
On the difficulty (and success) of correlating empirical 
data and (extended) topological measures in power grid 

networks 

Abstract. Power grids have entered the complex networks realm for quite a 
long time now. Their structure (i.e., topology) and dynamics have been thor-
oughly studied and many topological measures have been used in order to clas-
sify them, evaluate their behavior in terms of robustness or model their dynamic 
response to malfunctions. Generally speaking, results have been mainly theoret-
ical and sound correlations between real grid’s dynamical behavior (i.e., mal-
functions and major events) and any of the mentioned before measures have not 
yet been found. In recent years, though, new extended topological measures 
have been used to quantify the ability of a network in sustaining its basic func-
tions. In this paper we present a first attempt to correlate these new measures 
with real malfunction data for some major European power transmission grids. 
Similar behavior is found, in terms of robustness to selected attacks to buses, 
between different networks. This is measured by means of extended topological 
indexes electrically better defined. These behaviors can be (weakly) correlated 
with similar probability distributions of major events, identifying similar dy-
namical response among topologically similar grids. This would raise hopes in 
finding a more meaningful and significant linkage between structural measures 
and the real dynamical output (i.e., major events) of a grid.  

Keywords: electrical betweenness, entropy degree, topological measures, fat-
tailed distribution, maximal information-based statistics, KS test. 

1 Introduction 

During the last years, complex networks (CN) have been considered a framework for 
a new kind of approach to complex systems [1]. New topological measures, algorisms 
and models have been widely used in networks from different fields such as biology, 
chemistry, social sciences, computer networks, etc., in order to classify their structure, 
dynamics and evolving patterns. A considerable amount of studies have been per-
formed on a remarkable technological network such as the power grid, where buses 
and transmission lines are considered nodes and links respectively, in order to define 
a graph. As far as the structure is concerned, power grids, at least at the transmission 
level, have been thoroughly studied and different aspects, such as basic topological 
characteristics and statistical global graph properties have been performed on many 
grids around the world [2]. Among the latter, static robustness (or vulnerability) anal-
ysis based on evaluating the variation in global connectivity due to random failure 
(i.e., random bus deletion) or selective attack (i.e., in decreasing order of some bus 
topological feature) of nodes has been mostly used. For most grids, global connectivi-



ty decreases exponentially, with a higher variability when buses are “attacked” in 
decreasing order of degree (i.e., the number of links a node is attached to) [3]. 
On the other hand, power grids are complex multilayered networks where many deci-
sion processes, involving different objectives, are at play. The global behavior of the 
grid is thus mainly driven by the complex interaction between its structure, its dynam-
ical processes (i.e., power fluxes) and economic and environmental constraints. Since 
this complex interaction is difficult to unveil at a global level, research has been fo-
cused on detecting whether malfunctions, turned into emergent outcomes such as 
blackouts, can be related to topological constraints, the rationale behind this proce-
dure being that structure affects dynamics somehow. Until now, most of the literature 
has been concerned on relating purely topological measures, such as analytical results 
coming from the aforementioned static vulnerability analysis, with aggregated mal-
functions outcome (i.e., total loss of power, energy not supplied or restoration time) 
[4]. But this approach has failed when it has been applied to power systems with dif-
ferent topological characteristics [5], mainly due to the poor definition of purely topo-
logical measures, away from the real physical and electrical definition of the system. 
In order to overcome this limitation, more specific topological measures have been 
defined [6,7]. Among these better suited to electrical systems extended measures, 
entropy degree (ED) and electrical betweenness (EB) have been presented as useful 
means to characterize the topology of the nodes of a power network [8]. 
In this paper, ED and EB are used in order to characterize the buses of the four big-
gest transport networks in Europe (i.e., France, Germany, Italy and Spain) and a static 
robustness analysis is performed. Similar statistical behaviour is observed between 
Germany and Italy (GI networks), and Spain and France (SF networks), with respect 
to attacks performed in decreasing order of ED and EB. This behaviour can be corre-
lated with disaggregated cumulative probability distributions of major events. Results 
show statistically meaningful (although weak) correlations among similar topological-
ly characterized networks, which could finally help in defining a linkage between 
topological measures (i.e., structure) and malfunctions (i.e., dynamics) on power 
grids.  
The paper is organized as follows. In section 2, the extended topological measures are 
introduced and used to analyse the robustness of four major European power grids.  In 
section 3, statistical analysis of correlations with cumulative probability distributions 
is presented and the problem of correlating major malfunctions with theoretical distri-
butions is discussed. Conclusions are summarized  in section 4. 

