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Abstract— Application Service Providers (ASPs) obtaining resources from 
multiple clouds have to contend with different management and control platforms 
employed by the cloud service providers (CSPs) and network service providers 
(NSP). Distributing applications on multiple clouds has a number of benefits, but 
absence of a common multi-cloud management platform that would allow ASPs 
dynamic and real time control over resources across multiple clouds and 
interconnecting networks makes this task arduous. Open Application Delivery 
Network (OpenADN), a multi-cloud management and control platform, fills this 
gap. However, performance issues of such a complex, distributed and multi-
threaded platform, not tackled appropriately, may neutralize some of the gains 
accruable to the ASPs. In this paper, we establish the need for and methods of 
collecting precise and fine-grained behavioral data of OpenADN like platforms 
that can be used to optimize their behavior to control operational cost, 
performance (e.g., latency) and energy consumption. 
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1 Introduction 

Enterprises may obtain virtual resources from cloud service providers for 
their internal functions or to provide services to others. In the latter case, they 
would be known as application service providers (ASPs). Use of resources from 
single clouds has become commonplace in recent years in the government 
(Figliola and Fischer, 2015) and businesses (Aljabre, 2012). The enterprises are 
now turning to multiple public clouds, also known as intercloud (AlZain et al., 
2013), for added benefits of lower cost, increased flexibility, greater reliability, 
reduced latency and a larger number of specialized features. On the flip-side, use 
of resources on multiple clouds brings in the complexity of not only interfacing 
with disparate clouds, but also the requirement of controlling the wide area 
network connecting the clouds.  

The term software-defined infrastructures (SDI) refers to the virtualized 
resources that the Cloud Service Providers (CSPs) and the Network Service 
Providers (NSPs) offer through software-based control and management systems. 
The physical devices, on which these virtual infrastructures are created, could 
themselves be located in one or more datacenters of a cloud or diverse and 
geographically separated clouds each controlling one or more datacenters. Some 
examples of control and management platforms for individual clouds include 
OpenStack and EC2 that virtualize computing and storage resources and 
OpenDaylight doing the same for network resources. Software control of 
infrastructure allows the flexibility of application specific virtual clouds to be 
carved out of virtual resources from multiple clouds interconnected with virtual 
wide-area-networking resources and to control dynamically and manage them. 
SDIs provide ASPs with such a converged view of resources provided by the 
cloud service providers. In the case of multi-cloud applications, an ASP needs to 
see a converged view of resources across multiple clouds as if they were all on 
one cloud. This would allow them to use resources available from many 
providers, through their APIs, in a manner that enables optimization of 
flexibility, reliability, latency, capital and operational expenses.  

 
The term application delivery network (ADN) has been used to refer to a 

distributed network architecture comprising of many different components, 
including 1) Application servers 2) Packet-level middleboxes 3) Message-level 
middleboxes, and 4) Network transport services, that are required to deploy and 
deliver modern applications. Applications deployed over multiple clouds share, 
in addition to compute and storage, networking resources as well. Virtualization 
creates isolated network contexts on the same physical infrastructure for tenants’ 
application specific requirements. The Internet only gives best-effort 
performance and ASPs requiring performance guarantees can get it only through 
static pre-provisioning of resources or by creating smart overlays. A more 
expensive but surefire way for an enterprise is to have its own private network. 
However, for most enterprises adopting a multi-cloud strategy means that they 
would also need a shared network infrastructure that can satisfy their 
requirements. There is no standard interface through which applications can 
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automatically and dynamically communicate their requirements to the network. 
OpenADN has been designed to solve this problem. 

 
OpenADN is a multi-cloud control and management software that helps 

deploy applications employing, controlling and managing resources across 
multiple CSP clouds and NSPs’ wide area networks. The general idea is simple: 
Large ASPs like Google have the resources to install application layer proxies at 
their points of presence in distributed locations so as to intercept service request 
and route it to the nearest datacenter. Through OpenADN smaller, network 
constrained ASPs can obtain such services from third party infrastructure 
providers, e.g., ISPs, who can route application messages through an appropriate 
set of controllers, proxies, and middleboxes. This way the ASPs can get the 
benefit of deploying distributed applications on multiple clouds to get increased 
responsiveness and resiliency economically [Paul et al., 2014].  

