
1

Analysis of Application Delivery Platform for Software Defined
Infrastructures

Lav Gupta* and Raj Jain

Department of Computer Science and Engineering,
Washington University in St. Louis,
St. Louis, MO 63130
jain@wustl.edu
*Corresponding author

Mohammed Samaka

Department of Computer Science and Engineering,
Qatar University,
Doha, Qatar.
samaka.m@qu.edu.qa

Abstract— Application Service Providers (ASPs) obtaining resources from
multiple clouds have to contend with different management and control platforms
employed by the cloud service providers (CSPs) and network service providers
(NSP). Distributing applications on multiple clouds has a number of benefits, but
absence of a common multi-cloud management platform that would allow ASPs
dynamic and real time control over resources across multiple clouds and
interconnecting networks makes this task arduous. Open Application Delivery
Network (OpenADN), a multi-cloud management and control platform, fills this
gap. However, performance issues of such a complex, distributed and multi-
threaded platform, not tackled appropriately, may neutralize some of the gains
accruable to the ASPs. In this paper, we establish the need for and methods of
collecting precise and fine-grained behavioral data of OpenADN like platforms
that can be used to optimize their behavior to control operational cost,
performance (e.g., latency) and energy consumption.

Keywords—Software defined infrastructure, application delivery platform,
profiling, multi-cloud, inter-cloud, cloud services, network services, application
service providers, OpenADN, distributed systems, optimization

Lav Gupta is a senior member of IEEE. He received a BS degree from
Indian Institute of Technology, Roorkee, India in 1978 and MS degree
from Indian Institute of Technology, Kanpur, India in 1980. He is
currently pursuing Ph.D. degree in Computer Science & Engineering at
Washington University in St Louis, Missouri, USA. He has worked for
about 15 years in the area of telecommunications planning, deployment

This is pre-publication draft of the paper published in the International Journal of Communication
Networks and Distributed Systems, 2016, Vol. 17, No. 3

 L. Gupta, R. Jain and M. Samaka

2

and regulation. With the sector regulatory authority, he worked on
technology and regulation of next generation networks. He has also
worked as a senior teaching faculty of Computer Science and Access
Network Planning for a number of years in telecommunications academies
in India and the UAE. He is the author of one book, five articles and has
been a speaker at many international seminars. He was the recipient of the
Software Award from Computer Society of India in 1982 and best faculty
award at Etisalat Academy, UAE in 1998.

Raj Jain is a Fellow of IEEE, a Fellow of ACM, a Fellow of AAAS. He received
a BS degree in Electrical Engineering from APS University in Rewa, India in
1972 and an MS in Computer Science & Controls from IISc, Bangalore, India in
1974 and the Ph.D. degree in Applied Math/Computer Science from Harvard
University in 1978. Dr. Jain is currently the Barbara J. and Jerome R. Cox Jr.
Professor of Computer Science & Engineering at Washington University in St.
Louis. Previously, he was one of the Co-founders of Nayna Networks, Inc - a
next generation telecommunications systems company in San Jose, CA. He was a
Senior Consulting Engineer at Digital Equipment Corporation in Littleton, Mass
and then a professor of Computer and Information Sciences at Ohio State
University in Columbus, Ohio. He has 14 patents and has written or edited 12
books, 16 book chapters, 65+ journal and magazine papers, and 10e5+
conference papers. He is a winner of the ACM SIGCOMM Test of Time Award,
CDAC-ACCS Foundation Award 2009, and ranks among the top 90 in
CiteseerX's list of Most Cited Authors in Computer Science.

Mohammed Samaka is an associate professor of Computer Science in the
Department of Computer Science and Engineering (CSE), College of
Engineering at Qatar University. He obtained his Ph.D. and Master from
Loughborough University in England and a Post Graduate Diploma in
Computing from Dundee University in Scotland. He obtained his Bachelor of
Mathematics from Baghdad University. His current areas of research include
Wireless Software Architecture and Technology, Mobile Applications and
Services, Networking, e-Learning, and Computing Curricula Development.

This paper is a revised and expanded version of the paper, “Dynamic Analysis of
Application Delivery Network for Leveraging Software Defined Infrastructures,"
presented at the IEEE International Workshop on Software Defined Systems,
Tempe, AZ, USA, March 9-12, 2015, 2.

This work was made possible by the grant number NPRP 6-901-2-370 from
Qatar National Research Fund (a member of Qatar Foundation). The statements
made herein are solely the responsibility of the authors.