2 Extended topological measures 

Topological measures used to characterize the structure of networks can be the num-
ber of links connected to a node (i.e., degree of a node), the number of shortest paths 
passing through a node or a link (i.e., betweenness) or the amount of nodes tightly 
connected (i.e., modularity) [1]. In the particular case of power grids, the simplicity 
embedded in purely topological measures have made them useless for practical pur-



poses. Instead, this approach has been recently extended by considering the following 
electrical properties [6-8]:  

• Distance. From the perspective of electrical engineering, distance should have 
more practical meaning which should be a measure of the “cost”. For electrical 
power grids, the cost of power transmission between two buses can be described 
from both economic and technological point of view, such as transmission loss or 
voltage drop.  

• Bus classification. In traditional complex networks methodology, all elements 
have been treated identically. Correspondingly, the physical quantity was consid-
ered to be transmitted from any vertex to any other. However, the essential func-
tion of power grids is to transmit electrical power from any generator bus to any 
load bus. Generally, the buses in power transmission grids can be classified as gen-
eration buses, transmission buses and load buses.  

• Line flow limit. In a pure topological approach, edges are generally described in 
an unweighted way. However, in electrical engineering, transmission lines have 
line flow limits which restrict the ability of one line for power. As this feature is 
critical for the networks to perform their essential functions, it cannot be neglected 
in vulnerability assessment. 

• Flow-based network. The physical quantity to be transmitted between two verti-
ces is always supposed to be through the shortest path, which is the most unrealis-
tic assumption from the point of view of electrical engineering. Power transmission 
from a generator bus to a load bus will involve most lines or a huge number of 
paths with contribution to different extent. In a linear model of power flow, the dif-
ferent contributions of lines in power transmission can be described by the Power 
Transmission Distribution Factors (PTDF). 

 
It is more feasible to model an electrical power grid as a weighted and directed net-
work identified by a set Y = {B, L, W} where B (dim{B} = NB) is the set of vertices 
(or nodes), L (dim{B} = NL) is the set of edges (or links) and W is set of line weights.  
Vertices are identified by index i. Edges are identified by lij, which represents a con-
nection between vertex i and vertex j. And the weight element wij in the set W is asso-
ciated with each line lij. Based on the consideration mentioned above, two extended 
metrics, entropy degree (ED) and electrical betweenness (EB) have been proposed as 
extended measures to characterize the topology of the grid.  

• Entropy degree. In unweighted networks, the degree ki of a vertex i is the number 
of edges attached to it [1]. In a weighted network, it is named the strength si of the 
vertex, and it is the sum of the weights of the edges connecting the node i. Degree 
(or its associated probability distribution) is a basic metric that can measure the 
relative importance of a node. However, these two definitions cannot take simulta-
neously into account (a) the strength of connections in terms of weights of edges, 
(b) the number of edges connected to that vertex and (c) the distribution of weights 
among edges. To consider these three factors, the concept of entropy is introduced 
to redefine the entropic degree ݇௜௪ of a vertex i  in the following way [6]: 



 

 ݇௜௪ = ൣ1 − ∑ ௜௝ே௝ୀଵ݌ · ∑௜௝൯൧݌൫݃݋݈ ௜௝ே௝ୀଵݓ  (1) 

 
where pij is the normalized weight of edge lij connecting vertices i and j: 
 

௜௝݌  = ௪೔ೕ∑ ௪೔ೕೕಿసభ  (2) 

 