 
Software presenting an integrated virtualized environment of physical 

resources distributed across a number of public clouds and operating under 
disparate control and management software tends to be a complex system. 
Modularity is important in such systems for ease of development, maintenance 
and fate decoupling of the processes. They generally use multithreading for 
concurrent execution of a number of activities. If the modules, of such a system, 
do not work in harmony, performance suffers resulting in inefficient resource 
utilization and greater energy consumption (Khan et al., 2011). In other words, if 
the platform software has not been optimized, then the resources would be 
inefficiently utilized, resulting in sub-optimal system behavior and increase in 
operational expenditure. Such systems also lead to higher energy consumption 
and are contradictory to the notion of reducing the carbon footprint. Enterprises 
may face such situations leading to performance degradation, during operation, in 
which case the combined cost of usage and maintenance is high. Alternatively, 
they may insist that the control and management software be optimized for their 
situation before commissioning. This would require understanding the behavior 
of the software, through profiling, if possible in the production environment. 
Using well-known techniques, software engineers can isolate hotspots (problem 
areas in the system) that consume a disproportionate share of resources leading to 
sub-optimal behavior. Multithreading adds another level of complexity. It makes 
the system difficult to profile because characterizing the effects of interactions 
between threads becomes difficult as described in Waddington (2009). Efficient 
abstractions need to be developed to capture this behavior without resulting in 
exponential analysis times.  

Taking advantage of the first such system being available to us, we have 
attempted to characterize the behavior of OpenADN, under operation, and used 
several relevant profiling techniques to see what could cause the system to 
behave sub-optimally. This should spur the developers of such systems to fine-
tune their platforms, saving money for the users and reducing energy 
consumption. Section 2 describes the OpenADN platform highlighting its 
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distributed and multi-threaded nature. Section 3 deals with profiling approaches 
that can be used for platforms like OpenADN dealing with resources spread 
across multiple clouds. Section 4 takes up the discussion on experimental set-up 
and OpenADN profiling outcomes. It also discusses how these results could be 
useful in decisions about optimization. We draw conclusions from our study in 
Section 5. 
 
2  Managing Software Defined Infrastructure Over Multiple Clouds – 

OpenADN 

Most contemporary and future application deployments like Internet-of-
Things (IOT), Cyber-Physical Systems, mobile apps, massively parallel gaming 
and virtual reality tend to be distributed and need to use multiple clouds primarily 
due to cost and latency considerations. ASPs can use OpenADN to manage such 
distributed applications as if they were deployed on a single cloud. In the 
following sections, we shall see why the architecture of OpenADN is suitable for 
such massively distributed application scenarios. It is also relevant to discuss 
these details as they affect the performance of the system.  
 
2.1 Key Elements of OpenADN 

OpenADN is interposed between the clouds and the interconnecting network 
on one side and the application deployment environment on the other. It offers 
features for application architects, application developers, and application 
managers.  As shown in Figure 1, on the north side, OpenADN offers interfaces 
for application personnel to define the application resource requirements and 
deployment policies. On the south side, it interacts with various clouds and wide 
area networks. The northbound interfaces of OpenStack/ OpenDaylight become 
southbound interfaces of OpenADN. OpenADN architecture has a modular 
structure similar to the OpenDaylight SDN controller [OpenDaylight, 2015] with 
many southbound interfaces. While OpenStack allows implementing client 
policies in one cloud, OpenADN allows implementation of client policies 
uniformly among all the clouds.  
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Figure 1 OpenADN Multi-Cloud Management System 

 

Instead of directly manipulating the resources inside the clouds, OpenADN 
simply requests the respective cloud manager to create those resources. As shown 
in Figure 2, the ASP specifies the policies regarding when and where to create 
the resources. The management plane is centralized while the control plan of 
OpenADN has a hierarchical architecture. A hybrid design has been chosen for 
the control plane with the centralized global controller and distributed local 
controllers to get the benefits of both designs. While distributed architectures are 
more scalable and also more resilient against failures and security threats, 
centralized architectures are simpler to manage. A proper division of work 
between the global and the local controllers ensures a good combination of 
latency and accuracy. The data plane is distributed to take advantage of 
distributed applications and the network. The key building blocks of OpenADN 
are shown in Figure 2 

The global manager bootstraps the system and co-ordinates with the 
management platforms of various cloud providers for the acquisition of 
resources. Each of these resources, either owned or leased, is managed, 
controlled and programmed by the OpenADN control and management plane. 
The control plane is hierarchical, with a separate controller for each resource 
provider. A global controller, in turn, manages these local controllers, each 
residing on a virtual machine in the cloud. The control plane of OpenADN 
interacts with and programs the virtual resources like a virtual machine, virtual 
switch, and virtual router with the ASP’s deployment and delivery policies 
through a southbound control interface.  
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Figure 2 Key Building Blocks of OpenADN 
 
