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Abstract: The paper concerns a cooperation problem in multiple participant 
decision making (DM). A fully scalable cooperation model with individual 
participants being Bayesian decision makers who use fully probabilistic design 
of the optimal decision strategy is presented. The solution suggests a flat 
structure of cooperation, where each participant interacts with several 
‘neighbours’. The cooperation consists in providing probabilistic distributions a 
participant uses for its DM. The group DM is then determined by a way of 
exploitation of the offered non-standard (probabilistic) fragmental information. 
 The paper proposes a systematic procedure by formulating and solving the 
exploitation problem in a Bayesian way. 

Keywords: Bayesian decision making; multiple participant decision making; 
sharing of probabilistic information; cooperation. 

Reference to this paper should be made as follows: Kárný, M., Guy, T.V., 
Bodini, A. and Ruggeri, F. (2009) ‘Cooperation via sharing of probabilistic 
information’, Int. J. Computational Intelligence Studies, Vol. 1, No. 2,  
pp.139–162. 

Biographical notes: Miroslav Kárný is a Senior Researcher at the Institute of 
Information Theory and Automation (UTIA), Academy of Sciences of the 
Czech Republic, Prague, Czech Republic. He obtained his PhD in 1977 and 
DrSc in 1990 from Academy of Sciences of the Czech Republic. He is with 
UTIA since 1973, from 1990 as the Head of Department of Adaptive Systems. 
His research interests cover various theoretical and application aspects of 
dynamic Bayesian decision making under uncertainty. 

Tatiana V. Guy received her DiplEng from Kiev Polytechnic Institute, USSR in 
1991 and PhD from the Czech Technical University, Prague in 1999. She is a 
Researcher at Department of Adaptive Systems, Institute of Information Theory 
and Automation. Her research interests include modelling, adaptive control and 
decision making. 



   

 

   

   
 

   

   

 

   

   140 M. Kárný et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Antonella Bodini is a Researcher at the Institute of Applied Mathematics and 
Information Technology (IMATI), National Research Council, Milan, Italy. 
She obtained her PhD in 2002 from University of Pavia (Italy). She is with 
IMATI since 2001. Her research interests cover various theoretical aspects of 
statistical inference, modelling uncertainty and their application to ecological 
and climatic problems mainly. 

Fabrizio Ruggeri received his BSc in Milan, MSc in Carnegie Mellon and PhD 
in Duke. He is the Research Director at CNR and Faculty in a PhD programme 
in Pavia. He is the former ENBIS President. He is the Editor in Chief of 
Applied Stochastic Models in Business and Industry and Encyclopaedia of 
Statistics in Quality and Reliability. He is an author of more than 100 papers 
and Editor of two books. He has been involved in many conferences and 
summer schools, mostly in Bayesian or industrial statistics. 

 

1 Introduction 

Decision making (DM) theory provides a good framework for formalisation and 
conceptual solution of many problems arising in such complex areas as estimation, 
prediction, pattern recognition, fault detection, control, etc. There is a number of 
sophisticated and well-elaborated approaches and techniques developed for DM, 
(DeGroot, 1970; Bell et al., 1988) proven to be successful in many applications (see e.g., 
Dyer et al., 1992; Quinn et al., 2003). However none of the approaches can serve as a 
universal one to be applied to the above-mentioned diversity of problems. 

One of the reasons is that to cover such a broad spectrum of problems the successful 
DM theory should be able to cope with: 
1 uncertainty, which is (almost) always present 
2 incomplete information available 
3 multiple aims 
4 always limited abilities to sense, act and evaluate. 

The standard Bayesian DM theory (DeGroot, 1970; Berger, 1985) meets the requirements 
1 and 2, and the theory of fully probabilistic DM (Kárný and Guy, 2006; Kárný, 2008), 
seems to satisfy the requirement 3. The requirement 4 can be generally met only via a 
distributed DM. In spite of the numerous attempts, e.g., Wolpert and Tumer (1999, 2001), 
Vlassis (2003), Yiming et al. (2003), Stirling (2004), etc., there is no systematic, widely 
accepted, solution. 

A group of decision makers (called here participants), acting within a flat structure 
(neither coordinator nor hierarchy is assumed), is considered in the paper. Each 
participant is characterised by limited ability to perceive, to model and to evaluate and 
can extend this ability only mildly; for a discussion see Section 2. The cooperation and 
interaction structure of a group of participants is assumed to be fixed. 

The participant solves DM task to achieve its particular DM aim with respect to its 
environment, which often contains other participants. The participant is Bayesian and 
applies fully probabilistic design (FPD) (Kárný and Guy, 2006), to generate its DM 
strategy. Participant’s operation domain has non-empty intersection with operation 
domains of a few other participants, so-called neighbours that have different DM aims 
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and solve own DM tasks. DM activity of neighbours has non-negligible (sometimes 
rather strong) influence on the participant’s DM and the participant tends to cooperate 
with the neighbours, in order to improve the effectiveness of its DM. 

How does the cooperation work? Each participant employing FPD operates with 
several DM elements, expressed in probabilistic form, namely: model of its environment, 
DM aim and DM strategy. The cooperation in the present context implies that 
cooperating participants exchange/share their DM elements. As the operation domains of 
the cooperating participants do not overlap completely, the DM elements offered for 
exchange represent partial and imprecise information pieces about the uncertain and 
random environment. The participant then needs a methodology, which effectively solves 
the problem how to combine (merge) fragmental information pieces provided by its 
neighbours. This problem has been addressed repeatedly, for instance, in connection with 
probabilistic expert systems (Cowell et al., 2003), knowledge elicitation, (O’Hagan et al., 
2006), cooperation of participants (Andrýsek et al., 2007; Kárný et al., 2007); etc. 
However, none of the existing solutions seems to be complete and automatic enough to 
be applied in the cooperation task concerned. 

The paper proposes a merging methodology applicable to the problem formulated 
above. The basic idea ‘take all offered information pieces as outputs of noisy information 
channels and try to estimate parameters of the underlying source’ is not new, for 
example see, Oakley and O’Hagan (2005) and references there. Unlike the attempts made 
elsewhere, the proposed approach is not case-specific and covers the simple 
methodological line: 
1 consider the uncorrupted information source behind as a measuring device described 

by an unknown parameter 
2 consider the available information pieces as data about the parameter 
3 model the relation of data and parameter, i.e., choose suitable likelihood function and 

prior distribution 
4 perform the standard Bayesian point estimation to learn the parameter. 

Section 2 outlines decision-making scenario in FPD setting as well as introduces 
necessary terms and assumptions. Section 3 and Section 4 form the core of the paper and 
describe the methodology proposed. Section 5 illustrates the results methodology yields. 
The design of the methodology dominates over technical and computational aspects of 
the problem. Consequently, the number of open problems is large, see Section 6. 