 Analysis of Application Delivery Platform for Software Defined Infrastructures

3

1 Introduction

Enterprises may obtain virtual resources from cloud service providers for
their internal functions or to provide services to others. In the latter case, they
would be known as application service providers (ASPs). Use of resources from
single clouds has become commonplace in recent years in the government
(Figliola and Fischer, 2015) and businesses (Aljabre, 2012). The enterprises are
now turning to multiple public clouds, also known as intercloud (AlZain et al.,
2013), for added benefits of lower cost, increased flexibility, greater reliability,
reduced latency and a larger number of specialized features. On the flip-side, use
of resources on multiple clouds brings in the complexity of not only interfacing
with disparate clouds, but also the requirement of controlling the wide area
network connecting the clouds.

The term software-defined infrastructures (SDI) refers to the virtualized
resources that the Cloud Service Providers (CSPs) and the Network Service
Providers (NSPs) offer through software-based control and management systems.
The physical devices, on which these virtual infrastructures are created, could
themselves be located in one or more datacenters of a cloud or diverse and
geographically separated clouds each controlling one or more datacenters. Some
examples of control and management platforms for individual clouds include
OpenStack and EC2 that virtualize computing and storage resources and
OpenDaylight doing the same for network resources. Software control of
infrastructure allows the flexibility of application specific virtual clouds to be
carved out of virtual resources from multiple clouds interconnected with virtual
wide-area-networking resources and to control dynamically and manage them.
SDIs provide ASPs with such a converged view of resources provided by the
cloud service providers. In the case of multi-cloud applications, an ASP needs to
see a converged view of resources across multiple clouds as if they were all on
one cloud. This would allow them to use resources available from many
providers, through their APIs, in a manner that enables optimization of
flexibility, reliability, latency, capital and operational expenses.

The term application delivery network (ADN) has been used to refer to a

distributed network architecture comprising of many different components,
including 1) Application servers 2) Packet-level middleboxes 3) Message-level
middleboxes, and 4) Network transport services, that are required to deploy and
deliver modern applications. Applications deployed over multiple clouds share,
in addition to compute and storage, networking resources as well. Virtualization
creates isolated network contexts on the same physical infrastructure for tenants’
application specific requirements. The Internet only gives best-effort
performance and ASPs requiring performance guarantees can get it only through
static pre-provisioning of resources or by creating smart overlays. A more
expensive but surefire way for an enterprise is to have its own private network.
However, for most enterprises adopting a multi-cloud strategy means that they
would also need a shared network infrastructure that can satisfy their
requirements. There is no standard interface through which applications can

 L. Gupta, R. Jain and M. Samaka

4

automatically and dynamically communicate their requirements to the network.
OpenADN has been designed to solve this problem.

OpenADN is a multi-cloud control and management software that helps

deploy applications employing, controlling and managing resources across
multiple CSP clouds and NSPs’ wide area networks. The general idea is simple:
Large ASPs like Google have the resources to install application layer proxies at
their points of presence in distributed locations so as to intercept service request
and route it to the nearest datacenter. Through OpenADN smaller, network
constrained ASPs can obtain such services from third party infrastructure
providers, e.g., ISPs, who can route application messages through an appropriate
set of controllers, proxies, and middleboxes. This way the ASPs can get the
benefit of deploying distributed applications on multiple clouds to get increased
responsiveness and resiliency economically [Paul et al., 2014].

Software presenting an integrated virtualized environment of physical

resources distributed across a number of public clouds and operating under
disparate control and management software tends to be a complex system.
Modularity is important in such systems for ease of development, maintenance
and fate decoupling of the processes. They generally use multithreading for
concurrent execution of a number of activities. If the modules, of such a system,
do not work in harmony, performance suffers resulting in inefficient resource
utilization and greater energy consumption (Khan et al., 2011). In other words, if
the platform software has not been optimized, then the resources would be
inefficiently utilized, resulting in sub-optimal system behavior and increase in
operational expenditure. Such systems also lead to higher energy consumption
and are contradictory to the notion of reducing the carbon footprint. Enterprises
may face such situations leading to performance degradation, during operation, in
which case the combined cost of usage and maintenance is high. Alternatively,
they may insist that the control and management software be optimized for their
situation before commissioning. This would require understanding the behavior
of the software, through profiling, if possible in the production environment.
Using well-known techniques, software engineers can isolate hotspots (problem
areas in the system) that consume a disproportionate share of resources leading to
sub-optimal behavior. Multithreading adds another level of complexity. It makes
the system difficult to profile because characterizing the effects of interactions
between threads becomes difficult as described in Waddington (2009). Efficient
abstractions need to be developed to capture this behavior without resulting in
exponential analysis times.