 

After bootstrap, the global controller takes over and launches one workflow 
manager for each workflow. The workflow manager checks for resources and 
launches workflow instances. The workflow manager commissions or 
decommissions workflows depending on the load. There is one local controller 
for each datacenter for quick local decisions. This works well with a highly 
distributed data plane. Considering the geographical spread of resources, the 
centralized global controller making it easy to introduce new services, propagate 
new policies and troubleshoot problems. OpenADN is an integrated 
infrastructure comprising both, message-level devices (e.g., firewalls) and 
packet-level devices (e.g., intrusion detection devices), hosting application-layer 
services as well as network-layer services. For massively distributed applications, 
like mobile healthcare monitoring or mobile app delivery, OpenADN allows 
multiple zones with each zone consisting of multiple clouds [Paul et al., 2014]. 
 
2.2 Massively Distributed Nature of OpenADN  

At the bootstrap stage, OpenADN creates a common global controller and 
one local controller for each data center. The global manager is manually started 
and, given the sensitive customer information it stores would normally be located 
in the ASP premises. Other functions can all be located on virtual machines in 
the cloud. OpenADN optimizes application service deployment by deploying the 
hosts of the distributed data plane, on virtual resources of various clouds. The 
system can perform many different tasks at the same time leading to better 
utilization of the hardware resources and ensure that the system as a whole makes 
progress all the time. OpenADN is essentially a multi-threaded system where 
performance is determined by the execution environment. This massively 
distributed data plane structure, with several threads in the state of operational 
stupor, makes the performance evaluation of OpenADN difficult and calls for 
specialized techniques that we shall discuss in the following sections. 
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3 Profiling Multi-cloud Delivery Platforms 

In this section, we discuss the importance of profiling led optimization 
followed by a selection of techniques that are suitable for profiling OpenADN 
and gathering data for optimization. 
 
3.1 Profiling and optimization of modular multithreaded systems 

Often application software has code that consumes a disproportionate amount 
of resources and produces high CPU loads. Cloud management platforms are no 
different. The whole idea of profiling multi-cloud delivery platforms is to work 
through the tiers and threads of these platforms and collect information about 
their behavior in different operational situations. To this end, it is important to 
use program analysis tools that are appropriate to the distributed, multi-threaded 
nature of these platforms and gather as much information as possible. As against 
this, if we choose to carry out intuitive optimization, it may result in modification 
of parts of the code that were not responsible for performance degradation and as 
a result may be a waste of time. A word of caution: too much optimization or too 
little of it are both considered detrimental. Donald Knuth stated in [Knuth, 1974] 
that programmers waste an enormous amount of time thinking about the speed of 
non-critical part of the program. About 97% of the time we should forget about 
small inefficiencies as premature optimization is the root of all evil. It is not only 
important for profiling to precede optimization, someone who has tried to do it 
would realize that reading of such a code does not provide reliable information, 
and far less program behavior, under execution. It is, therefore, important to use 
correct techniques that would produce reliable data based on which it can be 
decided whether optimization should be carried out, and if the answer is in the 
affirmative, what parts of the code should be optimized (Eklov, 2012). 
 
3.2 Profiling Techniques for Software Platforms 

Given the nature of OpenADN, most conventional profiling, characterization, 
and modeling methodologies do not work well because of full system 
virtualization. They do not provide definitive help in pinpointing the sections of 
code that should be optimized. We shall see here a combination of techniques 
that can be applied to a distributed, multi-threaded system (Waddington et al., 
2009). We divide these techniques into static, dynamic and concurrency 
profiling.  
 
1) Static Profiling  

In static analysis, program execution models are formally constructed 
(Jackson & Rinard, 2000). Models of multi-threaded systems can be used to 
explore all feasible inter-leavings and loops exhaustively to ensure correctness 
properties (Clarke et al., 2000). However, this kind of software is complex and 
may have a vast number of feasible inter-leavings making model checking 
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computationally expensive. Another shortcoming of static-analysis techniques is 
that they give an assessment of relative time and temporal ordering and do not 
give absolute time (Rinard, 2001). For assessment of absolute times, it would be 
necessary to perform dynamic profiling (Mars & Hundt, 2009). 
 
