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Abstract  
 
The Weka4GML framework has been designed to meet the requirements of distributed data 

mining. In this paper, we present the Weka4GML architecture based on WSRF technology for 

developing meta-learning methods to deal with datasets distributed among Data Grid. This 

framework extends the Weka toolkit to support distributed execution of data mining methods, like 

meta-learning. The architecture and the behaviour of the proposed framework are described in 

this paper. We also detail the different steps needed to execute a meta-learning process on a 

Globus environment. The framework has been discussed and compared to related works. 
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1 Introduction 

 
Nowadays, we have a deluge of data from scientific, industry and commerce fields. Massive 

amounts of data that are being collected are often heterogeneous, geographically distributed and 

owned by different organisations. These data contain hidden knowledge that have to be extracted. 

Data mining (also known as Knowledge Discovery) is the process of discovering useful 

knowledge from data.  

 

Data mining is a massive computing task that deals with memory resident data. With the huge 

amount of stored data in a centralised or distributed system, traditional data mining techniques are 

inefficient. The need of parallel and distributed computing becomes inevitable to deal with large-

scale data mining (Kargupta, 2000). Parallel data mining deals with tightly-coupled systems 

based on fast networks, while distributed data mining deals with loosely-coupled systems with 

lower interconnection. A wide range of algorithms have been proposed for these two fields and 

demonstrate relatively good performances with large-scale datasets. But with the emerging 

concept of Virtual Organizations that proposes to interact different administration domains or 

organizations as a unified system, these techniques become obsolete. Obviously the design of 

new solutions based on grid systems is needed.  

 

The Grid is the computing architecture that provides capabilities for manipulating geographically 

distributed resources as a single meta-system. The Grid provides protocols and services to share 
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computing resources data and software managed by multi-institutional virtual organizations 

(Reed, 2003).  Grid services are provided by middleware systems such as Globus, Legion, gLite, 

and Unicore (Reed, 2003). These middleware systems are meta-systems that run on top of 

existing operating systems and networks. The development of grid systems supporting data 

mining is needed to analyse and extract knowledge from data stored on grid systems. The design 

of such systems has to take into account emerging Grid standards like Web Service Resource 

Framework (WSRF).  

 

WSRF is a set of proposed Web services specifications that describe the means by which a 

stateful resource is defined and associated with a Web services description, forming the overall 

type definition of a WS-Resource (Czajkowski, 2004).  

 

This paper describes the development of a new framework based on WSRF standards and 

discusses design aspects and execution mechanisms. This framework, called Weka4GML, aims to 

port the Weka (Witten, 2005), a widely used data mining suite, to a Grid environment. 

 

The remainder of the paper is organised as follows: section 2 gives a background about the 

learning classifiers from distributed data sources, where section 3 introduces the evolution of 

distributed data mining to Grid environments. Section 4 presents a WSRF-based implementation 

of the Weka4GML services. Section 4 tries to compare our proposition to previous works. 

Finally, Section 6 concludes the paper and opens future perspectives. 

 

2 Distributed data mining 

 
The objective of distributed data mining is to perform the data mining operations using the 

peculiarities and the availability of distributed resources (Kargupta, 2000). It deals with loosely-

coupled systems: generally share-nothing machines interconnected by high-latency networks and 

geographically distributed (Zaki, 2000). 

 

Typically a distributed data mining algorithm partitions the database at several sites and mines a 

local model for each partition, then merges them to build a global model. DDM algorithms try to 

learn from the distributed data generally without exchanging the raw data. 

 

Most of the distributed data mining classification approaches are based on the ensemble learning 

method (Dietterich, 2000; Promidis, 2000). Ensemble methods are learning algorithms that 

construct a set of classifiers (base-classifiers) and then classify new data points by taking a 

(weighted or unweighted) vote of their predictions (Dietterich, 2000). Typically, an ensemble 

learning method runs the learning algorithm several times, each time with a different subset of the 

training examples. This method can be applied to a distributed environment, where data are stored 

on different sites, thus producing different local models to be aggregated into a global model. 

Based on this observation, several methods have been proposed such as: meta-learning, 

knowledge probing, and collective learning (Kargupta, 2000). 

 

The meta-learning method was proposed for homogeneous distributed databases (Prodromidis, 

2000). A meta-learning process follows three steps, as shown in figure 1: 

1 A base-classifier is trained from the local training-set at each site. 

2 The produced classifiers are collected to a central site where their predictions are  

   generated on a separate validation-set to produce metalevel 

   data. 
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3 The global classifier (meta-classifier) is trained from the meta-level data. 