Taking advantage of the first such system being available to us, we have
attempted to characterize the behavior of OpenADN, under operation, and used
several relevant profiling techniques to see what could cause the system to
behave sub-optimally. This should spur the developers of such systems to fine-
tune their platforms, saving money for the users and reducing energy
consumption. Section 2 describes the OpenADN platform highlighting its

 Analysis of Application Delivery Platform for Software Defined Infrastructures

5

distributed and multi-threaded nature. Section 3 deals with profiling approaches
that can be used for platforms like OpenADN dealing with resources spread
across multiple clouds. Section 4 takes up the discussion on experimental set-up
and OpenADN profiling outcomes. It also discusses how these results could be
useful in decisions about optimization. We draw conclusions from our study in
Section 5.

2 Managing Software Defined Infrastructure Over Multiple Clouds –

OpenADN

Most contemporary and future application deployments like Internet-of-
Things (IOT), Cyber-Physical Systems, mobile apps, massively parallel gaming
and virtual reality tend to be distributed and need to use multiple clouds primarily
due to cost and latency considerations. ASPs can use OpenADN to manage such
distributed applications as if they were deployed on a single cloud. In the
following sections, we shall see why the architecture of OpenADN is suitable for
such massively distributed application scenarios. It is also relevant to discuss
these details as they affect the performance of the system.

2.1 Key Elements of OpenADN

OpenADN is interposed between the clouds and the interconnecting network
on one side and the application deployment environment on the other. It offers
features for application architects, application developers, and application
managers. As shown in Figure 1, on the north side, OpenADN offers interfaces
for application personnel to define the application resource requirements and
deployment policies. On the south side, it interacts with various clouds and wide
area networks. The northbound interfaces of OpenStack/ OpenDaylight become
southbound interfaces of OpenADN. OpenADN architecture has a modular
structure similar to the OpenDaylight SDN controller [OpenDaylight, 2015] with
many southbound interfaces. While OpenStack allows implementing client
policies in one cloud, OpenADN allows implementation of client policies
uniformly among all the clouds.

 L. Gupta, R. Jain and M. Samaka

6

Figure 1 OpenADN Multi-Cloud Management System

Instead of directly manipulating the resources inside the clouds, OpenADN
simply requests the respective cloud manager to create those resources. As shown
in Figure 2, the ASP specifies the policies regarding when and where to create
the resources. The management plane is centralized while the control plan of
OpenADN has a hierarchical architecture. A hybrid design has been chosen for
the control plane with the centralized global controller and distributed local
controllers to get the benefits of both designs. While distributed architectures are
more scalable and also more resilient against failures and security threats,
centralized architectures are simpler to manage. A proper division of work
between the global and the local controllers ensures a good combination of
latency and accuracy. The data plane is distributed to take advantage of
distributed applications and the network. The key building blocks of OpenADN
are shown in Figure 2

The global manager bootstraps the system and co-ordinates with the
management platforms of various cloud providers for the acquisition of
resources. Each of these resources, either owned or leased, is managed,
controlled and programmed by the OpenADN control and management plane.
The control plane is hierarchical, with a separate controller for each resource
provider. A global controller, in turn, manages these local controllers, each
residing on a virtual machine in the cloud. The control plane of OpenADN
interacts with and programs the virtual resources like a virtual machine, virtual
switch, and virtual router with the ASP’s deployment and delivery policies
through a southbound control interface.

 Analysis of Application Delivery Platform for Software Defined Infrastructures

7

Figure 2 Key Building Blocks of OpenADN

After bootstrap, the global controller takes over and launches one workflow
manager for each workflow. The workflow manager checks for resources and
launches workflow instances. The workflow manager commissions or
decommissions workflows depending on the load. There is one local controller
for each datacenter for quick local decisions. This works well with a highly
distributed data plane. Considering the geographical spread of resources, the
centralized global controller making it easy to introduce new services, propagate
new policies and troubleshoot problems. OpenADN is an integrated
infrastructure comprising both, message-level devices (e.g., firewalls) and
packet-level devices (e.g., intrusion detection devices), hosting application-layer
services as well as network-layer services. For massively distributed applications,
like mobile healthcare monitoring or mobile app delivery, OpenADN allows
multiple zones with each zone consisting of multiple clouds [Paul et al., 2014].