2 The cooperation scenario 

The section introduces the considered decision-making scenario together with the basic 
assumptions. The text below relies on the participant’s description and the cooperation 
structure outlined in Introduction. 

The term participant (decision maker) generally refers either to a single decision 
maker or to a group of decision makers acting as a whole. Both an electronic decision 
maker and the human being as well as their combination can be considered. 

The following basic notation is adopted throughout the paper. { }1 2, ,∗ = …k k k  stands 
for a set of .ks  The cardinality of the set ∗k  is denoted 

D
k  and provides the number of 

elements of .∗k  If k is a vector, ′k  denotes the transpose of .k  ( )f x  is a probability 
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density function (pdf) of a random variable ( ), ⋅ ⋅x f  stands for a conditional pdf. In 
Section 3, where relations of pdfs’ values are modelled, symbols ( ) ( ),⋅ ⋅ ⋅G G  are used for 
pdfs describing this ‘higher level’ model. x̂  denotes an estimate of .x  

Note that generally decisions are made repeatedly throughout time course. For the 
solution of the considered merging problem, time is not important and hence the time 
index is omitted throughout the paper. 

2.1 Participant and its DM 

The participant interacts with its environment in a closed decision-making loop – formed 
by coupling of the participant with its environment – in order to influence the 
environment. To solve this task, the participant deals with a finite collection of random 
variables describing the behaviour of the decision-making loop. 
• Actions selected by the participant and influencing the environment. 
• Available observations that inform the participant about the state of the closed 

decision-making loop. 
• Internal states that participant considers but does not observe directly. 

The distribution of the behaviour’s realisation ∗∈b b  is described by a (regular) pdf 
( )f b  defined with respect to a dominating measure db  (typically, Lebesgue or counting 

one). 
The participant designs and applies a causal decision rule, which maps a realisation 
∗∈p p  of the random past history on a realisation ∗∈a a  of the participant’s admissible 

action. By definition, the realisation of the past history p  is known when an action a  is 
chosen. The participant makes its decisions under uncertainty about unknown realisations 

∗∈f f  of the future behaviour. 
Note that formally all considered but unobserved variables are included into the 

future behaviour. 
Let us decompose a realisation of the closed-loop behaviour into three components as 

follows: 

( ), , .=b f a p  (1) 

The uncertainty of the participant is then expressed by non-voidness of f  in (1). 
For any (1), the pdf ( )f b  can be factorised: 

( ) ( ) ( ) ( ) ( ), , , .≡ =f f f f fb f a p f a p a p p  (2) 

In (2) ( ),f f a p  models the participant’s environment, ( )f a p  represents a randomised 

decision rule of the participant and ( )f p  describes the past history. 
The participant tries to achieve its DM aim with respect to its environment under 

given constraints. Bayesian nature of the participant and employment of FPD for design 
of DM rule yield that the participant: 



   

 

   

   
 

   

   

 

   

    Cooperation via sharing of probabilistic information 143    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

• relies on a chosen environment model ( ),f f a p  

• expresses its DM aim and existing constraints via so-called ideal pdf, ( )I f b , which 
describes desirable realisation of the closed-loop behaviour b  

• selects a randomised decision rule ( )f a p  as a minimiser of a proximity measure of 

( )f b  and ( ).bI f  

Kárný (2008) provides arguments why FPD uses the Kullback-Liebler divergence 

( ) ( )( ) ( ) ( )
( )

ln d
⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

∫I
I

f
D f f f

f

b
b b b b

b
 (3) 

as a measure of proximity of ( )f b  and ( ).I f b  In (3), d⋅∫ b  means a definite 

multivariate integration over the integrand’s domain. The optimal decision rule is then 

( )
( ){ }

( ) ( )( )Arg min .
∗

=o I

f

f D f f∈
a p

a p b b  (4) 

The following proposition summarises the solution of FPD. 

Proposition 1: (Solution of FPD). The optimal decision rule (4) is given by the formula 

( ) ( ) ( ) ( ) ( ) ( )
( )

,
exp , , ln d ,

,

⎛ ⎞
⎡ ⎤ ⎜ ⎟−⎣ ⎦ ⎜ ⎟

⎝ ⎠
∫o I

I

f
f f f

f
∝ ≡

f a p
a p a p a p a p f a p f

f a p
ω ω  (5) 

where ∝  denotes an equality without specifying a unique normalising factor. 

Proof: The proof follows from the following string of equalities and from the fact that the 
Kullback-Leibler divergence ( )=D f h  reaches its smallest zero value for ,=f h   

Vajda (1989). In the string, the respective ( )⋅f  and their ideal counterparts ( )⋅I f  are 
regular pdfs with respect to the measures d ,d ,d ,d .b p a f  

( ) ( ) ( )
( )

( ) ( )
( )

( )
N ( ) ( )

( )
( ) ( )

( ) ( ) ( )
( )

( )

( )

, ,
ln  d , , ln  d d d

, ,

,
ln ln , ln d  d d

,
∗

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥

⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪⎢ ⎥⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟= + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

=

∫ ∫∫∫

∫ ∫ ∫
������	�����


a p

b f a p
b b f a p f a p

b f a p

a p f a pp
p a p f a p f a p

p a p f a p

p

I
I I

I I I

f f
D f f f f

f f

f ff
f f f

f f f

f

≡ω

( )
( )

( ) ( ){ } ( ) ( ) ( )( )ln d ln exp  d d
⎛ ⎞

⎡ ⎤⎜ ⎟ − − +⎣ ⎦⎜ ⎟
⎝ ⎠

∫ ∫ ∫
p

p a p a p a p a p a p p
p

I o
I

f
f f D f f

f
ω
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The validity of (*) is given by Fubini theorem. The sum of the first and the second term 
in the last equality is independent of the optimised ( ).f a p  

Remark 1: 

• The ideal pdf ( )I f b  describes constraints on actions as the support of the optimal 
decision rule (5) is contained in the support of its ideal counterpart. 

• The explicit formula of the optimal decision rule is obtained even when designing 
decision strategy, i.e., a sequence of decision rules, Kárný and Guy (2006). 

2.2 Cooperating participant 

A number of participants acting within a fixed cooperation and interaction structure are 
assumed. Neither coordinator nor hierarchy is supported by the structure. All participants 
are Bayesian participants and use the FPD, see Section 2.1. 

Assumption 1 summarises additional assumptions about the participant that are 
necessary to build (relatively) realistic, normative and scalable cooperation scheme. 

Assumption 1 The participant of given abilities 

A The participant, labelled by { }1, 2,3, ,…k ∈  has fixed DM elements consisting of: 

∗
k ≡b  the set of behaviour's realisations considered by the thk  participant 

∗
k ≡p  the set of past’s realisations considered by the thk  participant 

∗
k ≡a  the set of action’s realisations considered by the thk  participant 

∗
k≡f  the set of future’s realisations considered by the thk  participant 

( ),k k k kf ≡f a p  the pdf chosen by the thk  participant for modelling its 

environment, (2) 

( )a pk k kf ≡  the pdf describing the decision rule considered by the thk  participant, 

(2) 

( )k kf ≡p  the pdf describing the past related to the thk  participant, (2) 

( )I
k kf ≡b  the ideal pdf expressing DM aims and constraints of the thk  participant. 

