Int. J. Communication Networks and Distributed Systems, Vol. x, No. x, zxzx 1

Analytical Evaluation of P2P Reputation
Systems

Brent Lagesse*

Cyberspace Science and Information Intelligence Research Group
Computational Science and Engineering Division

Oak Ridge National Laboratory

E-mail: lagessebj@ornl.gov

*Corresponding author

Abstract:

Despite widespread use of reputation mechanisms in P2P systems,
little has been done in the area of analytical evaluation of these
mechanisms. Current approaches for evaluation involve simulation and
experimentation. These approaches provide evaluation of the mechanism
in a few settings in which the experiment is designed; however, it is
difficult to use these simulations for direct comparison of reputation
mechanisms over a large number of systems and attacker models. In this
paper, we present several analytical metrics and a utility-based method
for evaluating reputation mechanisms. Further, we provide a case study
of an evaluation of the EigenTrust reputation mechanism to demonstrate
the use of these metrics and methods.
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1 Introduction

Reputation mechanisms are used for a wide variety of applications to predict with
which entities the peer is likely to interact best. In peer-to-peer (P2P) systems, they
have been used extensively as a form of security for access to resources. Reputation
mechanisms are typically designed to prevent malicious or unreliable peers from
providing invalid or malicious resources. Further, some reputation mechanisms are
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used to prevent freeloading by giving preference to peers who are known to provide
valid and useful resources.

The difficulty with implementing effective reputation mechanisms is that the
mechanism itself introduces vulnerabilities into the system. Reputation mechanisms
provide opportunities for attackers to game the system and manipulate the results
that are presented to the user. For example, if an attacker can lie about reputation,
it can promote itself as highly reputable peer and benign peers as poorly reputable
peers. Additionally, an attacker can disrupt the communication that is required to
transmit reputation information and prevent negative information about itself from
arriving at a peer it wants to attack.

Reputation mechanisms are traditionally tested through simulation or
experimentation; however, little work has been done in establishing general
analytical metrics for reputation systems. Mundinger and Le Boudec [2008] analyzes
liars in reputation mechanisms for mobile ad-hoc networks, but their work does
not generalize to all reputation mechanisms. Dellarocas [2006] point out efficiency
bounds and design principles of distributed reputation mechanisms as an important
open area of research. This paper introduces metrics for reputation mechanisms (not
to be confused with metrics for reputation, for example Srivatsa et al. [2005]) and an
extensible framework for mathematical analysis of reputation mechanisms. Metrics
for reputation mechanisms do not focus on how reputation is described in the
mechanism, but rather they focus on the effectiveness of the reputation mechanism
in selecting trustworthy resources. This paper describes two metrics, accuracy and
convergence along with a utility model, and demonstrates their effectiveness in
conjunction with our evaluation framework through a case study analysis of the
EigenTrust reputation mechanism (Kamvar et al. [2003]) in Section 5.1.

Naturally, metrics do not encompass the whole of a reputation mechanism.
There are many qualitative properties of reputation mechanisms such as those
discussed in Hoffman et al. [2009]. The purpose of this paper is not to reduce the
decision of which reputation mechanism to use to a mathematical equation, but
rather to provide metrics to quantify aspects of reputation mechanisms and assist
in the selection and development of reputation mechanisms for use in different types
of systems and against different types of attackers.

2 Background

P2P systems involve peers that act as both clients and servers of resources. In this
paper, we use resource as a generic term that could mean anything provided by
a peer, such as a file, a printer, or a software service. These systems rely on each
peer contributing resources in order for the overall utility of the system to increase.
When a peer provides a faulty resource, whether unknowingly or maliciously, the
utility provided by a P2P system decreases. In the context of a P2P system, it is
the goal of a reputation system to increase the overall utility of the P2P system.
In this sense, resource access security is achieved when the reputation system
enables the P2P system to provide the same quality of service as the P2P system
without any malicious peers. It is not theoretically possible to achieve this in a non-
trivial utility and attack models since any reputation system will add overhead in
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terms of processing or communication, but under certain attack and utility models,
significant improvements can often be achieved.