 

The meta-classifier algorithm can be an arbiter or a combiner of the different predictions 

composing the meta-level data. Meta-learning reduces the communication cost when it exchanges 

the learned models instead of training examples and shows good scalability on data size when it 

learns from small subsets that fit in memory. These properties make the meta-learning method 

suitable for large systems like Grids. 

 
3 Grid-based data mining 

 
Grid computing is a natural evolution of distributed computing that attempts to better utilize 

unused compute capacity by exploiting the computing power of a large numbers of server 

computers, desktop PCs, clusters, and other kind of hardware. The Grid is a distributed 

infrastructure that coordinates resource sharing and problem solving in dynamic, multi-

institutional virtual organizations. A virtual organization consists on a set of individuals and 

institutions sharing resources regarding a set of rules (Reed, 2003). 

 

Traditional distributed computing technologies do not provide the flexibility and control on 

sharing relationships needed to establish VOs. The Open Grid Services Architecture (OGSA) 

(Reed, 2003) is proposed as a Service Oriented Architecture (SOA) for the development of Grid 

systems. OGSA defines the mechanisms for creating, managing, and exchanging information 

among entities, called Grid Services. The Globus Toolkit is a middleware providing a set of 

OGSA capabilities based on WS-Resource Framework (WSRF) (Czajkowski, 2004). The WSRF 

is a set of Web Service specifications that describe how to implement OGSA capabilities using 

Web services. 

 

Grid-based data mining has emerged for supporting complex data mining operations over 

geographically distributed large data sets. Grid systems provide services for data access and 

management for such distributed data. However, these services are not sufficient to analyze and 

extract knowledge from huge amount of data stored within grid environments. Efforts for Grid-

enabling data mining applications produced a variety of systems, algorithms, and other tools (Ben 

HajHmida, 2009). 

 

Several projects like TeraGrid (Catlett, 2007) focused on the creation of Grid infrastructure 

providing tools for the management and the manipulation of distributed data sources. Other 

projects like the Knowledge Grid (Cannataro, 2003) have focused on the creation of systems for 

distributed knowledge discovery over Grid infrastructures. 

 

The TeraGrid project aims to provide a Grid infrastructure (Catlett, 2007) built over resources 

available at four main sites (San Diego Supercomputing Center, National Center for 

Supercomputing Applications, Caltech and Argonne National Lab). The architecture of the 

TeraGrid adopts the existing Grid software technologies building a "virtual system" that describes 

the capabilities and behavior of a resource through service specifications. TeraGrid offers a set of 

application services, called TeraGrid Application Services, implemented upon basic software 

components, called Grid Services. 

 

The Knowledge Grid (Cannataro, 2003) is a high-level, service-oriented framework providing 

grid-based data mining tools and services. The Knowledge Grid system uses the low-level 

features of Globus allowing for the creation of geographically distributed data mining 
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applications and related tasks, such as data management and knowledge representation. Recent 

developments of the Knowledge Grid (Congiusta, 2007) have accomplished a re-design and re-

implementation of all the Knowledge Grid services as WSRF-compliant Grid Services. In such 

latter version, the Knowledge Grid exposes two main set of services: Resource Management 

Services and Execution Management Services. Through such services it is possible to design and 

execute complex knowledge discovery applications through a visual environment. 

 

TeraGrid and he Knowledge Grid are the most complete ongoing projects embracing the 

emerging trends and providing an almost complete set of functionalities. But the deployment and 

the use of such systems are quite consequent. The execution of a data mining task on distributed 

datasets needs a design of a complex mining process by an experimented user. Contrariwise we 

propose a simpler framework that hides to the user the complexity of distributed data mining 

tasks execution. 

 
4 Weka4GML framework 

 
In this section we propose a novel framework, Weka4GML, enabling the support of meta-

learning on a Grid environment. Based on Web services technology, Weka4GML extends the 

Weka toolkit (Witten, 2005) to Grid environments. Weka is a collection of sequential data mining 

algorithms for knowledge discovery comprising standard data preprocessing, mining, and 

visualization techniques. The Weka4GML framework is based on the Globus Toolkit, a widely 

used Grid middleware supporting the WSRF standard. The proposed framework architecture is 

WSRF compliant to be deployed on top of the Globus middleware. 