2.2 Massively Distributed Nature of OpenADN

At the bootstrap stage, OpenADN creates a common global controller and
one local controller for each data center. The global manager is manually started
and, given the sensitive customer information it stores would normally be located
in the ASP premises. Other functions can all be located on virtual machines in
the cloud. OpenADN optimizes application service deployment by deploying the
hosts of the distributed data plane, on virtual resources of various clouds. The
system can perform many different tasks at the same time leading to better
utilization of the hardware resources and ensure that the system as a whole makes
progress all the time. OpenADN is essentially a multi-threaded system where
performance is determined by the execution environment. This massively
distributed data plane structure, with several threads in the state of operational
stupor, makes the performance evaluation of OpenADN difficult and calls for
specialized techniques that we shall discuss in the following sections.

 L. Gupta, R. Jain and M. Samaka

8

3 Profiling Multi-cloud Delivery Platforms

In this section, we discuss the importance of profiling led optimization
followed by a selection of techniques that are suitable for profiling OpenADN
and gathering data for optimization.

3.1 Profiling and optimization of modular multithreaded systems

Often application software has code that consumes a disproportionate amount
of resources and produces high CPU loads. Cloud management platforms are no
different. The whole idea of profiling multi-cloud delivery platforms is to work
through the tiers and threads of these platforms and collect information about
their behavior in different operational situations. To this end, it is important to
use program analysis tools that are appropriate to the distributed, multi-threaded
nature of these platforms and gather as much information as possible. As against
this, if we choose to carry out intuitive optimization, it may result in modification
of parts of the code that were not responsible for performance degradation and as
a result may be a waste of time. A word of caution: too much optimization or too
little of it are both considered detrimental. Donald Knuth stated in [Knuth, 1974]
that programmers waste an enormous amount of time thinking about the speed of
non-critical part of the program. About 97% of the time we should forget about
small inefficiencies as premature optimization is the root of all evil. It is not only
important for profiling to precede optimization, someone who has tried to do it
would realize that reading of such a code does not provide reliable information,
and far less program behavior, under execution. It is, therefore, important to use
correct techniques that would produce reliable data based on which it can be
decided whether optimization should be carried out, and if the answer is in the
affirmative, what parts of the code should be optimized (Eklov, 2012).

3.2 Profiling Techniques for Software Platforms

Given the nature of OpenADN, most conventional profiling, characterization,
and modeling methodologies do not work well because of full system
virtualization. They do not provide definitive help in pinpointing the sections of
code that should be optimized. We shall see here a combination of techniques
that can be applied to a distributed, multi-threaded system (Waddington et al.,
2009). We divide these techniques into static, dynamic and concurrency
profiling.

1) Static Profiling

In static analysis, program execution models are formally constructed
(Jackson & Rinard, 2000). Models of multi-threaded systems can be used to
explore all feasible inter-leavings and loops exhaustively to ensure correctness
properties (Clarke et al., 2000). However, this kind of software is complex and
may have a vast number of feasible inter-leavings making model checking

 Analysis of Application Delivery Platform for Software Defined Infrastructures

9

computationally expensive. Another shortcoming of static-analysis techniques is
that they give an assessment of relative time and temporal ordering and do not
give absolute time (Rinard, 2001). For assessment of absolute times, it would be
necessary to perform dynamic profiling (Mars & Hundt, 2009).

2) Dynamic Profiling

This type of profiling allows observing system behavior while it is running.
In Waddington at al. (2009), it has been mentioned that dynamic profiling
provides ways to measure the absolute time of events like various function calls
or the time spent by the CPU in a particular function. It is an active form of
profiling in which the system being measured explicitly generates information
about its execution parameters. Conversely, passive profiling relies on explicit
inspection of control flow and execution state through an external entity, such as
a probe or modified runtime environment. Three main families of dynamic
profiling techniques are code instrumentation, statistical sampling and
concurrency profiling.
a) Code Instrumentation: A set of additional instructions called an instrument is
injected into the target program. When the instrumented code is executed, it
generates the required information. These instructions indicate events as they
happen and provide their timing and frequency. Some instrumentation systems
(Clarke et al., 2000) count function activations while others (Chen et al., 2010)
count more fine-grained control flow transitions. This method can, thus, provide
an absolute measure of these events. Instrumenting a program can cause changes
in the performance of the program, potentially causing inaccurate results and has
to be carried out carefully in a controlled manner.
b) Statistical Profiling: In this method the program state is randomly sampled
when it is in execution. This involves recording a sample of values of the
instruction register, program counter, stack, etc. to apply statistical techniques to
these samples to deduce how much time is being spent in different parts of the
program. This method is not as intrusive to the target program as the
instrumentation method. They can show the relative amount of time spent in user
mode versus interruptible kernel mode such as system call processing and also
the user time out of the total execution time (Mars and Hundt, 2009 and Intel,
2007). In OpenADN environment, this could, for example, provide valuable
information on whether optimization should at all be attempted.
c) Deterministic profiling: In this method all function calls, function returns,
and exception events are monitored, and precise timings are obtained for the
duration of these events and the intervals between them. OpenADN is largely
written in Python. In Python, since there is an interpreter active during execution,
the presence of instrumented code is not required to do deterministic profiling.
Python automatically provides a hook (optional callback) for each event. Call
count and time consumption statistics can be used to identify hotspots in code,
which would be potential candidates for optimization.