B Any participant k has a few fixed neighbours, i.e., participants having non-empty 
intersection of behaviours’ sets with .∗kb  

C All participants are selfish. It means that the only participant can choose DM 
elements according to its DM task. None of its neighbours can directly influence or 
change the participant’s DM elements. 
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The success of DM heavily depends on quality of modelling of the participant’s 
environment, which includes active neighbours. The reachable quality of modelling is 
restricted by the natural limitations on the participant’s ability to model and evaluate. To 
impose on cooperation, the proposed methodology should respect these limitations and 
suppose no extra demands on the participant’s ability. 

Assumption 2 defines an overall mechanism of the participant’s cooperation based 
upon sharing DM elements with its neighbours. 

Assumption 2 Cooperation via sharing DM elements 

A Each participant k offers some projections (marginal or conditional pdfs) of ( )k kf b  

and ( )I
k kf b  to its neighbours while they offer theirs. 

This ensures involvement of yet selfish, but cooperating participants. 

B Each participant allocates a ‘reasonable’ part of its evaluation abilities to modify its 
pdfs ( )k kf b  and ( )I

k kf b  by the offered probabilistic information. 

The participant is assumed to be provided with a universal tool realising the 
modification methodology. The adjective ‘reasonable’ anticipates that the participant 
is able to perform the proposed evaluations. This excludes generic use of the theory 
of incomplete (Bayesian) games (Harsanyi, 2004), which force the participant to 
model not only its environment but its neighbours too. 

C There is no mechanism either to distinguish reliability of information offered or to 
judge/compare the importance of information offered. 

This is the most restrictive assumption and models insufficient reasons for making 
distinctions. This assumption can be relaxed in refined cooperation schemes, where 
the participant extends its actions by an active weighting of the offered information 
pieces. 

3 Cooperation methodology 

A cooperating participant is equipped by a special tool, which automatically processes 
the information offered by its neighbours. Hence, the cooperating participant gets an 
opportunity to improve quality of its DM via exploiting information provided by the 
neighbours. 

Let us consider the thk  participant, 1, 2, , .∗ ⎧ ⎫
⎨ ⎬
⎩ ⎭

D
…k k k∈ ≡  It is selfish but willing to 

cooperate. A fixed finite set ∗k  of its neighbours (see Assumption 1 (B)) acts on the 
union of their behaviours’ sets, i.e. 

.∗
∗ ∗

kk k∈≡ ∪b b  (6) 
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The combination of information pieces related to the closed decision loop models, 
( ) , ,∗k kf k k∈b  is performed in the same way as those concerned with the ideal pdfs, 

( ) , .∗I
k kf k k∈b  An instance of informational pieces related to models ( )k kf b  is treated 

below. Processing of the information related to ( )I
k kf b  can be done similarly. 

3.1 Combination of pdfs as Bayesian estimation 

Let us consider the collection of neighbours as a multivariate participant dealing with a 
global closed decision loop model ( ).f b  The action realisation of this multivariate 

participant is ( )1, , ,= …a a ak  while its past p  and future f  realisations are composed of 

{ } ∗pk k k∈
 and { } ∗fk k k∈

 in a complex way whose details are unimportant within the 

considered context. The global pdf ( )f b  is unknown to particular neighbours and the 

projections of imprecise (noisy) versions ( )kf b  of the global pdf ( ) , ∗f ∈b b b  are 
processed. 

For a fixed ,∗k k∈  let us decompose b  in a slightly different way than before. This 
decomposition reflects a complement of kb  to b  by introducing the part ku  
unconsidered by the thk  participant: 

( ) ( ), , , future, action, past, unconsidered variablesk k k k≡ ≡b f a p u  (7) 

Then, the general form of the projections to environments’ models is 

( )
( )

( )

, , ,
, .

, , ,
= ∫
∫

k k k k k k

k k k k

k k k k k k k

f
f

f

d

d d

f a p u u
f a p

f a p u f u
 (8) 

To get an environment model employed by the thk  participant, the joint pdf ( )kf b  is 
processed in the non-linear but deterministic way (8). Exploitation of this fact helps to 
reach (relatively) low computational complexity of the proposed combination of pdfs: the 
formula (8) is applied to the final combination only. 

The combination is constructed supposing the joint pdfs ( ) , ,∗kf k k∈b  are available 

for all .∗∈b b  The general case, when projections ( ),k k k kf f a p  of the joint pdfs ( )kf b  

are only available, is treated below. 

3.2 Point estimate of the global pdf 

The considered construction of the pdfs’ combination (merging) casts the problem into 
the standard Bayesian framework. 

Let us consider an unknown global pdf ( ) , ∗f ∈b b b  as an unknown parameter. Then, 

the pdfs ( ) ,  ,  ,∗ ∗
kf k kb b b∈ ∈  represent noisy observations (data) of that parameter by 
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particular observing devices (i.e., participants). The point estimate ( )f̂ b  of the unknown 

parameter ( )f b  based on the observations ( ) , , ,∗ ∗
kf k k∈ ∈b b b  is the ‘natural’ Bayesian 

merger searched for. 

A point estimate ( )ˆf b V  of ( ) , ,∗f ∈b b b  within a class of estimators ( ){ } ∗
f

∈
b

V V
V  

given by the statistic ∗∈V V  is searched for. 

Assumption 3 ‘Localness principle’. The choice of ( )ˆf b V  and estimation of  

( )f b  at a particular ∗∈b b  depend only on the relation of values ( )f b  and 

( ) ,  .∗kf k kb ∈  

If we stay within Bayesian framework, consider proper smooth loss functions and adopt 

Assumption 3, then the best point estimate ( )ˆf b V  of ( )f b  is the minimiser of the 

expected value of the Kullback-Leibler divergence (Bernardo, 1979). Its minimisation is 
equivalent to the minimisation of the expected value of the Kerridge inaccuracy, 
(Kerridge, 1961). It gives the rule for selecting the best V̂  

( ) ( ) ( )( )ˆ Arg min , ln
∗∗

∗⎡ ⎤− ⎣ ⎦∫ b b
b b b b,

V V
V � Vkf f k k f

∈∈
∈ ∈E d  (9) 

where the expectation is taken over the uncertainty about values of the global pdf  
( ).f b  

Thus, the construction of ( )ˆf b V  relies on the evaluation of the conditional 

expectation 

( ) ( ) ( )ˆ , , .∗ ∗⎡ ⎤ ∀⎣ ⎦b b b b bkf f f k k≡ ∈ ∈E  (10) 

3.3 Knowledge on modelled relation 

In order to obtain the conditional expectation (10), we have to relate the data, i.e., 
( ) ,  ,  ,∗ ∗

kf k kb b b∈ ∈  to the unknown parameter, i.e., global pdf, ( ) ,  .∗f b b b∈  The 
model can hardly be unique. Two unsatisfactory and one promising variant are presented 
below. Their choice was driven by the necessity to have feasible estimation, see 
Assumption 2 (B). 

