A. and Jacquot, J. P. (2011). Guidelines
for Formal Domain Modeling in Event-B, 2011 IEEE
13th International Symposium on High-Assurance Systems
Engineering, pp. 138–145.

Mashkoor, A., Yang, F. and Jacquot, J.-P. (2017). Refinement-
based validation of Event-B specifications, Software &
Systems Modeling 16(3): 789–808.

Méry, D., Sawant, R. and Tarasyuk, A. (2015). Integrating
Domain-Based Features into Event-B: A Nose Gear
Velocity Case Study, Proceedings of the 5th International
Conference on Model and Data Engineering (MEDI) -
Volume 9344, Springer-Verlag New York, Inc., pp. 89–102.

Olszewska, M. (2011). On the Impact of Rigorous
Approaches on the Quality of Development, PhD thesis,
Turku Centre for Computer Science, Turku, Finland.

Olszewska, M., Ostroumov, S. and Waldén, M. (2016).
Using Scrum to Develop a Formal Model – An
Experience Report, in P. Abrahamsson, A. Jedlitschka,
A. Nguyen Duc, M. Felderer, S. Amasaki and T. Mikkonen
(eds), Proceedings of the 17th International Conference on
Product-Focused Software Process Improvement (PROFES
2016), Trondheim, Norway, November 22-24, 2016,
Springer International Publishing, Cham, pp. 621–626.

Olszewska, M. and Waldén, M. (2015). DevOps Meets
Formal Modelling in High-criticality Complex Systems,
Proceedings of the 1st International Workshop on Quality-
Aware DevOps, QUDOS 2015, ACM, New York, USA,
pp. 7–12.

Ostroumov, S. and Waldén, M. (2017). Visual Component-
Based Development of Formal Models, in M. Kajko-
Mattsson, P. Ellingsen and P. Maresca (eds), The 3rd

International Conference on Advances and Trends in
Software Engineering (SoftEng), IARIA, p. 43–50.

Pląska, M., Waldén, M. and Snook, C. (2007). Documenting
the progress of the system development, in M. Butler,
C. Jones, A. Romanovsky and E. Troubitsyna (eds),
Workshop on Methods, Models and Tools for Fault
Tolerance - Proceedings, pp. 118–127.

Ponsard, C. and Devroey, X. (2011). Generating High-
Level Event-B System Models from KAOS Requirements
Models, INFormatique des ORganisations et Systèmes
d’Information et de Décision (INFORSID).

ProB (2018). The ProB Animator and Model Checker,
Heinrich-Heine-University. [Online; accessed 16-October-
2019].
URL: https://www3.hhu.de/stups/prob

Prokhorova, Y. (2015). Rigorous Development of Safety-
Critical Systems, PhD thesis, Turku Centre for Computer
Science, Turku, Finland.

Prokhorova, Y., Laibinis, L. and Troubitsyna, E. (2015).
Facilitating Construction of Safety Cases from Formal
Models in Event-B, Information and Software Technology
60: 51–76.

Prokhorova, Y. and Troubitsyna, E. (2012). Linking
Modelling in Event-B with Safety Cases, in P. Avgeriou
(ed.), Proceedings of the 4th International Workshop
on Software Engineering for Resilient Systems (SERENE
2012), Vol. 7527 of Lecture Notes in Computer Science,
Springer-Verlag Berlin Heidelberg, p. 47–62.

ProR tool (2014). [Online; accessed 16-October-2019].
URL: https://www.eclipse.org/rmf/pror/

Rezazadeh, A. and Butler, M. (2005). Some Guidelines
for Formal Development of Web-Based Applications in
B-Method, in H. Treharne, S. King, M. Henson and
S. Schneider (eds), Proceedings of the 4th International
Conference of B and Z Users (ZB 2005): Formal
Specification and Development in Z and B, Guildford, UK,
April 13-15, 2005, Springer Berlin Heidelberg, pp. 472–
492.

Ricketts, M. (2015). Using stories to teach safety: Practical,
research-based tips, Professional safety, American Society
of Safety Engineers 60(5): 51.