2) Dynamic Profiling 

This type of profiling allows observing system behavior while it is running. 
In Waddington at al. (2009), it has been mentioned that dynamic profiling 
provides ways to measure the absolute time of events like various function calls 
or the time spent by the CPU in a particular function. It is an active form of 
profiling in which the system being measured explicitly generates information 
about its execution parameters. Conversely, passive profiling relies on explicit 
inspection of control flow and execution state through an external entity, such as 
a probe or modified runtime environment. Three main families of dynamic 
profiling techniques are code instrumentation, statistical sampling and 
concurrency profiling.  
a) Code Instrumentation: A set of additional instructions called an instrument is 
injected into the target program. When the instrumented code is executed, it 
generates the required information. These instructions indicate events as they 
happen and provide their timing and frequency. Some instrumentation systems 
(Clarke et al., 2000) count function activations while others (Chen et al., 2010) 
count more fine-grained control flow transitions. This method can, thus, provide 
an absolute measure of these events. Instrumenting a program can cause changes 
in the performance of the program, potentially causing inaccurate results and has 
to be carried out carefully in a controlled manner. 
b) Statistical Profiling: In this method the program state is randomly sampled 
when it is in execution. This involves recording a sample of values of the 
instruction register, program counter, stack, etc. to apply statistical techniques to 
these samples to deduce how much time is being spent in different parts of the 
program. This method is not as intrusive to the target program as the 
instrumentation method. They can show the relative amount of time spent in user 
mode versus interruptible kernel mode such as system call processing and also 
the user time out of the total execution time (Mars and Hundt, 2009 and Intel, 
2007). In OpenADN environment, this could, for example, provide valuable 
information on whether optimization should at all be attempted.  
c) Deterministic profiling: In this method all function calls, function returns, 
and exception events are monitored, and precise timings are obtained for the 
duration of these events and the intervals between them. OpenADN is largely 
written in Python. In Python, since there is an interpreter active during execution, 
the presence of instrumented code is not required to do deterministic profiling. 
Python automatically provides a hook (optional callback) for each event. Call 
count and time consumption statistics can be used to identify hotspots in code, 
which would be potential candidates for optimization. 
 
3) Concurrency Profiling 
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Concurrency profiling can additionally be used in multithreaded applications. 
Resource contention profiling collects detailed call stack information every time 
that competing threads are forced to wait for access to a shared resource. 
Concurrency visualization also collects more general information about how a 
multithreaded application interacts with itself, the hardware, the operating 
system, and other processes on the hosts. It can help locate performance 
bottlenecks, CPU underutilization and synchronization delays (Microsoft, 2013 
and Oracle, 2012) 
 
4 Multi-Cloud Platform profiling 

The complexity of the multi-threaded OpenADN platform necessitated 
collection of precise and fine-grained behavioral data while in execution, coupled 
with off-line analysis to help characterize the performance of the platform and 
possible need for optimization. Profiling of OpenADN was, therefore, carried out 
at multiple levels as shown in Figure 3. Platform level is a coarse grain profiling, 
which gives overall time spent in execution of the platform. Depending on the 
method used, this may give a broad idea about the time spent in useful activities 
and possibly in infructuous ones. The OpenADN module level profiling consists 
of profiling various functions while they interact with each other. This gives a 
fairly good idea of which system, external library or kernel functions are taking 
unduly long times. When required, we could do a still more fine-grain profiling 
at the statement level of the suspect functions to pin-point where the problem 
actually lies. We shall see how these were used in the case of OpenADN. 

 
Figure 3 Levels of OpenADN Profiling 

 

 
To validate the functionality, we ran OpenADN in a virtual environment 

created by Mininet [Lantz, 2015]]. Mininet allows emulating a whole virtual 
network running real kernel, switch and application code, on shared physical 
resources of a machine. The following virtual resources were created for 
profiling OpenADN: One service zone consisting of a global controller, two data 
center sites with a local controller each, a name-server, seven hosts per site and 
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WFM spawns one WFT for each zone where application is deployed 

Each WFT spawns multiple workflow instances depending on the load  

Each WFT needs a proxy to communicate with external users. WFM 
allocates proxy when it has resources. WFT runs exponential backoff for 
retrial. 

WFM attempts to get resources. At this time Local Controllers boot up 
independently and register with the GC 

client host simulating 10,000 users. The selection of stimuli (set-up and input 
data) and multiple runs of the platform ensured that behavioral data for most 
control paths were collected. 