• Electrical betweenness. The betweenness of a node (or edge) i is defined as the 
number of geodesic paths connecting whichever pair of vertices, passing through 
this given vertex (or edge) [1]. Since the definition of betweenness neglects the 
electrical features of the power system, this can be redefined in the following 
terms. In the case of a line ݈௜௝ ∈ -extended (or electrical) betweennes can be de ,ܮ
fined as [7,8]: 

௘൫݈௜௝൯ܤ  = ,௘௣൫݈௜௝൯ܤ൫ݔܽܯ หܤ௘௡൫݈௜௝൯ห൯ (3) 

where 
௘௣൫݈௜௝൯ܤ  = ∑ ∑ ீ∋௚ௗௗ∈஽௚ܥ ௟݂೔ೕ௚ௗ                                     (4) 

 
if ௟݂೔ೕ௚ௗ > 0 and 

௘௡൫݈௜௝൯ܤ  = ∑ ∑ ீ∋௚ௗௗ∈஽௚ܥ ௟݂೔ೕ௚ௗ                                      (5) 

 
if ௟݂೔ೕ௚ௗ <  :௚ௗ is the power transmission capacity of the line which is defined asܥ .0

௚ௗܥ = min ൥௉೗೔ೕ೘ೌೣ
ฬ௙೗೔ೕ೒೏ฬ൩ 	                        (6) 

 
where ௟݂೔ೕ௚ௗ	is the power on line lij (lij∈L) for a unit of power injected at generation bus 

g (g∈G) and withdrawal at load bus d (d∈D). ௟݂೔ೕ௚ௗ can be computed as follows: 

 

௟݂೔ೕ௚ௗ = ௟݂೔ೕ௚ − ௟݂೔ೕௗ                    (7) 



 
where ௟݂೔ೕ௚  and ௟݂೔ೕௗ 	are the lij –th, row g -th column and the lij –th, row d -th column of 

matrix F respectively. Matrix F represents the NLⅹNB matrix of PTDF in which an 
element ௟݂೔ೕ௩  represents the change of power on line lij for a unit of power injected at 

bus v and withdrawn at the reference bus. If ௟݂೔ೕ௩  is consistent with the reference direc-

tion of line lij, then ௟݂೔ೕ௩ >0; otherwise, ௟݂೔ೕ௩ <0. The input power of a bus v should be 

equal to output power of the bus, so the extended betweenness of a bus v is the half of 
sum of power flowing through the lines connecting this bus: 
ሻݒ௘ሺܤ  = ଵଶ∑ ∑ ீ∋௚ௗௗ∈஽௚ܥ ∑ ௟݂೔ೕ௚ௗ௟೔ೕ∈௅ೡ                                 (8) 

 
where ܮ௩ is the set of lines connecting to a bus v. 

2.1 Attacks for major national power grids 

The robustness of the power grid is an example of a generalized feature of most com-
plex networks, from the Internet to the genome [9-13]. Specifically, real networks are 
often characterized by a considerable resilience against random removal or failure of 
individual units but experience important short-comings when the highly connected 
elements are the target of the removal. Such directed attacks have dramatic structural 
effects, typically leading to network fragmentation [14-17]. In this subsection the 
evolution of this fragmentation is evaluated in the case of four European power grids: 
France, Germany, Italy and Spain (Table 1).  
 

Number of France Germany Italy Spain 
Buses 1401 1197 535 447 
Lines 1819 1714 645 644 
Generators 136 156 126 100 
Loads 881 602 249 349 

Table 1. Basic characteristics of the four major national power grids analyzed in this paper. 

 
Entropy degree and electrical betweenness have been used as new metrics to evaluate 
how differently the power grids behave when random or selective nodes are eliminat-
ed and compared to traditional purely topological metrics. Since entropy degree and 
electrical betweenness implies already an ordered list of nodes, random deletion is 
neglected and selective attacks are considered instead. 
 



 
 

Fig. 1. Effects of attacks on the topology of France, Germany, Italy and Spain power grids. The 
static tolerance to selective removal of a fraction of nodes, by decreasing order of each particu-
lar metric is measured by the relative size S/N of the largest connected component. 