 

4.1. Architecture description 

 
The proposed architecture is designed according to the meta-learning execution scheme. As 

shown in Figure 2, our framework is composed of four node types: storage nodes, base-

classification nodes, metaclassification nodes and user nodes. A storage node hosts one or several 

fragments of the distributed dataset. It also publishes the stored data and their properties as a Web 

service and shares local data with other Grid nodes via an FTP server. A base-classification node 

builds a local model by executing a base-classification algorithm on a local dataset partition. The 

produced model is then applied on the validation dataset to generate predictions and transfer them 

to the meta-classification node. A metaclassification node integrates an FTP server to collect 

meta-data on which a meta-level algorithm is executed to produce the final classifier. A user node 

offers a graphical interface allowing users to choose the Weka supported algorithms, to explore 

the datasets stored on the storage nodes, and to execute a meta-learning process on a Grid. 

 

4.2. Behaviour description 

 
As shown in Figure 2, each node comprises a Web service, allowing remote applications 

invocation. Depending on its type, a node can also comprise a Weka module, an FTP server, or a 

database server. In the following, we provide a behaviour description of the different nodes 

composing the framework. 

 
Storage node: a storage node is composed of a database server, an FTP server and a Web service 

(Data Service). The database server stores the datasets to be mined. If the dataset is distributed on 

several partitions, they can be stored on one storage node or among several ones. The FTP server 



International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.5, September 2010 

219 

 

contributes to the data distribution management, allowing the dataset partitions transfer to other 

storage nodes (validation data) or a baseclassification node. The Data Service interacts with the 

data management service of a user node by exposing properties concerning the stored datasets. 

These properties, described in an XML file, comprise the dataset name, its type (centralised or 

distributed), its size and the data type (discrete or continuous). 

 
Base-classification node: a base-classification node is composed of a Weka module and a Web 

service (Base-Classification Service). The Weka module comprises the set of algorithms provided 

by Weka toolkit. These algorithms are exposed by the base-classification service allowing remote 

invocation. The Base-Classification Service acts as an FTP client when it downloads from a 

storage node the data to be analysed. It allows also meta-data upload towards meta-classification 

node. 

 

Meta-classification node: a meta-classification node differs from a base-classification node by 

including an FTP server. This kind of node allocates base-classification tasks to the base-

classification nodes participating to the meta-learning process, and then collects the meta-data 

produced by these nodes. Since a meta-classification node comprises a Weka module, it can also 

act as a base-classifier. In addition of exporting the algorithms provided by Weka module, the 

Meta-Classification Service notifies the user node of the final result. 

 

User node: a user node is composed of a Weka module, a data manager and a meta-learning 

module. The Weka module allows the user to choose the base-classification and meta-

classification algorithms composing a meta-learning process. The data manager allows gathering 

the properties of the datasets stored on the Grid. These properties are used to identify the various 

datasets and their distribution schema (number of partitions, addresses of the storage nodes, etc). 

After choosing the algorithms and the dataset to be analysed, the user submits a meta-learning 

process to the meta-learning module. This module interacts with the Meta-Classification Service, 

to submit the needed requests to the execution of the metalearning process. Each request contains 

the meta-classifier name, the baseclassifiers names, the base-classification node URIs and URLs 

of the respective dataset partitions to be analysed. 

 

4.3. Web Service Operations 

 

As recommend by the WSRF specifications, the WS-ResourceLifetime supplies some basic 

mechanisms to manage a resource lifecycle. This implies three basic operations: resource creation 

(createResource), subscription to notification (subscribe), and resource destruction (destroy). 

 

Meta-learning services 

 
In addition of these WSRF specific operations, each Weka4GML service needs another operation 

to execute the meta-learning process:  

    - Meta-Learning Service exposes metaLearn operation through which it  

      receives the arguments of the process to be executed.  

    - Base-Learning service exposes the learn operation which executes a   

      learning algorithm on target data.  

The arguments needed by Meta-Learning Service to execute the metaLearn operation are 

declared on the WSDL file as metaLearningParameters. Figure 3 shows an excerpt of the WSDL 

type declarations associated with the Meta-Learning Service. The algorithm type defines data 

mining algorithm identified by its name and parameters, where the algorithmList type is a 
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complex type defining a list containing at least one element. In the same way, a type datasetList 

is defined as a list containing at least one dataset. The dataset type contains a name describing the 

dataset, a boolean telling if the dataset is distributed or not and an uri permitting the remote 

access to the dataset partition. The datasetList describes all partitions forming the distributed 

dataset.  