Dozens of reputation systems have been proposed in research literature and
in practice. Some of these systems include centralized storage of reputation
information (Ebay [2009]) others acquire reputation information on demand from
the originating peer (Walsh and Sirer [2006]) while others store all reputation about
a peer at a peer that is unlikely to be the originating peer Kamvar et al. [2003].
Many reputation mechanisms compute local reputation values (Nandi et al. [2005]
and Walsh and Sirer [2006]) and others compute a global trust value (Ebay [2009]
and Kamvar et al. [2003]). Despite this diversity, there is an underlying model
that all reputation mechanisms follow (Aberer and Despotovic [2001], Lagesse
et al. [2009] and Hoffman et al. [2009]). In some way, the information must be
acquired (for example, through experience or through communication with other
peers) and a reputation must be calculated (for example, through summing all
of the positive votes for a peer). Reputation mechanisms include other aspects,
such as the presentation of the information and the method of making decisions
based on reputation, but acquisition and calculation appear across all reputation
mechanisms. These common components will be the basis of our analysis of
reputation mechanisms.

As mentioned in Section 1, there are many well-known attacks against reputation
mechanisms. Common attacks include sybil attacks, collusion attacks, whitewashing
attacks, and denial of service attacks. Sybil attacks result from an attacker creating
a large number of peers and injecting them into the system. These attacks can be
used to both influence reputation calculation and affect the acquisition of reputation
information. Collusion attacks involve malicious peers working together to raise
their own reputation values or to lower the reputation values of other peers. For
example, if a reputation mechanism weights the selection of a peer based on their
reputation, then two peers could collude so that one peer acquires a high reputation
value by being honest and then recommends the second peer, which acts maliciously.
Whitewashing attacks occur when a peer leaves the system, and then returns (often
under a new username) to attempt to lose any negative reputation that it had
acquired. Denial of service attacks can be used by malicious peers to prevent a
benign peer from transmitting, receiving, or computing reputation information. For
example, a malicious peer could drop any reputation information passed through
it that hurts its reputation. Each reputation mechanisms has a set of attacks that
it performs well against and a set of attacks to which it is vulnerable.

3 Models

This paper proposes two models utilized in evaluation. The evaluative models are
used to produce a specific metric. One model describes the peers in the system and
another describes the reputation data in the system. The models are sufficiently
generic so that they can be extended to evaluate complex behaviors and additional
aspects of security.

The evaluative model is designed to determine average-case performance of the
P2P system.
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Figure 1 Evaluation Framework

Table 1 Table of Example Model Terms

P Probability of attack

Sren Benign failure rate

fmat | Malcious failure rate

Mygep, | Departure rate of mobile peers
M | Arrival rate of mobile peers

C Connectivity of peers

3.1 Peer Model

The peer model describes the behavior of peers in the system. At the highest level,
the peer model describes the population of peer classes in a system. The peer model
describes how different classes of peers compose the system. The peer model may
be dynamic and change over time. It is described by a class distribution function
over the execution time of the system. The peer model can consist of several peer
classes. These classes define the individual peer behavior types. There may be many
different classes since a system may have many classes of attackers or benign peers
or some even hybrid peers. The peer behavior class defines the behavior of a node
when responding to a request for reputation information. In this section we describe
two basic types of peers, benign and malicious.

The peer model classes consist of a mathematical description of the behavior
of the peer in terms of its response to requests for reputation information and its
computation of reputation. To see how these classes are described in practice, see
the case study in Section 5.



P2P Evaluation 5
3.1.1 Benign Class

The benign class describes the behavior of benign peers in the system. Generally
these peers will correctly describe their interactions and correctly answer queries
about other peers; however, this is not always the case and some benign peers may
be faulty in that they sometimes fail with no malicious intent. As a result, benign
classes will tend to exhibit mostly correct behavior with a small error value. For
example, a simple benign class could be described by Equation 1.