3) Concurrency Profiling

 L. Gupta, R. Jain and M. Samaka

10

Concurrency profiling can additionally be used in multithreaded applications.
Resource contention profiling collects detailed call stack information every time
that competing threads are forced to wait for access to a shared resource.
Concurrency visualization also collects more general information about how a
multithreaded application interacts with itself, the hardware, the operating
system, and other processes on the hosts. It can help locate performance
bottlenecks, CPU underutilization and synchronization delays (Microsoft, 2013
and Oracle, 2012)

4 Multi-Cloud Platform profiling

The complexity of the multi-threaded OpenADN platform necessitated
collection of precise and fine-grained behavioral data while in execution, coupled
with off-line analysis to help characterize the performance of the platform and
possible need for optimization. Profiling of OpenADN was, therefore, carried out
at multiple levels as shown in Figure 3. Platform level is a coarse grain profiling,
which gives overall time spent in execution of the platform. Depending on the
method used, this may give a broad idea about the time spent in useful activities
and possibly in infructuous ones. The OpenADN module level profiling consists
of profiling various functions while they interact with each other. This gives a
fairly good idea of which system, external library or kernel functions are taking
unduly long times. When required, we could do a still more fine-grain profiling
at the statement level of the suspect functions to pin-point where the problem
actually lies. We shall see how these were used in the case of OpenADN.

Figure 3 Levels of OpenADN Profiling

To validate the functionality, we ran OpenADN in a virtual environment

created by Mininet [Lantz, 2015]]. Mininet allows emulating a whole virtual
network running real kernel, switch and application code, on shared physical
resources of a machine. The following virtual resources were created for
profiling OpenADN: One service zone consisting of a global controller, two data
center sites with a local controller each, a name-server, seven hosts per site and

Function

Function

Function

Module

Function

Statements

Platform

Module

 Analysis of Application Delivery Platform for Software Defined Infrastructures

11

WFM spawns one WFT for each zone where application is deployed

Each WFT spawns multiple workflow instances depending on the load

Each WFT needs a proxy to communicate with external users. WFM
allocates proxy when it has resources. WFT runs exponential backoff for
retrial.

WFM attempts to get resources. At this time Local Controllers boot up
independently and register with the GC

client host simulating 10,000 users. The selection of stimuli (set-up and input
data) and multiple runs of the platform ensured that behavioral data for most
control paths were collected.

To bring home the complexity of the OpenADN platform, we will briefly
discuss its bootstrap and execution process using Figures 2 and 4 to explain the
inter-relationship of the functional blocks.

Figure 4 Functions of OpenADN relevant to the bootstrap process

The global manager is the only module that needs to be started, and then the
complete bootstrap process is automatic. The global controller launches one
workflow manager for each zone. The flow of operations is as in Figure 5.

Figure 5 The OpenADN bootstrap flow diagram

GC instantiates WFM that is responsible for deployment and runtime
control of OpenADN workflows

 L. Gupta, R. Jain and M. Samaka

12

4.1 Coarse Grain Analysis

To get a broad idea of the efficiency of the platform code executing in a
virtualized environment, the Unix time utility was used. The platform software
was run to create virtual hosts over which the platform modules – global
controller, local controller, name server, node controller, and clients were loaded
and executed. The program was run to bootstrap the process and until all the
modules were added and services started running. Some runs were performed for
the same virtual environment and data from five of them are given in Table I.

Table 1 Run time used for user and system activities

(Time unit: seconds)
Run 1 2 3 4 5 6 Average % Run time
User Space 0.62 0.59 0.55 0.63 0.72 0.74 0.64 1.45%
System Calls 0.65 0.73 0.75 0.96 1.58 1.65 1.05 2.38%
Run time 34.65 35.22 35.6 42.67 56.01 60.74 44.15 100

The elapsed time is the total platform run time for booting and starting new
services, user-space time is for non-system calls or CPU time spent outside the
kernel, and system-calls is time spent in kernel specific functions.