To bring home the complexity of the OpenADN platform, we will briefly 
discuss its bootstrap and execution process using Figures 2 and 4 to explain the 
inter-relationship of the functional blocks.  
 

Figure 4 Functions of OpenADN relevant to the bootstrap process 

 

 
The global manager is the only module that needs to be started, and then the 
complete bootstrap process is automatic. The global controller launches one 
workflow manager for each zone. The flow of operations is as in Figure 5. 

 
 

 
 

Figure 5 The OpenADN bootstrap flow diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GC instantiates WFM that is responsible for deployment and runtime 
control of OpenADN workflows  
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4.1 Coarse Grain Analysis 

To get a broad idea of the efficiency of the platform code executing in a 
virtualized environment, the Unix time utility was used. The platform software 
was run to create virtual hosts over which the platform modules – global 
controller, local controller, name server, node controller, and clients were loaded 
and executed. The program was run to bootstrap the process and until all the 
modules were added and services started running. Some runs were performed for 
the same virtual environment and data from five of them are given in Table I. 

 
Table 1 Run time used for user and system activities 

 

(Time unit: seconds) 
Run 1 2 3 4 5 6 Average % Run time 
User Space 0.62 0.59 0.55 0.63 0.72 0.74 0.64 1.45% 
System Calls 0.65 0.73 0.75 0.96 1.58 1.65 1.05 2.38% 
Run time 34.65 35.22 35.6 42.67 56.01 60.74 44.15 100 

The elapsed time is the total platform run time for booting and starting new 
services, user-space time is for non-system calls or CPU time spent outside the 
kernel, and system-calls is time spent in kernel specific functions. 

Of the average total elapsed time of 44.15 seconds for which the platform 
software was executed, the time spent in user functions and kernel space was 
1.45% and 2.38%, respectively. This gives an indication that a large part of the 
total CPU time is spent in activities other than running user and system functions. 
It is possible that much of this time is being spent in I/O waits and sleep times for 
dealing with dependent asynchronous concurrent processes. However, it cannot 
yet be said whether this time relates to unavoidable delays and the situation can 
be improved through optimization. This called for the next level of profiling, i.e., 
at module/function level to see which of the modules are highly CPU intensive. 

For comparison, the same modules were also run on separate physical 
machines for comparison and the results obtained are given in Table 2.  

On physical machines, the platform does not have to spend time creating 
virtual machines for its own modules as well as for running services. Even in this 
case the overall user-space time is 17.49% and even less for kernel calls. Among 
these, the global controller used the time more effectively with user functions 

When WFM gets enough resources, the proxy node is initialized. It starts 
gathering resources to deploy the other services within the workflow. 
 

WFT starts the services for the workflow after the WFM has allocated it 
the required resources. Message and packet routing services are set up 

After each service is initialized, it connects to the OpenADN socket that 
opens a communication channel between the service and the platform. 
WFT attaches to a proxy port. Heartbeat reply service starts. 
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taking up to 41.64% of run time on an average. However, in the actual 
operational environment, these modules will be hosted on VMs that will take a 
finite amount of time to create, start, augment or migrate to another cloud. 

Table 2 Time used for user and system activities on physical machines 

Function User Space System Calls Run Time User (%) 
Name Server 14.161 5.072 229.438 6.17 
Global Controller 83.637 15.797 200.835 41.64 
Local Controller 18.549 7.16 175.57 10.57 
Node Controller 19.95 8.86 156.99 12.71 
Client 0.428 0.036 18.855 2.27 
Total 136.725 36.925 781.688 17.49 

 

 
This simple profiling indicates the possibility of higher load on the CPU, 

because of potentially wasteful activities like waiting on I/O calls and the sleep 
functions. While in many cases, where asynchronous linking of threads is used, 
some waiting would be unavoidable. However, one needs to see whether these 
could be optimized for 1) making the platform more efficient 2) correctly 
dimensioning the resources leased, and 3) distributing the workload properly. 
 