Py = fben (1)

3.1.2 Malicious Class

The attacker model class describes the behavior of malicious peers in the system.
These attackers may be colluding or acting individually. Attackers are described
by their behavior in terms of their attack probability and (when relevant) how
they report reputation information about other peers at a given system state. For
example, a simple benign class could be described by Equation 2.

Py = fmal (2)

3.2 Reputation Data Model

The reputation data model describes whether or not the data is accessible within
the necessary time frame. This means the model can be extended to include
many factors of importance such as delay tolerance, mobility, and intermittent
connectivity. The reputation data model is used to determine the reputation
convergence. In its most basic form, the reputation data model is used to determine
the residual reputation value in a reputation computation. For example, the
reputation data model could include information such as Equations 3 - 5 where the
departure rate, arrival rate, and average connectivity of peers in the system are
constants, independent of time.

Maep(t) =m (3)

My (t) =a (4)

Ct)=c (5)
4 Metrics

Components of reputation mechanisms should be designed to either increase the
accuracy of the mechanism or increase the speed at which the values converge. As
a result, the two main domains of metrics introduced in this section are reputation
accuracy and reputation convergence. This section also introduces reputation
effectiveness, a composite metric that is based on information from the two main
metric domains. Furthermore, we use utility modeling to further extract information
about reputation mechanisms. Utility modeling allows us to determine how useful
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Table 2 Table of Common Metric Notation

o Reputation accuracy

o, | Random selection accuracy

Reputation convergence

€ Reputation effect

R, | Reputation from random selection

R, | Reputation from reputation mechanism
Rg | Actual peer behavior

n Number of peers available

T Threshold for residual convergence

a particular reputation mechanism will be under a given system and preference
model. We provide general forms for each of the metrics to enable consistent use
of the metrics. The general form allows mechanism developers to assure that the
specific form they use to describe their mechanism describes the correct aspects of
mechanism behavior.

4.1 Reputation Accuracy

Reputation accuracy describes how accurately the reputation mechanism labels
and predicts the actions of other peers (or resources). Accuracy is a value within
the continuous range of [0..1]. A high accuracy value does not necessarily imply
secure selection of peers since all peers in the system may be faulty or malicious.
Rather a high accuracy value implies that the reputation mechanism is able to
accurately label the level of trustworthiness of peers. As shown in Section 5, the
exact formulation of reputation accuracy depends on the reputation mechanism
being evaluated; however, Equation 6 provides the general case for the value.

A reputation mechanism should perform better than random selection for a
given attack or it is worthless against that particular attack. Intuitively, we compare
to random selection because a reputation mechanism that operates in a system with
completely reliable peers could easily provide the same benefit as randomly selecting
peers. The normalized accuracy metric shows that the reputation mechanism in
that situation would provide no benefit to the system, and incur the computational
and communication overheads of running a reputation mechanism. As a result, we
also describe a metric for determining the success of the reputation mechanism in
comparison to no mechanism at all with Equation 7.

1 . .
Y IRy - Ry
n

(6)

n—1 R,—Rj

, Zi:O Rngg

of = —— e (7)
n

4.2  Reputation Convergence

Reputation convergence describes how close to the actual convergent reputation
value a reputation value will be within a given time frame. Convergence is a value
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within the range of [0..1]. For example, in a centralized system such as Ebay
[2009], the convergence value will typically be 1 since the values required for the
reputation computation are all available in the central peer; however, in a system
such as Credence (Walsh and Sirer [2006]), the reputation information is distributed
throughout the system on individual peers. The information must be retrieved and
cross-correlated which means that connectivity disruptions can cause values to be
unreliable at a given time. As the convergence of a distributed mechanism may never
reach a final value, we will define convergence to describe the point when the residual
change drops below a threshold 7. That is to say a mechanism is 7-convergent when
the change consistently drops below 7% of the previous value. As with reputation
accuracy, the computation of reputation convergence is dependent on the individual
reputation mechanism. The general form for reputation convergence can be found in
Equation 8. We normalize the residual at a given time with the actual value expected
by the reputation computation if perfect information was available (R,(c0)).