Let temporarily assume that the treated pdfs have the common domain 
, ,∗ ∗ ∗= ∀k k k∈b b  (6). This assumption is relaxed in Section 4. 

The following notations are used further in the text: 

( )
( )

a  of the pdf  at fixed 

 an unknown estimated  of the global pdf  at the same 

∗−

−
k kv value f

v value f

b b b

b b.

∈
 (11) 
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In (11), kv  denotes a particular data provided by the thk  participant for a fixed 
realisation of behaviour, while v  stands for an estimated value of the unknown parameter 
for the same realisation. 

Under the notation (11) the modelled relationship ‘pdf offered by the thk  participant’ 
– ‘unknown global pdf’ can be written as ( ), ,  ,∗⋅kG v v G G∈  where ∗G  is a set of 

possible models, i.e., pdfs relating kv  to .v  As a meaningful model has to respect the 

nature of the processed data (the pdfs ( ) ,  ∗
kf k kb ∈ ) and of the estimated parameter (the 

global pdf ( )f b ), the set ∗G  generally should relate non-negative functions having the 
integral equal to unity. The latter condition can be neglected as it is met by normalisation 
in the final merging. 

To select a desired model from ,∗G  a relevant prior knowledge complemented by 
additional assumptions on modelling relationships is used. The adopted assumptions are 
summarised below. 

Assumption 4 Conditions on pdf 1, , ,⎛ ⎞⋅⎜ ⎟
⎝ ⎠

D…
k

G v v v  

A There exist finite-dimensional functions 1, ,…
k
oΨ Ψ  and 1, , ,…

k
oΩ Ω  defining 

‘generalised moments’ such that 

( )

( ) ( )

1 1

1 1

, , , , , ,

, , , , , , ,  ,
∗

∗

⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫

… …

… …
k

k k
k k

k k k k k
 v k k

v v

v G v v v v k k

Ψ Ψ Ψ Ω Ω ≡

Ψ Ψ Ψ Ω Ω Ω ∈

E o o

o o d  
 (12) 

i.e., the expectation 1 1, , , ,⎡ ⎤⋅⎣ ⎦… …v Ψ ΩE  is made over the random mechanism 

generating the values ( ) ,  .∗=k kv f k kb ∈  

The equalities (12) relate the particular pdfs provided by participants to the global 
pdf describing the set of neighbours. Respective models, discussed below, differ in 
the choice of functions Ψ  and Ω  in (12). The finite-dimensionality requirement 
respects Assumption 2 (B). 

B Values , ,∗kv k k∈  provided by different participants are conditionally independent 

for the given global pdf ( ) ,f b  i.e., ( ) ( )1, , .∗=∏… k kk k
G v v v G v v

∈
 This 

assumption postulates independence of personal deviations, which is practically 
acceptable. 

C Values ( )k kv f≡ b  of the pdf ( )kf b  for different realisations ≠i jb b  of the 

behaviour are independent when ( ) , ,b k kf Ψ Ω  are given. Hence 

( ) ( )( ) ( )( )1 2, , .=∏…k k k ii
G v v v G v vb b b  
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This independence assumption admits significant changes of values kv  provided by 
the participant k  even for slightly differing behaviours. 

D According to the maximum entropy principle, the desired model  

1, , , ,⎛ ⎞⋅⎜ ⎟
⎝ ⎠

D…
k

G v v v  relating the pdfs values 1, , D…
k

v v  offered by neighbours  

,∗k k∈  should possess the highest entropy among those meeting the Assumptions A, 
B and C. 

This assumption guarantees that from the set ∗G  of possible models, determined by 
the restrictive assumptions, we choose the pdf ( )⋅ ⋅G  with the given ‘generalised 

moments’ ( ) ,  ,∗k v k kΩ ∈  (12) but sufficiently flat not to forbid large deviations of 

( )k kvΨ  from ( ).k vΩ  

Both data ,  ,∗kv k k∈  and estimated parameter ( )f b  are generally infinite-dimensional 
and should be treated as random processes. Such a treatment can be avoided as an 
estimate ( )f̂ b  of ( )f b  specified for each realisation of behaviour ∗∈b b  (Assumption 3) 
is searched for. 

Let us suppose k
o

 participants operating on a finite collection of different behaviours 
( )1 2, , , , ,  .… n nb b b b < ∞ . Each participant provides ( ) ( ) ( )( )1, , , ,  ∗…k k k nf f f k kb b b ∈  

about the unknown global pdf ( ).f b  Assumption 4 (B) and Assumption 4 (C)  
restrict the search of the model to the finite-dimensional distributions of the random 
vector 

( ) ( )
( )

( ) ( ) ( ) ( )
( )

1 1 1 1 1, , , , , , , , ,

∗ ∗∗

… … … …
���	��
 ��������	�������


n n
k k k

f f f f f fo o ob b b b b b  (13) 

with conditionally independent entries. Thus, the distribution of the part of interest (*) in 
(13) is uninfluenced by the distribution of the extendable part (**). Besides, the 
constructed parametric model is fully determined by the marginal pdfs 

( )( ), ,k k kG v f Ψ Ωb  on values ( ) , ,∗=k kv f k k∈b  of the modelled pdfs given by the 

value ( )=v f b  of the estimated global pdf. It holds 

( ) ( )( )1 1 1, , , , , , , , , , .∗

⎛ ⎞ =⎜ ⎟
⎝ ⎠ ∏… … … k k kk kk kk

G v v f G v fo oo ∈
Ψ Ψ Ω Ω Ψ Ωb b  

Assumption 4 (D) defines ( )( ), ,k k kG v f Ψ Ωb  as an entropy maximiser restricted by 

linear-in-G  constraint implied by Assumption 4 (A). This convex optimisation problem 
has the solution (Cover and Thomas, 1991), 
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( )( ) ( )( ) ( )

( )( ) ( )
0

exp
, , ,

exp

⎡ ⎤′−⎣ ⎦=
⎡ ⎤′−⎣ ⎦∫

b
b

b

k k k
k k k

k k k k

f v
G v f

f v v
 ∞

λ Ψ
Ψ Ω

λ Ψ d
 (14) 

with the vector function of Lagrangian multipliers ( )( )k fλ b  solving the equations, 

,  ,∗ ∗k k b b∈ ∈  

( )
( )( ) ( )

( )( ) ( )
( )( )

0

exp
.

exp

⎡ ⎤′−⎣ ⎦ =
⎡ ⎤′−⎣ ⎦

∫
∫

k k k
k k k k

k k k k

f v
v v f

f v v

b
b

b
∞

λ Ψ
Ψ Ω

λ Ψ
d

d
 (15) 

The choice of the functions ,  Ψ Ω  has to guarantee that integral in (14) is finite and (15) 
is solvable. The subsequent sections discuss candidates of this type. 