Figure 1 shows the static tolerance to selective removal of a fraction of nodes, by 
decreasing order of each metric and for the four major national grids studied. Robust-
ness is measured by the relative size S/N of the largest connected component. As it is 
shown, German and Italian power grids present a distinguished distance between 
traditional and entropy degree static tolerance procedures (especially between tradi-
tional and electrical betweenness ones).  However, in Spain and France power grids, 
the curves under different scenarios are much similar and closely depicted. An analy-
sis of the maximal information coefficient (MIC) between all data is shown in Table 2 
[18]. As far as the electrical betweenness is concerned, there exists a higher correla-
tion between France and Spain, and Germany and Italy. As far as the entropy degree 
is concerned, results are less conclusive although Germany and Italy are significantly 
correlated. 
 
 
 
 



MIC strength Electrical Betweenness Entropy Degree 

France Germany 0.99624 0.97894 

France Italy 0.98761 0.97313 

France Spain 0.99668 0.951 

Germany Italy 0.99976 0.99825 

Germany Spain 0.99639 0.99825 

Italy Spain 0.98456 0.99844 

Table 2. Maximal information coefficient (MIC) for electrical betweenness and entropy degree 
evaluated among France, Germany, Italy and Spain power grids, following their functional 

behaviour during static tolerance to attacks (Fig. 1).  

 
This fact suggests two significant conclusions. Firstly, the evolution of the largest 
connected component during the attack is obviously different between G-I power 
grids and S-F power grids. Secondly, while traditional metrics are not able to detect 
differences, extended metrics (especially electrical betweenness) have this capability. 
Furthermore, this dissimilar behaviour coincides with the conclusion published in [4], 
where G-I networks and S-F networks are segregated in different groups, in this case 
termed as robust (γ < 1.5) and fragile (γ > 1.5) according to γ, the exponential degree 
distribution characteristic parameter respectively. In this same reference, the authors 
provide an evidence for the correlation between topological structure and vulnerabil-
ity performance in terms of aggregated values of major events. Although our defined 
extended topological metrics can illustrate the difference between two particular types 
of network, it is difficult to directly assume that these extended metrics can be corre-
lated with any real dynamic feature of the grid. Therefore, a linkage between structur-
al measures and the real dynamical output (i.e., major events) of a grid is needed. 

3 Vulnerability, extended topological measures and probability 
distributions of major events 

Probability distribution analysis is one of the methods to study the statistics and dy-
namics of series of empirical data with approximate global models. Heavy tailed 
probability distributions seem to be ubiquitous statistical features of self-organized 
natural and social complex systems [19], and the appearance of the power law distri-
bution is often thought to be the signature of hierarchy, robustness, criticality and 
basically, non-random behaviour [20]. In this sense, European power transmission 
grids major events data [21] provide us with a set of real malfunction data for the 
vulnerability analysis in power transmission grids. Probability distribution analysis is 
used in order to detect correlations between real dynamic output and topological 
measures.  



3.1 Probability distributions of major events 

European power transmission grids reliability data is given through energy not sup-
plied (ENS), total loss of power (TLP) and restoration time (RT). These can be found 
in the UCTE/ENTSO webpage and they are publicly available from 2002 onwards 
[21]. Figure 2 shows the cumulative distribution functions for the aforementioned 
reliability measures and for the four major power grids. Logarithmic binning has been 
used in order to diminish the noise associated with statistical fluctuations [22].  
 

 

Fig. 2. Cumulative distribution functions for the four major power grids reliability measures 
energy not supplied, total loss of power and restoration time. 

The methodology described in [22] offers the possibility to statistically fitting a func-
tion to the tail of the distribution. This methodology has been followed in this section, 
where a maximum likelihood approach is proposed to estimate the heavy tailed func-
tion from the data and a significance test is constructed to evaluate the plausibility of 
some specific distributions. Table 3 shows likelihood ratios and p-values results with 
respect to log-normal, exponential, stretched exponential and power law with cut off 
distributions, all of them with power law function taken as comparative means. Posi-
tive likelihood values favour the power law hypothesis and p-values higher than 0.1 
imply no significance on the results. As we can see, although power law could be 
accepted only for the TLP (total loss of power) in Spain, the value of the likelihood 
ratio does not support this option. In general terms, results are not conclusive and no 
function can be adjusted with enough statistical significance. 
 