(8)

Rp(o0)
4.3 Effectiveness

While the previous two metrics can expose the performance of the critical
components of a reputation mechanism, they do not reveal the effectiveness of
a reputation mechanism for a given system. For example, if the computation
of reputation is perfect, but the required information never arrives, then the
mechanism provides no benefit. Likewise, if the information is always available, but
the computation component does not perform better than random guessing, then
the reputation mechanism provides no benefit.

Based on the two previous metrics, we propose a metric of the effectiveness of
a reputation mechanism as follows:

a X x

(9)

€ =
o7

Where € is the effect a reputation mechanism has, « is how accurately a
reputation mechanism labels peers, and x is how quickly the reputation value
converges (necessary for distributed computation).

The reputation effect gives a quantitative means to analytically compare the
effectiveness of reputation mechanisms where no such metric previously existed.
Section 5 provides example of how reputation effect can be derived for EigenTrust.

4.4 Utility Modeling

Reputation accuracy, convergence, and effect are useful for comparisons, but
they do not provide a complete picture of a reputation mechanism. In order to
provide a more comprehensive view of the reputation mechanism, we use utility
modeling. Through utility modeling, we can not only incorporate the effect of a
reputation mechanism into quantitative comparisons, but also model and compare
the reputation mechanism in different systems with different peer preferences.
For example, in a file sharing system peer preference may be for bandwidth;
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however, in a distributed computation system, a greater preference may be put on
the validity of resource access. As a result, rather than saying that a particular
reputation mechanism fits a scenario better than another reputation mechanism
because of some qualitative properties, we can show that it fits that situation better
quantitatively.

Our utility model of P2P systems comes from the general model described in
Lagesse and Kumar [2008]. We provide a concise presentation of that utility model
for reference in this paper in Equations 10 - 11. A more comprehensive description
can be found in Appendix A.

Table 3 Concise Table of Utility Terms

Upen Utility Model for a Benign Peer

Unal Utility Model for a Malicious Peer

Bypen Benign Benefit

Bgce Access Benefit

Boech Mechanism Benefit

Binail Malicious Benefit

Chen Benign Cost

Chal Malicious Cost

Clric Cost from being a Victim

Chnech Mechanism Cost

Clise Cost of being Discovered as Attacker

Crep Overhead cost of reputation mechanism

Ao Number of peers available

Arep Number of peers available after applying reputation
Uben = Bacc - (Cben + C’uic) + Bmech - Cmech (10)
Umal = Bmal - (Cben + Cdisc + Cmal) - Cmech (11)

Since in a comparison between reputation mechanisms the expected value of the
utility from the system itself (such as cost of entering the system, cost of staying
in the system, etc.) will be equal for all mechanisms, this section will only focus
only on the utility contribution of the reputation mechanism itself. A successful
reputation mechanism has four main effects:

1. decreased expected cost of being a victim

2. decreased expected benefit of a successful attack
3. reduction of available resources

4. increased overhead cost

The first two are similar in that they are the values from the general utility
equation multiplied by the reputation effect. The third factor is the result of
error in the reputation mechanism that causes a peer to incorrectly refuse
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Number of benign peers

Total number of peers

Number of unique peers previously interacted with
Attacking peer class

Collusive peer class

Average number of requests between benign peers
Probability of success with a benign peer

Current timestep since start of system

Attack or failure rate

Rate of interaction of malicious peers

Reported reputation value

Actual reputation value

ST OmowmE F

=Y
83
=l

resources from a benign peer. The fourth factor is the overhead cost for using the
mechanism, expressed as a normalized form of the service, processing, memory, and
communications costs added by the reputation mechanism, weighted based on the
preferences of the peer.