4.2 Deterministic Profiling of Functions of OpenADN 

Deterministic profiling of OpenADN programs was carried out to see 
execution pattern and the resulting CPU loads of various functions. There are 
built-in profilers that provide information about how often and how long various 
functions execute. A profiler like ‘profile’ or ‘cProfile’ in combination with a 
function based on ‘pstats’ (Python, 2009-15) provide statistics to make that is 
amenable to analysis. Figure 6 gives a sample output. 
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Figure 6 Sample deterministic profile run showing the creation of VMs and 
functions 

 
This run has been ordered on cumulative time (cumtime), which is the total 

CPU time (in seconds) a function executes including all the sub-functions it calls. 
The total number of calls to a function is in column ‘ncalls’ while the ‘tottime’ 
gives the CPU time excluding time taken by sub functions. The first ‘percall’ 
column does not include CPU time taken by sub-functions while the second 
‘percall’ column includes those. In this sample run, it can be seen that the total 
time that the platform software was executed was 77.621 seconds. Out of this, the 
simulator module took 77.613 seconds. Creation of virtual nameServer (called 
Fakenameserver) takes 5.010 seconds while global controller takes 5.009 
seconds.  

Another section of the simulation is shown in Figure 7. Creation of virtual 
resources and starting of functions like global controller, local controller, etc. was 
observed for several runs and these operations took an average of about 18.5% 
over the three runs shown in Table 3. It was initially suspected that the ZeroMQ 
messaging library [12] poller takes up a lot of CPU time. This was confirmed by 
a number of runs shown in Table 3. It can be calculated that polling operation 
took on an average 79.83% of the CPU time over these runs.  
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Figure 7 Sample run showing creation of local controller and client_host 

 
 

Table 3 CPU Time of selected functions 

 

This shows that there is a possibility that these operations can be studied 
further and optimized. However, at this stage, we are not sure which parts of the 
functions need to be looked into for higher consumption of CPU time. Polling 
library function, for instance, is called a number of times in many user functions. 
It would, therefore, be of interest to see how different statements within each 
function execute. 

If we dissect the virtual machine creation time among different functions, we 
see that the time taken by some of the important ones, for a typical run, as given 
in Table 4.  
 

Table 4 Time for different functional modules 

Module  
CPU Time (seconds) 

Fakenameserver 5.010 
Global controller 5.009 
Local controller 0.008 
Hosts 5.183 
Client host 0.012 

 

We will see later that the Name Server and the Global Controller sleep 
through most of the time. Their job is largely reactive in nature, getting activated 
when other modules need their services. 
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The sleep function is required to be invoked at several places in multi-
threaded software to allow interacting processes to wait for the required input to 
be available from the other processes. These times are sometimes decided based 
on intuition and contribute towards increasing total run time. 
 
4.3 Statement Level Analysis 

Profiling at the platform and function levels provided a good idea of the time 
spent by one or more CPUs in kernel space calls, user space calls and waiting for 
I/O and in various modules of OpenADN. It was observed that a large proportion 
(96.17%) time was spent in waiting for I/O. Polling operations took about 79% of 
the execution time. The program spent about 15 seconds of the total 100 seconds 
in sleep mode. OpenADN functional modules took up to about 5 seconds each. 
Translated over long operational periods some of these have the potential to 
become the antithesis to the efficient operation of the platform. 

The function level profiling, in particular, yielded CPU times for functions 
related to creation and loading platform modules, obtaining the resources and 
bootstrapping the platform. In this case, it confirmed that certain functions, e.g., 
the creation of virtual machines and linking, polling, heartbeat operation and 
sleep functions take unduly long part of the run time. The information from 
function-level profiling was not enough to tell us which modules to look into to 
locate the potential hot spots and optimize the software. As is often the case, the 
reason for a particular module or functionality taking a large amount of time 
could be pinpointed to some small part which may seem to be innocuous on a 
simple reading of the code. Some statements could trigger a library function or 
call to a special method that may not be so obvious. The function level profiling 
only times the explicit function calls and not the special methods called. Such 
profiling would not identify a slow operation in the library function like 
ZeroMQ. If a statement triggers the computation when using libraries, when 
there is no explicit call, function profiler will not go into the constituents. 

A more detailed statement level analysis of the platform software was 
undertaken to determine which parts of the program take more CPU time. A 
more intrusive line profiler that could go into each function and time execution of 
each statement was used for this purpose. The line-profiler described in Kernprof 
(2015) used in a judicious manner allows this kind of analysis. This profiler 
keeps track of multiple statement executions, sums up the total time each 
statement takes in multiple passes and avoids profiling overheads. The profiling 
result is a binary file that could be deciphered with ‘pstats’ or a similar function. 
The output consists of the following: 
a) Hits: Number of times that line was executed. 
b) Time: Total execution time 
c) Per Hit: Average amount of execution time 
d) % Time: Percentage of time spent on that line relative to the total amount of 

recorded time spent in the function. 
e) Line Contents: Actual source code. 
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The illustrations in Figure 7 to 11 show some of the portions of profiling data 
that indicate a possible need for optimization (column headings of figure 7 apply 
to figures up to 11). Figure 8 and nine show linking to the switch takes up a 
major percentage of the execution time. The name-server takes 9.9%, while the 
global controller takes 4.5%. The hosts take the longest accounting for 53% of 
the time. 