The meta-learning process is performed through the metaLearn operation starting from the 

parameters passed by the client. These parameters contain the list of dataset partition, their 

relative validation set, the list of base-learning algorithms and the meta-learning algorithm. 

 

Whenever the Meta-learning service is invoked, it creates a new WSResource which will store 

the result of the meta-learning process on the FinalModel property. This property is declared on 

the WSDL as shown by Figure 4. 

 

Data services 

 
In addition of these WSRF specific operations, a data service of a storage node needs other 

operations to handle the stored data Data Service 

exposes: 

- createData operation to store datasets or dataset partitions. This   operation is invoked by a user    

  node to add a new distributed dataset   among storage nodes. 

- searchData operation to search stored datasets on grid nodes. This   operation is invoked by a  

  user node to search available datasets. 

- createValidationData operation to create a validation dataset that will   be used on the meta-  

  learning process. This operation is invoked by a   user node after adding a new dataset or by the  

  meta-learning service   during a meta-learning process execution. 

 

The arguments needed by Data Service to execute the createValidationData operation are 

declared on the WSDL file excerpt shown in Figure 5. The sampling algorithm is responsible of 

extracting a number of representative rows of each data partition contained by the datsetList. In 

each concerned storage node, local validation dataset is created. Finally, local datasets are 

exchanged between storage nodes to be merged to build the validation dataset to be used on the 

meta-learning process. 

 

5 Meta-Learning process execution 

 
This section describes the various steps of a meta-learning task execution in Weka4GML 

framework. Figure 5 describes the interactions between the different framework nodes and their 

respective Web services for the execution of a meta-learning task. This example does not take 

into account the dataset discovery by the data management module (user node) as well as the 

creation of validation data by the storage nodes. The example supposes that the data mining 

process was already submitted to the meta-learning module. This process is executed by 

respecting the following steps (see Figure 6): 

 

1 Resource creation (meta-classification node): the meta-learning module (user node) invokes the 

createResource operation of the Meta-Classification Service, which creates a new WS-Resource. 

This resource will be in charge of the maintenance of the state of the submitted meta-learning 

process. The state is stored as final model resource property. This resource is identified by a 

unique reference, EndPoint Reference (EPR), that distinguishes it from the remainder of 
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the resources of the same service. This reference will be used, thereafter, by the meta-learning 

module for future invocations of this resource. 

 

2 Notification subscription (meta-classification node): the meta-learning module invokes the 

subscribe operation, which subscribes to the notification of the changes of final model resource 

property. With each change of this property, one notification containing the new value will be 

sent to the meta-learning module. 

 
3 Task submission (meta-classification node): the meta-learning module invokes the metaLearn 

operation, which executes a meta-learning algorithm. This operation receives arguments such as 

the metaclassifier name, the names of the base-classifiers and the baseclassification node URIs 

and URLs of the partitions to be analysed. 

 

4 Resource creation (base-classification node): the Meta-Classification Service invokes in turn 

the createResource operation of the Base- Classification Services passed as arguments in the 

metaLearn operation. In each node, a new WS-Resource is created and identified by an EPR. 

 

5 Notification subscription (base-classification node): the Meta- Classification Service node 

subscribes to the notification of the changes of the predictions property of each new resource of a 

Base- Classification Service. 

 

6 Task submission (base-classification): the Meta-Classification Service invokes the learn 

operation of each Base-Classification Service to execute base- classification algorithm in parallel. 

The learn operation receives arguments such as the base-classification algorithm name and the 

URL of the partition to be analysed. 

 

7 Data transfer: each Base-Classification Service downloads the dataset partition to be analysed 

and the corresponding validation data, by sending a request to the FTP server of the target storage 

node. 

 

8 Base-classification: when data to be analysed are downloaded, each node of the Base-

Classification Service executes the required algorithm. A classification algorithm is executed to 

create a basemodel, tested on the validation data, to generate predictions which will form the 

meta-data. The result is recorded in the predictions property of the resource created on step 4. 

 

9 Results notification (base-classifiers): whenever the state of the property predictions has been 

changed, the Base-Classification Service notifies its new value to the Meta-Classification Service 

by invoking the deliver operation. A request is sent to the FTP server of the meta-classification 

node to transfer the validation data. Since the validation data is the same on all nodes, the FTP 

server handles the first transfer request and ignores the others. 

 

10 Resource destruction (base-classification node): the Meta- Classification Service invokes the 

destroy operation whenever it is notified by a Base- Classification Service, which destroys each 

resource created on step 4. 