3.4 Exponential model 

In the cooperative context, it is ‘natural’ to assume that values of the pdfs offered by 
participants ( ) ,  ,∗=k kv f k kb ∈  are unbiased guesses of the values of the unknown 

global pdf ( ) ,  ,∗=v f b b b∈  i.e., 

, .∗⎡ ⎤ = ∀⎣ ⎦kv v v k k∈E  (16) 

When considering this, i.e., choosing ,  k kΨ Ω  in (12) as one-dimensional identities, the 
constructed parametric model (14), (15) is the exponential one with 1= =k vλ λ /  

( )( ) ( ) ( ) 1, , 0 exp ,⎡ ⎤= = −⎢ ⎥⎣ ⎦
k

k k k
v

G v v identities G v v v
v v

Ψ Ω ≡ ≥χ  (17) 

with ( )⋅χ  denoting the indicator function of the set in its argument. 
The Bayesian parameter estimation with the model (17) is easy. For the completely 

flat improper prior distribution on (non-negative) values v of the global pdf ( ) ,f b  it has 

posterior Gamma distribution with k
o

 degrees of freedom and expectation equal to the 
arithmetic mean of the measurements, i.e., 

1, .
∗

∗⎡ ⎤
⎣ ⎦ ∑k k

k k

v v k k v

k ∈

∈ ≡
o

E  (18) 

This merging is known as arithmetic pooling of opinions (O’Hagan et al., 2006). It is 
widely used. But, criticised for its sensitivity to outlying opinions, which make it spread 
too much. More important, the exponential model neglects the fact that relative errors of 
small estimated values are usually larger than that of large values. Indeed, the exponential 
model has the property 
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standard deviation 1.
expectation

=  (19) 

All that discards exponential model from the further consideration. 

3.5 Truncated normal model 

To avoid (19), the assumption of unbiasedness (16) is complemented by an explicit 
requirement on the second moment determined by an additional parameter ρ  

( )2 2, , 0, ∗⎡ ⎤ = + ∀⎣ ⎦kv v v k k≡ > ∈bρ ρ ρ ρE  (20) 

i.e., ( ) ( )2 2, ,  , .⎡ ⎤ ⎡ ⎤= = +⎣ ⎦ ⎣ ⎦k k k k kv v v v v vρΨ Ω  

In this case, the parametric distribution (14) becomes the normal one, truncated on the 
non-negative domain of the modelled values kv  

( ) ( )
( )

( )
( )

( )2

0

exp
2,

, 0 ,  , ,
2,

μ

μ
μ

πμ

⎡ ⎤−
⎢ ⎥−
⎢ ⎥⎣ ⎦=

∫
N

N
N

k

k

v
k k v

v k

v

rr
G v v v r

rr v
 ∞

≥ ≡ρ χ
d

 

where the parameters ( ) ( ), ,  ,μ μ v r r vρ ρ≡ ≡  are related to the given ( )=v f b  and 

variance ( )bρ  in the highly non-linear way. It holds 

( )
( )

0

0

,
.

,

μ
μ

μ

== +

∫
N

N

v

v

r
v r

r v
 ∞

d
 

The relation of the variance ρ  to ,  μ r  (20) is even more complex (Greene, 2003). 

Consequently, the evaluation of the posterior expectation of v  given by ,  ∗
kv k k∈  is to 

be done numerically. The evaluation complexity motivates to search for an alternative 
model ( ).⋅ ⋅G  

3.6 Log-normal model 

Here, we again require unbiasedness and allow variance ρ  of deviations ( ) ,  ∗−kv v k k∈  

to be tuned independently of v. The non-negativity of processed data is, however, 
respected by relating ( )ln kv  to ( )ln .v  This can be done under: 

Assumption 5 Partial compatibility of pdfs. The pdf values ( ) ,  ∗=k kv f k kb ∈  and  

  ( )=v f b  are strictly positive on .∗b  

Under Assumption 5 and modelling Assumption 4 with 
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( ) ( ) ( )2 2ln , ln ,  ln ,⎡ ⎤⎡ ⎤ = = +⎣ ⎦ ⎣ ⎦μ μk kv v v vρ ρ ρE E  

we get ( ),kG v v ρ  (14) in the log-normal form. The assumption on unbiasedness, 

,⎡ ⎤ =⎣ ⎦kv v vρE  and the formula for the mean of the log-normal distribution lead to the 

definition 

( ) ( )ln ln 0.5 .μ −v≡ ρ  

Let us select a completely flat prior pdf on 0.μ >  To get a finite conditional expectation 

( ) ( ) ( )ˆˆ , ∗⎡ ⎤= = =⎣ ⎦k kv f v f v f k kb b b≡ ∈E  (10), the prior pdf on 0>ρ  has to fall to the 

infinity faster than 2exp .
⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

D
k

ρ  This leads to the prior pdf 

( ) ( )2
, exp ,  0,   small.

⎛ ⎞+⎜ ⎟−
⎜ ⎟
⎝ ⎠

G v

k

ε ρ
ρ ε ε∝ >

o
 (21) 

It gives the posterior pdf ( ), , ∗
kG v v k k∈ρ  of the form 

( ) ( ) 2
2

2
ˆ, , exp exp ln 0.5

2
−∗

⎧ ⎫⎛ ⎞ ⎡ ⎤+ ⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟ ⎢ ⎥− − − +⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎝ ⎠ ⎩ ⎭

D
D

D

k

k
k v

G v v k k
v

k
∈ ∝

ε ρ
ρ ρ ρ ρ

ρ
 (22) 

( )

( ) ( )

1

2 2

geometric mean ,

1ˆ ln the normalised least-squares remainder .

∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−

∏

∑

D

D

k
k

k k

k

k k

v v

v v

k

∈

∈

≡

≡ρ

 (23) 

To find normalisation of the posterior pdf (22) and to compute approximately its first 
moment, an evaluation of the integrals ,  0,1,=iE i  

2

0
exp ln 0.5 d

2

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎪⎢ ⎥− −⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫

D

i
i

k v
E v v

v

 ∞
≡ ρ

ρ
 (24) 

should be performed. By using the following substitution 

( )ln 0.5 ,  exp 0.5 ,  d d ,
⎧ ⎫⎛ ⎞ − = + =⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

v
x v v x v v x

v
ρ ρ≡  

the integrals (24) read 
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( )( ) ( ) ( )0.5 22
1 1 1
exp 0.5 1 exp 1 d 2 exp .