The utility equations for a benign peer and a malicious peer with the addition
of a reputation mechanism in the system can be seen in Equation 12 and 13
respectively, where A, is the amount of a desired resources available after the
reputation mechanism is applied and A;,; is the amount that would have been
available without the reputation mechanism.

Are

Uben = Bben X P Cben - Cvic X €— Crep (12)
Atot

Umal = Bmal X €— Cmal - Cben - Crep (13)

5 Case Study

In this section we present a case study of the EigenTrust reputation mechanism
presented by Kamvar et al. [2003] using the reputation metrics described in Section
4.

5.1 FEigenTrust

EigenTrust is a reputation mechanism that uses transitive trust to determine
a global trust value for each peer. The mechanism populates a matrix of the
number of positive interactions minus the number of negative interactions with
each peer (where any negative value is replaced with a 0). The matrix is then
normalized so that each row sums to 1. Then the eigenvector of the matrix
produces a column vector that contains the global reputation value for each peer.
EigenTrust selects peers with the global reputation as the probability of selection.
The completely distributed version of EigenTrust performs this computation by
exchanging reputation information with peers that have interacted together. The
resulting reputation values are then stored in a distributed hash table to reduce the
likelihood of successful manipuation of reputation values.
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Figure 2 EigenTrust Matrix

5.2 Analysis

We begin by analyzing the reputation accuracy and reputation convergence metrics.
Since reputation is considered transitive in EigenTrust, the effect of any given peer’s
opinion on the calculation of the global reputation value is equal to the difference
from the real value times the reputation that the peer has obtained, as shown in
Equation 14. The rate of convergence of the reputation value in EigenTrust can
be described by the rate of convergence of the distributed eigenvector calculation.
This is shown in Equation 15.

a=> R} x|RepR;; — ActR; | (14)
E Ao
X = NN-1 X )\71 (15)

Where the reputation accuracy, «, is computed with R}', as the global reputation
value for peer i which is the i*" element of the principal eigenvector of matrix R.
RepR; ; is the reported reputation of j by ¢ and ActR; ; is the actual reputation
that should have been reported for j by 1.

The reputation convergence, x, is computed with F being the number of unique
peers previously interacted with (included pre-trusted peers) and n peers in the
system to compute the average local network size per peer and Ay and A\; are the
second and first eigenvalues of the normalized reputation matrix (since the matrix
is a transition matrix, A; will always be 1).

In the discussion that follows, all parameters used follow the simulation setup
described in Kamvar et al. [2003] unless otherwise noted. In the case that we were
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uncertain about a parameter needed for our calculations, we have noted our estimate
of that value.

In order to compute the residual as shown in the EigenTrust paper, we take the
matrix convergence and raise it to increasingly larger powers to calculate how much
of the residual remains after each exchange of reputation information as shown in
Figure 3. In comparing our analytical results to the simulation results of EigenTrust,
we note that we have estimated an average coverage of 20% of the system and a
second eigenvalue of 0.465. Our results are similar to those from simulation data,
though the simulation shows a slightly quicker convergence than our analytical
results.

The accuracy of EigenTrust is dependent on the amount of reputation a peer
can obtain times the amount it can deviate its opinion from the truth. Hence, the
goal of an attack (particularly a collusive attack with k& — n attackers as based on
Figure 2) against an EigenTrust reputation mechanism is to maximize the average
value of Region II from Figure 2 (which describes an EigenTrust matrix with n
peers and k benign peers) in order to maximize the effect of Regions III and IV
(which are easily controllable by an attacker). Likewise, the reputation value will
converge largely based on the amount of interaction in the system along with the
convergence rate of the eigenvector, as noted in Haveliwala and Kamvar [2003].
If each peer in the system has interacted with every other peer in the system,
then the system is fully connected and E = N x N — 1, resulting in the only factor
of convergence being the second eigenvalue of the reputation matrix. As a result,
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we see that the reputation effect from EigenTrust would degrade when applied to
sparsely interacting systems.