 

11 Meta-classification: upon predictions of the various base-classifiers and the gathered 

validation data, the Meta-Classification Service executes a meta-level algorithm provided by the 

Weka module to create the meta-data and to generate the final model. The result is stored in final 

model property of the resource created on step 1. 
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12 Final result notification: when the state of final model property has been changed, the Meta-

Classification Service notifies its new value to the user node by invoking the deliver operation. 

 

13 Resource destruction (meta-classification node): the user node invokes the destroy operation, 

which destroys the resource created on step 1. 

 

 

 

6 Related works 

 

Many projects like GridWeka (Khoussainov, 2004), WekaG (Pérez, 2005), Weka4WS (Talia, 

2005) and FAEHIM (Ali, 2005) aimed to adapt the toolkit Weka to a Grid environment. 

 

GridWeka (Khoussainov, 2004) is an ongoing work at the University of Dublin, which distributes 

classification algorithms using the crossvalidation method over computers in an ad-hoc Grid. The 

system is composed of two main components: Weka Server and Weka Client. Each participating 

machine runs the original Weka as server component. The Weka client allows users to specify the 

target algorithms and datasets, and also to specify resources and tasks constraints. 

 

Another system using the client server architecture is WekaG (Pérez, 2005). The WekaG server 

implements data mining algorithms while the client side instantiates grid services. WekaG is an 

implementation of a more general architecture called Data Mining Grid Architecture (DMGA) 

based on Weka and Globus Toolkit 3. DMGA provides the composition of services on 

workflows. WekaG provides the same user interface as Weka and can support parallel algorithms. 

The first prototype implemented uses only the Apriori algorithm as a grid service. Unfortunately, 

this algorithm cannot be used by meta-learning methods, whereas Weka4GML allows the use of 

any algorithm supported by Weka by exposing the entire Weka module as a Web service. 

 

Weka4WS (Talia, 2005) extends Weka allowing the execution of all its data mining algorithms on 

remote Grid nodes. To enable remote invocation, the data mining algorithms provided by the 

Weka library are exposed as a Web Service, which can be easily deployed on the available Grid 

nodes. The architecture of Weka4WS includes three kinds of nodes: storage nodes, which contain 

the datasets to be mined; compute nodes, on which remote data mining algorithms are run; user 

nodes, which are the local machines of users. Remote execution is managed using basic WSRF 

mechanisms (state management, notifications, etc.), while the Globus Toolkit 4 services are used 

for standard Grid functionalities, such as security and file transfer. Weka4WS can only handle a 

dataset contained by a single storage node. This dataset is then transferred to computing nodes to 

be mined. If data are considerably large this transfer will cause high communication overhead. On 

the contrary, Weka4GML handles naturally distributed datasets that are contained by several 

storage nodes. In its last version Weka4WS supports the design of complex discovery processes, 

such as meta-learning, by porting the Weka KnowledgeFlow to Web services. This means that the 

user has to compose by itself all the meta-learning process, whereas Weka4GML takes in charge 

the process composition making it transparent to the user. 

 

Very similar is the Federated Analysis Environment for Heterogeneous Intelligent Mining 

(FAEHIM)) project (Ali, 2005), aimed to support data mining based on a grid services approach. 

The data mining algorithms implementations are derived from the Weka library and converted 

into a set of grid services. Complex mining processes are designed using the Triana (Churches, 
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2005) workflow engine. Like Weka4WS, FAEHIM do not support the data distribution and 

leaves to the user the charge of complex discovery processes design, whereas Weka4GML 

supports data distribution and automates the composition and the execution of a metalearning 

process. 

 

GridWeka and WekaG tried to adapt Weka to a Grid infrastructure using the client server 

architecture. But this architecture is not so flexible and powerful to support large scale 

requirements such as security, resource management etc. By contrast, Weka4GML, Weka4WS 

and FAEHIM are based on a grid services approach. 

 

Compared to the existing systems, our framework deals with distributed data and offers an easier 

execution of the meta-learning process. Indeed, Weka4WS and FAEHIM provide workflow 

engines by which users can compose a complex workflow schema such as the distribution of a 

dataset on different nodes and the execution of a meta-learning process. However, Weka4GML 

offers to users to discover distributed datasets, to choose the base classifiers to use, and then the 

framework holds the execution and the coordination of the distributed tasks on the target nodes. 