2
2

+ +

−

⎧ ⎫ ⎡ ⎤+⎛ ⎞⎪ ⎪ ⎢ ⎥= + + − =⎜ ⎟⎨ ⎬ ⎢ ⎥⎝ ⎠⎪ ⎪ ⎣ ⎦⎩ ⎭
∫

D
D

D

i i
i

ik x
E v i i x x k v

k

ρ
ρ π/ ρ

ρ

∞

∞
 

This leads to the factorised form of the posterior pdf in which the last factor is 
proportional to the normalised posterior pdf of v conditioned on ,  ∗

kv k k∈  and on ρ  

( ) ( )

2

1
2

0.5

exp ln 0.5
23ˆ

, , exp .
2

2 exp
2

−
−∗

⎧ ⎫
⎛ ⎞⎪ ⎪⎛ ⎞− −⎨ ⎬⎜ ⎟⎜ ⎟⎧ ⎫ ⎝ ⎠⎝ ⎠⎪ ⎪+⎪ ⎪ ⎩ ⎭− −⎨ ⎬

⎛ ⎞⎪ ⎪⎩ ⎭ ⎜ ⎟
⎜ ⎟
⎝ ⎠

D

D
D

D

D

k

k

k v
v

k
G v v k k

k v

k

ρ
ρ

ε ρρ
ρ ρ

ρ ρ
ρ

∈ ∝  

It gives the posterior expectation of v conditioned on ,  ,∗kv k k∈  and on ρ  

1 0
3, , / exp .

2

∗
⎛ ⎞
⎜ ⎟⎡ ⎤ = =⎣ ⎦ ⎜ ⎟
⎝ ⎠

Dk
v v k k E E v

k

ρ ρ∈E  

The marginal posterior pdf of ρ  reads 

( ) ( )1
2

3ˆ
, exp .

2
2

−
−∗

⎧ ⎫+⎪ ⎪− −⎨ ⎬
⎪ ⎪⎩ ⎭

D
D

D

k

k
k

G v k k

k

∈ ∝
ε ρρ

ρ ρ
ρ

 

This is a proper pdf and provides the finite expectation of exp 3⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

D

k

ρ  needed for the 

evaluation of 

( )ˆˆ , , , , .∗ ∗ ∗⎡ ⎤⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎣ ⎦k kk
v f v v k k v v k k v k kρ≡ ≡ ∈ ∈ ∈E E Eb  (25) 

The evaluation of the ‘outer’ expectation has no closed form. We approximate it by 
inserting maximum a posteriori probability estimate ρ̂  of ρ  into the ‘inner’ expectation 
(25). For 0,→ε  (21), we get 

( )
2

ˆ2ˆˆ , exp .
ˆ121 1 1

1

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ≈⎣ ⎦ ⎢ ⎥
−⎢ ⎥+ +

⎢ ⎥⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

D

D

D

b k
k

v f v v k k v

k

k

≡ ≡ ∈
ρ

ρ
E  (26) 
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Note that performed numerical experiments indicate that the approximation quality is 
high enough. 

The formula (26) increases the geometric mean (23) whenever the normalised least 
squares remainder ρ̂  (23) is large. An illustration of this advantageous property can be 
seen on Figure 1 presenting the merging results according to the formula (26). The pdfs 
provided by respective participants concern scalar behaviour b  and are normal, 
( ) ( )1 1.5,1= −f bb N  and ( ) ( )2 2, 4 .=f bb N  The proposed merging is a compromise 

between the often used geometric merging and the arithmetic merging. 

Figure 1 Comparison of various merging methods 
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Notes: The thin solid line denotes processed pdfs ( )1f b  (left) and ( )2f b  (right). The dashed line 
denotes arithmetic merging (18). The dashed-dot line indicates geometric merging (23). The 
thick solid line marks the proposed merging. 

4 Processing fragmental information pieces 

The simplicity of the merging described in the previous section stems from the fact that 
the inherent complexity of the projecting operators (8) is avoided. Thus there is a need to 
solve general case, in which respective participants provide some marginal and 
conditional pdfs, by extending the processed pdfs to the joint pdfs acting on the space of 
all behaviours ∗b  and then combining these extensions according to (26). 

This idea is elaborated here. As the second part is already solved, the further text 
provides a solution on how to construct an extension of the processed pdfs. 

The thk  participant deals with the behaviour, cf. (7), 

( ) ( ), , modelled, conditioning  variables considered by th participant,b f a pk k k k k≡ ≡  

where at least kf  is non-void. 
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Let us construct an extension ( )e
kf b  of the given pdf ( ),k k k kf f a p  to the global 

space ∗b  of behaviours .b  This extension should be close to the global pdf ( ).f b  The 
adopted Bayesian view point, Assumption 3 and the result presented in Bernardo (1979), 
imply that the extension should minimise the expected Kerridge inaccuracy 

( ) ( )( )ˆ ln d .−∫ e
kf fb b b  At the same time, the constructed extension ( )e

kf b  should 

preserve the pdf ( ),k k k kf f a p  expressing the information offered by the participant. 

The Proposition 2 and its proof rely on decompositions (1), (7) and factorisation (2). 

Proposition 2: (Optimal extension): The pdf 

( ) ( ) ( ) ( )ˆ ˆ, , , ,=e
k k k k k k k k k k k kf f f fb u f a p f a p a p  (27) 

is the unique minimiser of ( ) ( )( )ˆ ln d−∫ e
kf fb b b  with the a priori given factor 

( ), .k k k kf f a p  In the formula (27) ( )ˆ ⋅ ⋅f  are appropriate factors of ( )ˆ ,  kf b u  is the part of 

behaviour b  unconsidered by the thk  participant, cf. (7). 

Proof: Fubini theorem, the chain rule for pdfs and the following factorisation of the given 
( )f̂ b  and the constructed ( )e

k kf b  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ, , , , ,

, , , ,

=

=

k k k k k k k k k

e e e e
k k k k k k k k k

f f f f

f f f f

b u f a p f a p a p

b u f a p f a p a p
 

imply 

( ) ( )( ) ( )
( )

( ) ( )( ) ( )

, ,
ˆ ˆln  d , ,

ˆ , , ln , , d d , ,

∗∗

∗

− = −

⎡ ⎤
⎢ ⎥⎣ ⎦

∫ ∫

∫
k k k

k

e
k k k k

e
k k k k k k k k k k k k k

f f f

f f

 b f a p

 u

b b b f a p

u f a p u f a p u f a p

 

( ) ( )
( )

( ) ( )( ) ( )

, ,
ˆ ˆ, , ,

ˆ , ln , d d , ,

∗

∗

⎡ ⎤
⎢ ⎥⎣ ⎦

∫

∫
u a p

 f

- u f a p a p

f a p f a p f u a p

k k k

k

k k k k k k

e
k k k k k k k k k k k

f f

f f
 

( ) ( )
( )

( ) ( )( ) ( )
( )

( )

,

,

ˆ ˆ, , ,

ˆ , ln , d , d , .