 
  

  
power law log-normal exponential stretched exp. power law + cut-off 

p LR p LR p LR p LR p 

E
N

S
 

France 0.11 -1.26 0.21 0.91 0.36 -1.23 0.22 13.55 1.00 

Germany 0.80 -0.68 0.50 1.04 0.30 -0.63 0.53 122.08 1.00 

Italy 0.14 -0.87 0.39 -0.57 0.57 -0.76 0.45 9.41 1.00 

Spain 0.72 -0.42 0.68 0.30 0.76 -0.57 0.57 37.31 1.00 

T
L

P
 

France 0.81 -0.34 0.73 0.79 0.43 -0.52 0.61 66.15 1.00 

Germany 0.65 1.03 0.31 -0.42 0.67 0.00 1.00 82.00 1.00 

Italy 0.13 -0.87 0.39 -0.57 0.57 -0.76 0.45 9.41 1.00 

Spain 0.07 -1.65 0.10 0.47 0.64 -1.79 0.07 68.33 1.00 

R
T

 

France 0.86 0.05 0.96 0.91 0.36 -0.18 0.86 114.54 1.00 

Germany 0.91 0.43 0.67 1.58 0.11 0.66 0.51 80.16 1.00 

Italy 0.80 -0.51 0.61 0.89 0.38 -0.47 0.64 26.38 1.00 

Spain 0.28 -1.19 0.23 1.56 0.12 -1.19 0.24 9.03 1.00 

 

Table 3. Test of fat-tailed behavior taking the power law as comparative function for energy 
not supplied (ENS), total loss of power (TLP) and restoration time (RT). Positive values of the 
likelihood ratios LR favors the power law model. Values of p ≥ 0.1 imply, though, that results 

can not be trusted. 

3.2 Kolmogorov-Smirnov test for aggregated major events 

One drawback observed in the previous section is the amount of major events data 
considered, which might be less than desired when fitting any fat tailed function. In 
this section aggregated data for all combinations of major events has been considered. 
On the other hand, although no conclusions can be drawn from the previous probabil-
ity distribution analysis, cumulative distributions shown in Figure 2 present obvious 
differences which make them depart from or approach to fitting functions. This can be 
detected with other statistical tests like the Kolmogorov-Smirnov (KS) test, defined as 
the maximum distance D between the cumulative distribution functions of the data 
S(x) and the fitted model P(x): 
ܦ  = ሻݔሺܵ|ݔܽ݉ − ܲሺݔሻ|                                          (9) 

KS test is used in order to detect how close a theoretical probability distribution func-
tion is from the real one. It is performed with the aim of detecting whole function 
approximation and not only fitting the tail of the function. Table 4 shows KS test 
results for the meaningful combination of pairs of grids, which are coincident with the 
previous selection: Germany and Italy on one side, and France and Spain on the other. 



We can see that although log-normal and stretched exponential distributions cannot be 
ruled out completely, power law with exponential cut-off can be ruled out for energy 
not supplied, total loss of power and restoration time for Germany and Italy but not 
for France and Spain combined major events data.  
 
 

   power law + exp. cutoff log-norm stretched exp. exp. 

ENS 
Germany + Italy 0.096 0.064 0.064 0.387 

France + Spain 0.083 0.083 0.083 0.250 

TLP 
Germany + Italy 0.107 0.071 0.071 0.357 

France + Spain 0.071 0.071 0.071 0.321 

RT 
Germany + Italy 0.090 0.121 0.090 0.424 

France + Spain 0.062 0.062 0.062 0.375 

Table 4. Values of the KS test for different fitting functions to energy not supplied (ENS), total 
loss of power (TLP) and restoration time (RT) probability distribution functions. Although log-
normal and stretched exponential functions are statistically sound, differences arise in the case 

of the power law with exponential cutoff. 