Of the average total elapsed time of 44.15 seconds for which the platform
software was executed, the time spent in user functions and kernel space was
1.45% and 2.38%, respectively. This gives an indication that a large part of the
total CPU time is spent in activities other than running user and system functions.
It is possible that much of this time is being spent in I/O waits and sleep times for
dealing with dependent asynchronous concurrent processes. However, it cannot
yet be said whether this time relates to unavoidable delays and the situation can
be improved through optimization. This called for the next level of profiling, i.e.,
at module/function level to see which of the modules are highly CPU intensive.

For comparison, the same modules were also run on separate physical
machines for comparison and the results obtained are given in Table 2.

On physical machines, the platform does not have to spend time creating
virtual machines for its own modules as well as for running services. Even in this
case the overall user-space time is 17.49% and even less for kernel calls. Among
these, the global controller used the time more effectively with user functions

When WFM gets enough resources, the proxy node is initialized. It starts
gathering resources to deploy the other services within the workflow.

WFT starts the services for the workflow after the WFM has allocated it
the required resources. Message and packet routing services are set up

After each service is initialized, it connects to the OpenADN socket that
opens a communication channel between the service and the platform.
WFT attaches to a proxy port. Heartbeat reply service starts.

 Analysis of Application Delivery Platform for Software Defined Infrastructures

13

taking up to 41.64% of run time on an average. However, in the actual
operational environment, these modules will be hosted on VMs that will take a
finite amount of time to create, start, augment or migrate to another cloud.

Table 2 Time used for user and system activities on physical machines

Function User Space System Calls Run Time User (%)
Name Server 14.161 5.072 229.438 6.17
Global Controller 83.637 15.797 200.835 41.64
Local Controller 18.549 7.16 175.57 10.57
Node Controller 19.95 8.86 156.99 12.71
Client 0.428 0.036 18.855 2.27
Total 136.725 36.925 781.688 17.49

This simple profiling indicates the possibility of higher load on the CPU,

because of potentially wasteful activities like waiting on I/O calls and the sleep
functions. While in many cases, where asynchronous linking of threads is used,
some waiting would be unavoidable. However, one needs to see whether these
could be optimized for 1) making the platform more efficient 2) correctly
dimensioning the resources leased, and 3) distributing the workload properly.

4.2 Deterministic Profiling of Functions of OpenADN

Deterministic profiling of OpenADN programs was carried out to see
execution pattern and the resulting CPU loads of various functions. There are
built-in profilers that provide information about how often and how long various
functions execute. A profiler like ‘profile’ or ‘cProfile’ in combination with a
function based on ‘pstats’ (Python, 2009-15) provide statistics to make that is
amenable to analysis. Figure 6 gives a sample output.

 L. Gupta, R. Jain and M. Samaka

14

Figure 6 Sample deterministic profile run showing the creation of VMs and
functions

This run has been ordered on cumulative time (cumtime), which is the total

CPU time (in seconds) a function executes including all the sub-functions it calls.
The total number of calls to a function is in column ‘ncalls’ while the ‘tottime’
gives the CPU time excluding time taken by sub functions. The first ‘percall’
column does not include CPU time taken by sub-functions while the second
‘percall’ column includes those. In this sample run, it can be seen that the total
time that the platform software was executed was 77.621 seconds. Out of this, the
simulator module took 77.613 seconds. Creation of virtual nameServer (called
Fakenameserver) takes 5.010 seconds while global controller takes 5.009
seconds.

Another section of the simulation is shown in Figure 7. Creation of virtual
resources and starting of functions like global controller, local controller, etc. was
observed for several runs and these operations took an average of about 18.5%
over the three runs shown in Table 3. It was initially suspected that the ZeroMQ
messaging library [12] poller takes up a lot of CPU time. This was confirmed by
a number of runs shown in Table 3. It can be calculated that polling operation
took on an average 79.83% of the CPU time over these runs.

 Analysis of Application Delivery Platform for Software Defined Infrastructures

15

Figure 7 Sample run showing creation of local controller and client_host

Table 3 CPU Time of selected functions

This shows that there is a possibility that these operations can be studied
further and optimized. However, at this stage, we are not sure which parts of the
functions need to be looked into for higher consumption of CPU time. Polling
library function, for instance, is called a number of times in many user functions.
It would, therefore, be of interest to see how different statements within each
function execute.