∗

∗

⎡ ⎤
⎢ ⎥
⎣ ⎦

∫

∫

u f

a f

- u f a p f a p

a p a p a p u f

k k

k k

k k k k k k k

e
k k k k k k k k k

f f

f f
 

The factor ( ) ( ), ,=e
k k k k k k k kf ff a p f a p  is a priori given so that the second term cannot 

be influenced. The expressions in brackets [ ] in the first and the third term are 
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conditional versions of Kerridge inaccuracy that are, for an arbitrary condition,  
uniquely minimised by ( ) ( )ˆ, , , ,=e

k k k k k k k k kf fu f a p u f a p  and ( ) ( )ˆ, , ,=e
k k k k kf fa p a p  

respectively. They minimise whole terms as these minima are multiplied by non-negative 
pdfs and integrated over conditions.   

Now, it remains to insert the obtained extensions ( )e
kf b  into the formula (26) 

determining the conditional expectation ( ) ( ) ( )ˆ , , ∗⎡ ⎤= ⎣ ⎦k k k kf f f k kb b f a p ∈E  of the 

global pdf ( ).f b  This provides the final non-linear equation for merging ( )f̂ b  

( ) ( ) ( )
( )

2

ˆ2ˆ exp
ˆ121 1 1

1

e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + +⎢ ⎥

⎛ ⎞⎢ ⎥
−⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

D

D

D

b
b b

b

e k
f f

k

k

∝
ρ

ρ
 (28) 

The left superscript e  stresses that the geometric mean (23) and the normalised  
least-squares remainder (23) are evaluated from the pdfs ( ) ,  ,∗e

kf k kb ∈  (27) that 

depend on factors derived from the constructed ( )ˆ ,f b  see (27). 
The explicit solvability of (28) can hardly be expected but the equation is ‘naturally’ 

prepared for solution by successive approximations. Experiments support conjecture that 
a solution of (28) always exists. 

After finding ( )ˆ ,f b  its -specifick  projections ( )ˆ ,k k k kf f a p  (8) provide the 

constructed merging. Their uniqueness is conjectured while existence of multiple 
solutions of (28) cannot be excluded. 

5 Illustrative examples 

5.1 Merging of fragmental information 

The example demonstrates the proposed merging (28) in a simple case of a  
two-dimensional behaviour 1 2( , ).=b b b  The first participant provides only marginal pdf 
on ( ) ( )

11 1 1, 3, 2 ,= −f bb b N  while the second participant offers the joint pdf 

( ) ( )1 22 1 2 ,
2 1.50 0.45

, ,
1 0.45 1.50

⎛ ⎞⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

f b bb b N  

The obtained merging results are presented in Figure 2 to Figure 6. The results were 
obtained after eight iterations when the norm between two successive iterations dropped 
below the threshold l 5.−e  
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Figure 2 Merging of fragmental information 
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Note: Pdf ( )1 1f b  offered by the first participant. 

Figure 3 Merging of fragmental information (see online version for colours) 

 
Note: Pdf ( )2 1 2,f b b  offered by the second participant. 

Figure 4 Merging of fragmental information (see online version for colours) 

 

Note: The merging result ( )1 2
ˆ ,f b b . 
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Figure 5 Merging of fragmental information 
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Notes: The pdfs processed are depicted by thin line: left hill is ( )1 1 ,f b  right hill is 

( ) ( )2 1 2 1 2 2,  d .= ∫f fb b b b  The thick line marks marginal pdf of the merging 

( ) ( )1 1 2 2
ˆ ˆ ,  d .= ∫f fb b b b  

Figure 6 Merging of fragmental information 
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Notes: Thin line denotes pdf processed, ( ) ( )2 2 2 1 2 1,  d .= ∫f fb b b b  Pdf ( )1 2f b  is not 

offered. The dotted line marks marginal pdf of the merging 

( ) ( )2 1 2 1
ˆ ˆ ,  d .= ∫f fb b b b  

Note that the results are strongly influenced by the correlation between -entriesb  
considered by the second participant: for higher correlations, the shifts of the marginal 
pdf describing 2b  are more pronounced. 
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5.2 Elicitation of prior knowledge 

The example illustrates the use of the developed methodology for knowledge elicitation. 
Let us assume that the participant 1=k  has a prior pdf ( )1f b  on behaviour b  and the 

participant 2=k  offers partial information in the form of a (generalised) moment 

( ) ( )2= d ,∫μ φ fb b b  (29) 

where the finite-dimensional vector μ and the vector function ( )φ b  are the offered 
probabilistic elements. Following the proposed methodology, the information (29) is 
extended to the pdf ( )2 .e f b  The extension ( )2

e f b  is then merged with ( )1f b  according 

to (28). The extension ( )2
e f b  is again taken as the pdf nearest to the constructed result of 

merging ( )f̂ b  in Kerridge-inaccuracy sense under the constraint (29). The extension has 
the form 

( ) ( ) ( )2
ˆ exp ζ φ′⎡ ⎤−⎣ ⎦

e f fb b b∝  (30) 

with the vector ζ chosen so that ( ) ( )2 2= ef fb b  in (30) meets (29). 

Figure 7 Elicitation of knowledge about mean value 
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Notes: Original pdf ( ) ( )1 0,1=f bb N  (thin line) modified by information about mean 

value ( )2 2 d 0.8.= =⎡ ⎤⎣ ⎦ ∫  fb b b bE  Dashed line denotes extension of the last to the 

pdf ( )2 .e f b  Thick line marks the merging result ( )ˆ .f b  

Figure 7 and Figure 8 present the results of such a merging with scalar ,  μb  and ( ).φ b  
The pdf ( ) ( )1 0,1=f bb N  was modified by the information elicited from the second 
participant. Both results were obtained after 11 iterations of successive approximations. 



   

 

   

   
 

   

   

 

   

   160 M. Kárný et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 describes the case with μ = 0.8 and ( ) ,φ =b b  i.e., for the offered information on 
expected value of .b  Figure 8 shows the result for μ = 0.5 and ( ) ( )1 ,φ = −b b>χ i.e., for 
the processed information on the median of .b  

Figure 8 Elicitation of knowledge about median 
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Notes: Original pdf ( ) ( )1 0,1=f bb N  (thin line) modified by information about median 
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∞

 Dashed line denotes extension of the last to the pdf ( )2 .e f b  

Thick line marks the merging result ( )ˆ .f b  

The examples illustrate plausible properties of the proposed methodology. To get 
practically useful result, the approximation task (9) is to be solved within an appropriate 
class ( ) ,  ,∗f b V V V∈  containing typically more regular functions than the obtained 

( )ˆ .f b  

6 Concluding remarks 

The paper addresses a merging problem arose in multiple participant DM. The merging is 
treated as a Bayesian estimation problem. The presented solution is more complete 
compared to the previous works and leads to feasible algorithms covering  
infinite-dimensional cases. The case of different observation spaces was not treated in 
this way before. 