 
Figure 8 Creation of topology 

 
 

Figure 9 Creation of global controller 

 
Figure 10 indicates that the linking of hosts to the network takes about 51.6% of 
the time. 
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Figure 10 Profile run for linking hosts to a switch 

 
Figures 11 and 12 indicate that a large amount of time is taken up by the 

sleep function (the duration of which is sometimes programmed arbitrarily for 
synchronization) and the polling function during different phases of simulation. 
The global controller sleeps most of its execution time, and similar is the case 
with the name-server. This could mean that these functions are demanding more 
virtual resources than necessary and are leading to higher operational 
expenditure. 
 

Figure 11 Time spent in sleep function in the global controller module 
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Figure 12 Time taken by polling function 
 

 
 
Also, the function to check the ports for inter-process messages takes up 

90.5% of the entire simulation time. 
 
4.4 Concurrency Profiling of OpenADN 

While the recursive function level profiling that includes timing of 
execution of sub-functions and statement level profiling includes the effect of 
execution of various threads, the interaction may not be evident. To get a better 
understanding of the multi-threaded platform, a thread-aware profiling was 
carried out while the program was in execution. A sample of concurrency profile 
is given in Figure 13. This aspect of profiling is part of the future work. 

 
Figure 13 Concurrency profiling output 

 
 

The number of times a function is called is given by ‘ncall’ while ‘tsub’ is 
the time spent in a given function excluding subfunctions. The CPU time of 
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functions including its subfunctions is ‘ttot’. The average time ‘tavg’ is the 
average time spent in a function and its subfunctions in each call.  

This type of data could be used in conjunction with statement level profiling 
to see the times of execution of various statements vis-a-vis the threads to which 
they belong. Total time the CPU spends in a thread can be derived from the 
information available. In this paper, we base our conclusions on the profiling 
levels shown in Figure 3. 
 
5 Conclusions And Future Work 

Multi-cloud management systems can be quite complex and may have parts 
of the code that may consume a big share of CPU time during execution. This 
could lead to suboptimal application delivery, increased resource usage, and 
higher operational expenses. ASPs who use such systems would like to optimize 
their platforms to control their expenses over their operational lifetime and for 
other desirable features like reduced latency and reduced energy consumption.  

Intuition and reading of such multi-threaded code may not provide reliable 
information about what could be wrong with it. It becomes necessary to generate 
program profiles with data collected at various levels, i.e., platform, functions, 
and statements.  

For OpenADN, the top-level analysis reveals that the overall execution time 
has a large component of non-user, non-kernel time that could be explained by 
I/O waits. A concern that arises is that some part of this time could be spent 
unproductively using up resources and increasing the cost. If this is actually the 
case then OpenADN, or any such multi-cloud management platform, would not 
be able to optimize the use of virtual resources resulting in the instantiation of a 
larger than the required number of virtual machines because the ones that have 
already been started are unproductively busy. Similarly the un-optimized use of 
virtual network resources would result in a higher payout to the network 
infrastructure provider. A function level analysis makes apparent the functions 
that have potential hotspots. Design choices at the time of the development of 
OpenADN govern the use of functions that might cumulatively consume 
substantial time. Non-blocking input-output in the form of polling or putting 
processes to sleep are an example of these. We have observed that the processes 
of such a platform might slow down if the use of these functions is not optimized. 
Statement level profiling on all of the modules simultaneously allows interplay of 
threads and reveals the parts of the functions that could be helped with 
optimization efforts. In the case of OpenADN, it was confirmed that 
asynchronous input-output with the use of polling, sleep functions and heartbeat 
were consuming a disproportionate amount of processing resources. If they were 
not optimized carefully, the resulting inefficiency would have resulted in higher 
operational expenditure for the ASPs. 

Various runs of the platform with increasingly fine-grain profiling produced 
a large amount of data that was useful in deciding whether optimization should 
be attempted and, if it should, then what parts need to be tackled. Optimization is 
expensive and needs to be based on proper analysis of profiling data. From the 
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data collected for optimization, it was found that creation and interlinking of 
hosts to the network, polling of ports for inter-service communication, heartbeat 
used to check aliveness of the services and use of sleep functions accounted for a 
large amount of time and could be potential candidates for optimization efforts. 