We can analytically produce results that approximately match the simulations
done by Kamvar et al. [2003]. Since the attack of a naive individual is not
an interesting case in reputation mechanisms, we will focus our discussion on
collusive attack strategies. In all cases, Region I will always be populated (before
normalization) with the average value of P(t) x (2 x @ — 1) where P is the average
number of requests by benign peers to benign peers in the system up through time
t and @ is the average quality of benign peer uploads (this value is set to 0.95 to
account for the fact that benign peers sometimes make mistakes). The reason for
the term 2 x (Q — 1) is that for every negative transaction, the peer will have its
score reduced, rather than just not increased. This function produces the expected
rating of a benign peer by another benign peer at a given time. In the collusive
attacker models, attackers set benign peer ratings to 0, so Region III will be all be
0, and attackers set each others’ reputation to 1.

The most interesting region for studying collusive attacks is Region II. This
is the region that defines to what extent benign peers trust malicious peers. The
first collusive attack simulated in EigenTrust involves all malicious peers always
attacking. As a result Region IT will become 0 and effectively render the attackers
useless when the eigenvector is calculated and as a result we can analytically
produce approximately the same results as the EigenTrust simulations. The second
attack involves attacking at a rate of f%. Analytical evaluation of this attack
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Figure 5 The Effects of Sparse Connectivity on EigenTrust

becomes slightly more difficult because of the probabilistic component; however, we
can sum the expected reputation of the average peer in Region II over the course
of the system run where the expected reputation at time t is defined by Equation
16 where 7 is the current reputation of a peer, f is the rate at which the malcious
peer attacks, and r is the rate at which malicious peers interact.

EzxpectedTrust(t) = Zz x Pr(i,t) (16)

Pr(i,t)=Pr(i—1,t—1)x (1 — f) xr+ Pr(i,t — 1)
x(1—=r)+Pr(i+1,t—1)x fxr (17)

In Figure 4 we present the results of the most effective attack against EigenTrust,
in which peers divide the labor of obtaining good reputations and attack. To do this
we identify two classes of malicious peers, D and B. Peers of class D obtain high
reputations and report that the attackers, class B, are highly reputable. In order
to validate the model, we recreated similar results by solving for the eigenvector of
the reputation matrix in order to provide a steady state analysis (which is what
EigenTrust simulations do by dropping the results from the first 15 query cycles of
each simulation).

In Figure 5 we show the effect of increasing the number of peers in an EigenTrust
system while holding constant the average rate of connectivity between peers. For
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this figure we start with a Ao value of 0.65, a fully connected system (E = N x
(N —1) =9900), and a perfectly accurate reputation report (o = 1). As a result, it
is obvious that EigenTrust is effective in reasonably well-connected environments;
however, it quickly degrades in quality with an increase in the number of information
exchanges needed for the global reputation values to converge.

It is noted that the point of this exercise is to show that a reputation mechanism
can be broken down analytically. As the entire details of every simulation result in
Kamvar et al. [2003] were not available, we made some assumptions to compute
results. In general the pattern of the plots in Figures 3, 4, and 5 are similar to those
in Kamvar et al. [2003]. Through the proposed model, developers and researchers
can compare and evaluate their reputation mechanisms, provided the appropriate
analytical equations and algorithmic descriptions are available.

6 Conclusion

In this paper we have presented several metrics and a utility-based approach for the
analytical evaluation of reputation mechanisms in P2P systems. We believe that
these approaches provide a tool for evaluating these mechanisms where previous
evaluations fell short. The analytical evaluation of reputation mechanisms allows a
system designer to compare the performance of a variety of reputation mechanisms
under varying circumstances without the need for writing simulations. As a result, it
becomes easier to compare and share results with others. Further, the mathematical
breakdown of reputation mechanisms can assist in discovering the root cause of
weaknesses in the mechanism as shown in our case study in Section 5.

Acknowledgements

Prepared by Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee
37831-6285, managed by UTBattelle, LLC, for the U.S. Department of Energy
under contract DE-AC05-000R22725.