Rodin Platform (2006). [Online; accessed 16-October-2019].
URL: http://www.event-b.org/platform.html



20 M. Olszewska et al.

RODIN Project (2004-2007). Rigorous Open Development
Environment for Complex Systems. [Online; accessed 16-
October-2019].
URL: http://rodin.cs.ncl.ac.uk/

Rodriguez, M. T. (2013). Invariant discovery and refinement
plans for formal modelling in Event-B, PhD thesis, Heriot-
Watt University, Edinburgh, Scotland.

Romanovsky, A. and Thomas, M. (2013). Industrial
Deployment of System Engineering Methods, Springer
Publishing Company, Incorporated.

Said, M. Y., Butler, M. and Snook, C. (2015). A method
of refinement in UML-B, Software & Systems Modeling
14(4): 1557–1580.

Sato, N. and Ishikawa, F. (2015). Separation of
Considerations in Event-B Refinement toward Industrial
Use, Proceedings of the First Workshop on Formal
Methods in Software Engineering Education and Training,
FMSEE&T 2015, co-located with 20th International
Symposium on Formal Methods (FM 2015), Oslo, Norway,
June 23, 2015., pp. 43–50.

Savicks, V., Butler, M. and Colley, J. (2014). Co-simulation
Environment for Rodin: Landing Gear Case Study, in
F. Boniol, V. Wiels, Y. Ait Ameur and K.-D. Schewe
(eds), Proceedings of the 4th International Conference on
Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ
2014): The Landing Gear Case Study: Case Study Track,
Toulouse, France, June 2-6, 2014, Springer International
Publishing, Cham, pp. 148–153.

Servat, T. (2007). Brama: A new graphic animation tool for
B models, International Conference of B Users, Springer,
pp. 274–276.

Silva, R. and Butler, M. (2009). Supporting Reuse of
Event-B Developments through Generic Instantiation, in
K. Breitman and A. Cavalcanti (eds), Formal Methods
and Software Engineering: 11th International Conference
on Formal Engineering Methods ICFEM 2009, Rio
de Janeiro, Brazil, December 9-12, 2009. Proceedings,
Springer Berlin Heidelberg, pp. 466–484.

Siqueira, F. L., de Sousa, T. C. and Silva, P. S. M. (2017).
Using BDD and SBVR to refine business goals into
an Event-B model: a research idea, Proceedings of the
5th International FME Workshop on Formal Methods in
Software Engineering, IEEE Press, pp. 31–36.

Snook, C. and Butler, M. (2008). UML-B and Event-
B: an integration of languages and tools, The IASTED
International Conference on Software Engineering -
SE2008.

Snook, C., Hoang, T. S. and Butler, M. (2017). Analysing
Security Protocols Using Refinement in iUML-B, in
C. Barrett, M. Davies and T. Kahsai (eds), Proceedings of
the 9th NASA Formal Methods International Symposium
(NFM 2017), Moffett Field, CA, USA, May 16-18, 2017,,
Springer International Publishing, Cham, pp. 84–98.

Su, W. and Abrial, J.-R. (2017). Aircraft landing gear
system: approaches with Event-B to the modeling of an
industrial system, International Journal on Software Tools
for Technology Transfer 19(2): 141–166.

Su, W., Abrial, J.-R. and Zhu, H. (2014). Formalizing Hybrid
Systems with Event-B and the Rodin Platform, Science of
Computer Programming 94: 164–202.

Wohlin, C. (2014). Guidelines for snowballing in systematic
literature studies and a replication in software engineering,
Proceedings of the 18th international conference on
evaluation and assessment in software engineering,
Citeseer, p. 38.

Wolff, S. (2012). Scrum goes formal: Agile methods
for safety-critical systems, Proceedings of the First
International Workshop on Formal Methods in Software
Engineering: Rigorous and Agile Approaches, IEEE Press,
pp. 23–29.

Yang, F., Jacquot, J.-P. and Souquieres, J. (2013). Jeb:
safe simulation of event-b models in javascript, 20th Asia-
Pacific Software Engineering Conference (APSEC), 2013,
Vol. 1, IEEE, pp. 571–576.

Yeganefard, S., Butler, M. and Rezazadeh, A. (2010).
Evaluation of a guideline by formal modelling of
cruise control system in Event-B, Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010),
NASA/CP-2010-216215, pp. 182–191.