If we dissect the virtual machine creation time among different functions, we
see that the time taken by some of the important ones, for a typical run, as given
in Table 4.

Table 4 Time for different functional modules

Module
CPU Time (seconds)

Fakenameserver 5.010
Global controller 5.009
Local controller 0.008
Hosts 5.183
Client host 0.012

We will see later that the Name Server and the Global Controller sleep
through most of the time. Their job is largely reactive in nature, getting activated
when other modules need their services.

 L. Gupta, R. Jain and M. Samaka

16

The sleep function is required to be invoked at several places in multi-
threaded software to allow interacting processes to wait for the required input to
be available from the other processes. These times are sometimes decided based
on intuition and contribute towards increasing total run time.

4.3 Statement Level Analysis

Profiling at the platform and function levels provided a good idea of the time
spent by one or more CPUs in kernel space calls, user space calls and waiting for
I/O and in various modules of OpenADN. It was observed that a large proportion
(96.17%) time was spent in waiting for I/O. Polling operations took about 79% of
the execution time. The program spent about 15 seconds of the total 100 seconds
in sleep mode. OpenADN functional modules took up to about 5 seconds each.
Translated over long operational periods some of these have the potential to
become the antithesis to the efficient operation of the platform.

The function level profiling, in particular, yielded CPU times for functions
related to creation and loading platform modules, obtaining the resources and
bootstrapping the platform. In this case, it confirmed that certain functions, e.g.,
the creation of virtual machines and linking, polling, heartbeat operation and
sleep functions take unduly long part of the run time. The information from
function-level profiling was not enough to tell us which modules to look into to
locate the potential hot spots and optimize the software. As is often the case, the
reason for a particular module or functionality taking a large amount of time
could be pinpointed to some small part which may seem to be innocuous on a
simple reading of the code. Some statements could trigger a library function or
call to a special method that may not be so obvious. The function level profiling
only times the explicit function calls and not the special methods called. Such
profiling would not identify a slow operation in the library function like
ZeroMQ. If a statement triggers the computation when using libraries, when
there is no explicit call, function profiler will not go into the constituents.

A more detailed statement level analysis of the platform software was
undertaken to determine which parts of the program take more CPU time. A
more intrusive line profiler that could go into each function and time execution of
each statement was used for this purpose. The line-profiler described in Kernprof
(2015) used in a judicious manner allows this kind of analysis. This profiler
keeps track of multiple statement executions, sums up the total time each
statement takes in multiple passes and avoids profiling overheads. The profiling
result is a binary file that could be deciphered with ‘pstats’ or a similar function.
The output consists of the following:
a) Hits: Number of times that line was executed.
b) Time: Total execution time
c) Per Hit: Average amount of execution time
d) % Time: Percentage of time spent on that line relative to the total amount of

recorded time spent in the function.
e) Line Contents: Actual source code.

 Analysis of Application Delivery Platform for Software Defined Infrastructures

17

The illustrations in Figure 7 to 11 show some of the portions of profiling data
that indicate a possible need for optimization (column headings of figure 7 apply
to figures up to 11). Figure 8 and nine show linking to the switch takes up a
major percentage of the execution time. The name-server takes 9.9%, while the
global controller takes 4.5%. The hosts take the longest accounting for 53% of
the time.

Figure 8 Creation of topology

Figure 9 Creation of global controller

Figure 10 indicates that the linking of hosts to the network takes about 51.6% of
the time.

 L. Gupta, R. Jain and M. Samaka

18

Figure 10 Profile run for linking hosts to a switch

Figures 11 and 12 indicate that a large amount of time is taken up by the

sleep function (the duration of which is sometimes programmed arbitrarily for
synchronization) and the polling function during different phases of simulation.
The global controller sleeps most of its execution time, and similar is the case
with the name-server. This could mean that these functions are demanding more
virtual resources than necessary and are leading to higher operational
expenditure.

Figure 11 Time spent in sleep function in the global controller module

 Analysis of Application Delivery Platform for Software Defined Infrastructures

19

Figure 12 Time taken by polling function

Also, the function to check the ports for inter-process messages takes up

90.5% of the entire simulation time.

4.4 Concurrency Profiling of OpenADN

While the recursive function level profiling that includes timing of
execution of sub-functions and statement level profiling includes the effect of
execution of various threads, the interaction may not be evident. To get a better
understanding of the multi-threaded platform, a thread-aware profiling was
carried out while the program was in execution. A sample of concurrency profile
is given in Figure 13. This aspect of profiling is part of the future work.