Optimization could simply mean fine-tuning the sleep/wait times of 
processes built into the platform. On the other hand, there could be more serious 
issues, and optimization could involve a rewriting of some parts of the code. 

Based on the profiling data, optimization could involve the following: 
1. Critically examining the time spent in I/O waits (i.e. repeated polling of 

sockets for inter-service communication and request response mechanisms) 
and taking remedial measures wherever possible. 

2. Examining the use of sleep statements and fine-tuning their durations. 
3. Examining the use of heartbeat and ways to make it efficient. 
4. Optimizing the time take to create dynamically, destroy and migrate virtual 

resources. 
 

Profile-led optimization makes use of the results generated by deterministic, 
functional and statement level profiling to get optimized code. If the execution 
environment fairly represents the usage scenario, then profile guided feedback 
benefits optimization. Future work will involve demonstrating the usefulness of 
the approach in carrying out optimization of OpenADN. The scope of the 
problem at hand, however, was to see whether a combination of carefully 
selected profiling tools, working at different levels of the OpenADN program 
hierarchy (and by extension other similar platforms), would be able to pinpoint 
the bottlenecks that could cause higher consumption of virtual resources. From 
the results discussed above, it is clear that it would be in the interest of reduced 
cost and increased agility of doing the ASP business to carry out appropriate 
profiling at different levels as a precursor to optimization. 
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Figures, images and tables. 
 
 

Figure 1 OpenADN Multi-Cloud Management System 

 
 
 

Figure 2 Key Building Blocks of OpenADN 
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Figure 3 Levels of OpenADN Profiling 
 

 
Figure 4 Functions of OpenADN relevant to the bootstrap process 
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Figure 5 The OpenADN bootstrap flow diagram 

 

 
Figure 6 Sample deterministic profile run showing creation of VMs and functions 

 

GC instantiates WFM that is responsible for deployment and runtime 
control of OpenADN workflows 

WFM spawns one WFT for each zone where application is deployed 

Each WFT spawns multiple workflow instances depending on the load  

Each WFT needs a proxy to communicate with external users. WFM 
allocates proxy when it has resources. WFT runs exponential backoff for 
retrial. 

WFM attempts to get resources. At this time Local Controllers boot up 
independently and register with the GC 

When WFM gets enough resources, the proxy node is initialized. It starts 
gathering resources to deploy the other services within the workflow. 
 

WFT starts the services for the workflow after the WFM has allocated it 
the required resources. Message and packet routing services are set up 

After each service is initialized, it connects to the OpenADN socket that 
opens a communication channel between the service and the platform. 
WFT attaches to a proxy port. Heartbeat reply service starts. 
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Figure 7 Sample run showing creation of local controller and client_host 

 
 

 
 

Figure 8 Creation of topology 
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Figure 9 Creation of global controller 

 
 
 

Figure 10 Profile run for linking hosts to a switch 

 
 
 

Figure 11 Time spent in sleep function in global controller module 
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Figure 12 Time taken by polling function 
 

 
Figure 13 Concurrency profiling output 

 
 

Table 1 Run time used for user and system activities 
 

(time unit: seconds) 
Run 1 2 3 4 5 6 Average % Run time 
User Space 0.62 0.59 0.55 0.63 0.72 0.74 0.64 1.45% 
System Calls 0.65 0.73 0.75 0.96 1.58 1.65 1.05 2.38% 
Run time 34.65 35.22 35.6 42.67 56.01 60.74 44.15 100 
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Table 2 Time used for user and system activities on physical machines 

Function User Space System Calls Run Time User(%) 
Name Server 14.161 5.072 229.438 6.17 
Global Controller 83.637 15.797 200.835 41.64 
Local Controller 18.549 7.16 175.57 10.57 
Node Controller 19.95 8.86 156.99 12.71 
Client 0.428 0.036 18.855 2.27 
Total 136.725 36.925 781.688 17.49 

 

 
 

Table 3 CPU Time of selected functions 

 

 
Table 4 Time for different functional modules 

Module 
 
CPU time taken 
(seconds) 

Fakenameserver 5.010 
Global controller 5.009 
Local controller 0.008 
Hosts 5.183 
Client host 0.012 

 

 
 