The important methodological shift consists in a clear separation of non-linear 
deterministic mapping of joint distributions to the supplied conditional or marginal pdfs 
from handling the influence of ‘personal noise’. The proposed modelling and processing 
order: combine noisy joint distributions and then map the results on observed  
lower-dimensional pdfs are computationally simpler and new. The application of this 
approach to fragmental information pieces, given by noisy projections of the underlying 
global pdf is enabled by extending them to a full space in a unique, well-justified, way. 
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The paper proposes a unified methodology. It does not mean that there is no 
ambiguity in solving a specific problem. However, the modelling of the relations of the 
unknown merging model (parameter) to respective processed pdfs (data) is the only 
optional step. Thus, modelling can only be blamed if the results are not satisfactory 
enough. 

The algorithm based on log-normal model provides a practically applicable 
algorithm, which can be viewed as a compromise between arithmetic and geometric 
merging. 

The following open problems remain to be solved. 

• Uniqueness of the participant-specific projections of (28) is conjectured but not 
proved. 

• General applicability of successive approximations for solving (28) is not verified. 

• The important case of offered sample pdfs is not covered due to the required  
non-singularity of processed pdfs (the only restriction on compatibility of the 
processed information pieces). Ideally, the merging should reduce to the Bayes rule 
when the sample pdf is processed. 

• Conversion of the offered parametric distributions and generalised moments to  
non-parametric pdfs has to be solved systematically. It will represent a sort of 
communication protocol studied and used in connection with closely related  
multi-agent systems (MAS, Vlassis, 2003). 

• Actions controlling communications have to be explicitly considered and their 
optimisation designed. These extensions have to respect the considered flat structure 
and will create counterparts of negotiation, bargaining and conflict resolution 
strategies studied in MAS. 

• Study and exploitation of the extensive overlap with a range of existing techniques 
originating in knowledge elicitation, probabilistic expert systems, MAS, etc., should 
be performed. 

Acknowledgements 

This research was supported by a common project IMATI CNR Milano and ÚTIA AV 
ČR, GAČR 102/08/0567 as well as by MŠMT ČR 2C06001. 

References 
Andrýsek, J., Bodini, A., Kárný, M., Kracík, J. and Ruggeri, F. (2007) ‘On combining partial and 

incompatible information in e-negotiation and e-arbitration’, Group Decision and Negotiation, 
Vol. 10, pp.1–10. 

Bell, D.E., Raiffa, H. and Tversky, A. (1988) Decision Making: Descriptive, Normative and 
Prescriptive Interactions, ISBN 0521368510, 9780521368513, Cambridge University Press. 

Berger, J. (1985) Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York. 
Bernardo, J.M. (1979) ‘Expected information as expected utility’, The Annals of Statistics, Vol. 7, 

No. 3, pp.686–690. 



   

 

   

   
 

   

   

 

   

   162 M. Kárný et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Cover, T. and Thomas, J. (1991) Elements of Information Theory, 2nd ed., Wiley, Bratislava. 
Cowell, R., Dawid, A., Lauritzen, S.L. and Spiegelhalter, D. (2003) Probabilistic Networks and 

Expert Systems, 2nd ed., Springer. 
DeGroot, M. (1970) Optimal Statistical Decisions, McGraw-Hill, New York. 
Dyer, J.S., Fishburn, P.C., Steuer, R.E., Wallenius, J. and Zionts, S. (1992) ‘Multiple criteria 

decision making, multi attribute utility theory: the next ten years’, Management Sciences,  
Vol. 38, No. 5, pp.645–654. 

Greene, W. (2003) Econometric Analysis, 5th ed., Prentice Hall. 
Harsanyi, J. (2004) ‘Games with incomplete information played by Bayesian players, I–III’, 

Management Science, Supplement, Vol. 50, No. 12. 
Kárný, M. (2008) ‘Bayesian paradigm and fully probabilistic design’, Preprints of the 17th World 

Congress of the International Federation of Automatic Control, IFAC, Seoul. 
Kárný, M. and Guy, T.V. (2006) ‘Fully probabilistic control design’, Systems & Control Letters, 

Vol. 55, No. 4, pp.259–265. 
Kárný, M., Kracík, J. and Guy, T. (2007) ‘Cooperative decision making without facilitator’, in  

Fradkov, A.L. and Andrievsky B.R. (Eds.): IFAC Workshop ‘Adaptation and Learning in 
Control and Signal Processing’ /9./. IFAC. 

Kerridge, D. (1961) ‘Inaccuracy and inference’, Journal of Royal Statistical Society B, Vol. 23, 
pp.284–294. 

O’Hagan, A., Buck, C.E., Daneshkhah, A., Eiser, J., Garthwaite, P., Jenkinson, D.J., Oakley, J. and 
Rakow, T. (2006) Uncertain Judgement: Eliciting Experts’ Probabilities, John Wiley & Sons. 

Oakley, J. and O’Hagan, A. (2005) Uncertainty in Prior Elicitation: A Non-Parametric Approach, 
Technical report, Department of Probability and Statistics, University of Shefield, Shefield. 
Revised version of research report No. 521/02. 

Quinn, A., Ettler, P., Jirsa, L., Nagy, I. and Nedoma, P. (2003) ‘Probabilistic advisory systems for 
data-intensive applications’, International Journal of Adaptive Control and Signal Processing, 
Vol. 17, No. 2, pp.133–148. 

Stirling, W. (2004) ‘Satisfying games for multiple-participant coordinated decision-making’, in  
J. Andrýsek et al. (Eds.): Mutliple Participant Decision Making, pp.3–16, Advanced 
Knowledge International, Maggil Adelaide. 

Vajda, I. (1989) Theory of Statistical Inference and Information, Kluwer Academic Publishers, 
Dordrecht. 

Vlassis, N. (2003) A Concise Introduction to Multi-Agent Systems and Distributed AI, Informatics 
Institute, University of Amsterdam, 2003, available at 
http://www.sciece.uva.nl/vlassis/cimasdai. 

Wolpert, D. and Tumer, K. (1999) ‘Collective intelligence for optimization’, in J. Boyan (Ed.): 
Sixteenth International Joint Conference on Artificial Intelligence, Workshop ML-1, Statistical 
Machine Learning for Large-Scale Optimization, Stockholm, pp.121–128. 

Wolpert, D. and Tumer, K. (2001) ‘Optimal payoff functions for members of collectives’, 
Advances in Complex Systems, Vol. 4, Nos. 2/3, pp.265–279. 

Yiming, Y., Xun, Y. and Lee, J. (2003) ‘Performance and attention in multiagent object search 
team’, IEEE Transactions on Systems Man and Cybernetics, Part A – Systems and Humans, 
Vol. 33, No. 2, pp.257–263. 