  

Table 1 compares the reviewed works and the Weka4GML framework according to the system 

architecture, the supported standards, the used middleware, and the support of workflow. In this 

table we note Middleware by MW, Web Services by WS and Extended Weka workflow engine 

by EWWE. 

 

 

Table 1 Comparing Weka4GML to the reviewed frameworks 

 

System Architecture Standard MW Workflow 

GridWeka Client/ 

server 

WS JVM BPE 

WekaG Client/ 

server 

WSRF Globus3 Ad-hoc 

 

Weka4WS Grid 

services 

WSRF Globus4 EWWE 

 

FAEHIM Grid 

services 

WS Globus4 Triana 

 

Weka4GML Grid 

services 

WSRF Globus4 Framework 

handled 

 

7 Conclusion 

 
In this paper, we described the evolution of data mining from distributed systems to Grid systems. 

Grid computing is a promising architecture that opens new horizons and faces new challenges. 

We also proposed a new framework based on WSRF technology for the distributed execution of 

the meta-learning approach. This framework is deployed on the top of the Globus middleware. 

Comparatively to similar works, Weka4GML is a framework which allows the discovery of  

knowledge in a completely distributed manner, starting from distributed data. 
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The proposed framework can not concurrent other systems like TeraGrid or the Knowledge Grid. 

It is considered as an initiative to port parallel and distributed mining algorithms to Grids 

regarding the peculiarities of such infrastructure. 

 

As perspective of our work, we propose to extend this framework to support other distributed data 

mining techniques and to manage faulttolerance. 
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Figure 1  Meta-learning from distributed data sources 
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Figure 2  Meta-learning process on Weka4GML framework 

 

 

 

 
 

 

Figure 3  Input/Output parameters of the metaLearn operation 

 
<types> 
... 
<xsd:element name="algorithm"> 
   <xsd:complexType> 
     <xsd:sequence> 
      <xsd:element name="name" type="xsd:string"/> 
      <xsd:element name="parameters" type="xsd:string"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 
 
<xsd:element name=" algorithmList "> 
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<xsd:complexType> 
   <xsd:sequence> 
      <xsd:element name="algorithm" type="xsd: algorithm" minOccurs="1" 
maxOccurs="unbounded"/> 
      </xsd:sequence> 
   </xsd:complexType> 
</xsd:element> 
 
<xsd:element name="dataset"> 
  <xsd:complexType> 
     <xsd:sequence> 
       <xsd:element name="name" type="xsd:string"/> 
       <xsd:element name="distributed" type="xsd:boolean"/> 
       <xsd:element name="uri" type="xsd:string"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 
 
<xsd:element name=" datasetList "> 
  <xsd:complexType> 
    <xsd:sequence> 
       <xsd:element name=" dataset " type="xsd: dataset " minOccurs="1" 
maxOccurs="unbounded"/> 
     </xsd:sequence> 
   </xsd:complexType> 
</xsd:element> 
 
<xsd:element name="metaLearningParameters"> 
  <xsd:complexType> 
     <xsd:sequence> 
       <xsd:element name="taskID" type="xsd:long"/> 
       <xsd:element name="metaLearningAlgorithm" ref="tns:algorithm"/> 
       <xsd:element name="baseLearnersList" ref="tns:algorithmList"/> 
       <xsd:element name="datasetList" ref="tns:datasetList"/> 
       <xsd:element name="validationData" ref="tns:dataset"/> 
     </xsd:sequence> 
   </xsd:complexType> 
 </xsd:element> 
</types> 

 
 
 



International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.5, September 2010 

229 

 

 
 
 

 

 

 

 

Figure 4  Meta-Learning Service Messages 

 

                  <!-- RESOURCE PROPERTIES --> 
<xsd:element name="FinalModel" type="xsd:string"/> 
 
<xsd:element name="MetaLearningResourceProperties"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:element ref="tns: FinalModel " minOccurs="1" 
        maxOccurs="1"/> 
     </xsd:sequence> 
   </xsd:complexType> 
</xsd:element> 

 

 

 

 

 
Figure 5  Input/Output parameters of the createValidationData operation 

 

<xsd:element name=" createValidationDataParameters"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:element name="taskID" type="xsd:long"/> 
      <xsd:element name="samplingAlgorithm" ref="tns:algorithm"/> 
      <xsd:element name="datasetList" ref="tns:datasetList"/> 
      <xsd:element name="validationData" ref="tns:dataset"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 
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Figure 6  Execution steps of meta-learning process 

 

 