References

K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system. In
CIKM °01: Proceedings of the tenth international conference on Information and
knowledge management, pages 310-317, New York, NY, USA, 2001. ACM. ISBN
1-58113-436-3.

C. Dellarocas. Reputation mechanisms. In Handbook on Economics and Information
Systems, page 2006. Elsevier Publishing, 2006.

Ebay. Ebay, July 2009. http://www.ebay.com.

T. Haveliwala and S. Kamvar. The second eigenvalue of the google
matrix. Technical Report 20, Stanford University, 2003. URL
http://www.stanford.edu/ taherh/papers/secondeigenvalue.pdf.

K. Hoffman, D. Zage, and C. Nita-Rotaru. A survey of attack and defense techniques for
reputation systems. ACM Comput. Surv., 42(1):1-31, 2009. ISSN 0360-0300.



P2P FEvaluation 15

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for
reputation management in P2P networks. In WWW, pages 640-651, 2003.

B. Lagesse and M. Kumar. A novel utility and game-theoretic based security
mechanism for mobile p2p systems. Pervasive Computing and Communications, IEEE
International Conference on, 0:486—491, 2008.

B. Lagesse, M. Kumar, J. M. Paluska, and M. Wright. Dtt: A distributed trust toolkit for
pervasive systems. Pervasive Computing and Communications, IEEE International
Conference on, 0:1-8, 2009.

J. Mundinger and J.-Y. Le Boudec. Analysis of a reputation system for mobile ad-hoc
networks with liars. Perform. Ewval., 65(3-4):212-226, 2008. ISSN 0166-5316.

A. Nandi, T.-W. J. Ngan, A. Singh, P. Druschel, and D. S. Wallach. Scrivener: providing
incentives in cooperative content distribution systems. In Middleware 05: Proceedings
of the ACM/IFIP/USENIX 2005 International Conference on Middleware, pages 270—
291, New York, NY, USA, 2005. Springer-Verlag New York, Inc.

M. Srivatsa, L. Xiong, and L. Liu. Trustguard: countering vulnerabilities in reputation
management for decentralized overlay networks. In WWW ’05: Proceedings of the
14th international conference on World Wide Web, pages 422-431, New York, NY,
USA, 2005. ACM. ISBN 1-59593-046-9.

K. Walsh and E. G. Sirer. Experience with an object reputation system for peer-to-peer
filesharing. In NSDI. USENIX, 2006.



16 B.J. Lagesse
A Utilty Model

Table 4 Table of Utility Terms

Uben
Umal

Unyp

Utility Model for a Benign Peer
Utility Model for a Malicious Peer
Utility Model for a Hybrid Peer

U
B
c

Total Utility
Total Benefit
Total Cost

Bben
Bacc

Bmech
Bmal

Benign Benefit

Access Benefit

Mechanism Benefit

Malicious Benefit

Benefit from Spying

Benefit from Denying Service

Benefit from Serving Faulty Resources

C'mal
Cvic

C'conn
Cres
Cvmech
Cms
Cmd

Cdisc

Benign Cost

Malicious Cost

Cost from being a Victim

Cost from being Spied On

Cost from being Denied Service
Cost from being Served Faulty Resources
Cost being Connected to the System
Cost of Providing Resources
Mechanism Cost

Cost of Spying

Cost of Denying Service

Cost of Serving Faulty Resources
Cost of being Discovered as Attacker

Cm'czcs-l-Cd-l-Cf

Bben = Bacc + Bmech

Bmal = Bs +Bd+Bf

Cben = Cconn + Cres + Cmech

Cmal = Cms + Cmd + Cmf

B = Bben + Bmal

C= Cben + Cmal + Cm'c + Cdisc

U=B-C
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Uhyb - (Bacc + Bmal) - (Cben + Cm'c + Cdisc + Cmal)

Uben - Bacc - (Cben + Cvic)

Umal == Bmal - (Cben + Cdisc + Cmal)