 
Even though statistically speaking the evidence is somehow weak, these results 

would favour the existence of a linkage between structure and dynamics. Some grids, 
in this case France and Spain, can be adjusted by power law with cutoff, lognormal 
and stretched exponential. Germany and Italy, on the other side, can be adjusted by 
lognormal and stretched exponential but not by power law with cutoff. Although firm 
conclusions cannot be drawn, the probability distributions of major events for these 
networks would suggest a different performance in terms of vulnerability, distin-
guished by frequency of major events and MW, MWh and minutes (i.e., restoration 
time) involved in these failures. From the physics point of view, an exponential cutoff 
could be understood in the following manner: 

• For the Energy Not Supplied (ENS), which means the loss of energy from con-
sumption side, it reveals the physical constraints on the maximum energy con-
sumption from consumers (residential, commercial and industrial).  

• For Total Loss of Power (TLP), which means the loss of production from the gen-
eration side, the fast decaying tail is consistent with the maximum power output of 
the generator at each vertex.  

• For Restoration Time (RT), it is the signature of an obvious upper bound since the 
power facilities cannot be damaged forever.  

The physical meaning described above can help us suggesting the meaning of this 
dissimilar behaviour. Spain and France grids’ dynamic behaviour (i.e., major events) 
is closer to what would seem the limit of their reality, while Germany and Italy power 
grids are not, since there is no exponential decay in their probability functions. Back 



to their topological structure, the metrics (i.e., the extended metrics EB and ED or the 
exponential degree distribution characteristic parameter γ cited in Ref. [4]) also dis-
criminate the four major power grids in two groups, this is Germany and Italy, and 
Spain and France. So a direct linkage can be suggested between structural measures 
and the real dynamical output: on the one hand, the topological structure of Spain and 
France power grids indicates that the whole networks anearly reach their maximum 
power transmission ability. In other words, the networks are more fragile and, corre-
spondingly, their dynamic output (in terms of major events) shows the existence of 
maximum constraints. On the other hand, Germany and Italy power grids seem not 
yet at their maximum capacity, and there is still a margin to reach the upper bound of 
their dynamic output. Equivalently, they could be considered (for the time being) 
more robust. 

4 Conclusions 

Although a contradiction as it seems, complex networks science allows a simplified 
view of the reality. Algorithms, measures and models involved in studying complex 
systems as networks, have allowed an understanding of some common features which 
characterize their topology and, in a lesser extent, their dynamic processes. Power 
grids have been thoroughly studied as complex networks and many topological 
measures have been used in order to classify their structure, evaluate their behaviour 
in terms of robustness or model their dynamic response to malfunctions. Results have 
been mainly theoretical and no correlation between real grid’s dynamical behaviour 
(i.e., malfunctions and major events) and any structural measure has yet been found. 
In this paper new extended topological measures have been used in order to quantify 
the ability of four European power grids (i.e., France, Germany, Italy and Spain) to 
sustain selective removal of buses. A maximal information coefficient has been used 
to find a similar robustness behaviour between Spanish and French networks on one 
side, and German and Italian networks on the other. In order to find a correlation with 
any dynamical output (i.e., blackouts), binned cumulated probability distributions of 
majors events in terms of energy not supplied, total loss of power and restoration time 
have been fitted to some characteristic fat-tailed functions, with no success. This 
could be probably due to the small amount of major events data actually available for 
the studied power grids (or simply because real cumulative probability distributions 
do not follow any of the fat-tailed function used for the fitting). To avoid the first 
drawback, aggregated data for every two networks has been used to significantly in-
crease the amount of values included in the probability distributions. Although a fa-
vourable fitting is not found, the paper shows that a significant (although weak) statis-
tical approximation appears when Germany and Italy on one side and France and 
Spain on the other are considered in aggregated manner, thus identifying similar dy-
namical response among topologically similar grids. Although much research must be 
done, such as extending this methodology to distribution networks or exploring the 
cascading failure in power grids, combining topological measures that include electri-
cal engineering perspectives, this evidence would raise hopes in finding a more mean-



ingful and significant linkage between structural measures and real dynamical output, 
in terms of major events, of a power grid. 
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