Figure 13 Concurrency profiling output

The number of times a function is called is given by ‘ncall’ while ‘tsub’ is
the time spent in a given function excluding subfunctions. The CPU time of

 L. Gupta, R. Jain and M. Samaka

20

functions including its subfunctions is ‘ttot’. The average time ‘tavg’ is the
average time spent in a function and its subfunctions in each call.

This type of data could be used in conjunction with statement level profiling
to see the times of execution of various statements vis-a-vis the threads to which
they belong. Total time the CPU spends in a thread can be derived from the
information available. In this paper, we base our conclusions on the profiling
levels shown in Figure 3.

5 Conclusions And Future Work

Multi-cloud management systems can be quite complex and may have parts
of the code that may consume a big share of CPU time during execution. This
could lead to suboptimal application delivery, increased resource usage, and
higher operational expenses. ASPs who use such systems would like to optimize
their platforms to control their expenses over their operational lifetime and for
other desirable features like reduced latency and reduced energy consumption.

Intuition and reading of such multi-threaded code may not provide reliable
information about what could be wrong with it. It becomes necessary to generate
program profiles with data collected at various levels, i.e., platform, functions,
and statements.

For OpenADN, the top-level analysis reveals that the overall execution time
has a large component of non-user, non-kernel time that could be explained by
I/O waits. A concern that arises is that some part of this time could be spent
unproductively using up resources and increasing the cost. If this is actually the
case then OpenADN, or any such multi-cloud management platform, would not
be able to optimize the use of virtual resources resulting in the instantiation of a
larger than the required number of virtual machines because the ones that have
already been started are unproductively busy. Similarly the un-optimized use of
virtual network resources would result in a higher payout to the network
infrastructure provider. A function level analysis makes apparent the functions
that have potential hotspots. Design choices at the time of the development of
OpenADN govern the use of functions that might cumulatively consume
substantial time. Non-blocking input-output in the form of polling or putting
processes to sleep are an example of these. We have observed that the processes
of such a platform might slow down if the use of these functions is not optimized.
Statement level profiling on all of the modules simultaneously allows interplay of
threads and reveals the parts of the functions that could be helped with
optimization efforts. In the case of OpenADN, it was confirmed that
asynchronous input-output with the use of polling, sleep functions and heartbeat
were consuming a disproportionate amount of processing resources. If they were
not optimized carefully, the resulting inefficiency would have resulted in higher
operational expenditure for the ASPs.

Various runs of the platform with increasingly fine-grain profiling produced
a large amount of data that was useful in deciding whether optimization should
be attempted and, if it should, then what parts need to be tackled. Optimization is
expensive and needs to be based on proper analysis of profiling data. From the

 Analysis of Application Delivery Platform for Software Defined Infrastructures

21

data collected for optimization, it was found that creation and interlinking of
hosts to the network, polling of ports for inter-service communication, heartbeat
used to check aliveness of the services and use of sleep functions accounted for a
large amount of time and could be potential candidates for optimization efforts.

Optimization could simply mean fine-tuning the sleep/wait times of
processes built into the platform. On the other hand, there could be more serious
issues, and optimization could involve a rewriting of some parts of the code.

Based on the profiling data, optimization could involve the following:
1. Critically examining the time spent in I/O waits (i.e. repeated polling of

sockets for inter-service communication and request response mechanisms)
and taking remedial measures wherever possible.

2. Examining the use of sleep statements and fine-tuning their durations.
3. Examining the use of heartbeat and ways to make it efficient.
4. Optimizing the time take to create dynamically, destroy and migrate virtual

resources.

Profile-led optimization makes use of the results generated by deterministic,
functional and statement level profiling to get optimized code. If the execution
environment fairly represents the usage scenario, then profile guided feedback
benefits optimization. Future work will involve demonstrating the usefulness of
the approach in carrying out optimization of OpenADN. The scope of the
problem at hand, however, was to see whether a combination of carefully
selected profiling tools, working at different levels of the OpenADN program
hierarchy (and by extension other similar platforms), would be able to pinpoint
the bottlenecks that could cause higher consumption of virtual resources. From
the results discussed above, it is clear that it would be in the interest of reduced
cost and increased agility of doing the ASP business to carry out appropriate
profiling at different levels as a precursor to optimization.

References

Aljabre, A. (2012) “Cloud Computing for Increased Business Value,” International

Journal of Business and Social Science Vol. 3 No. 1
AlZain, M.A., Soh, B., Pardede E. (2013) “A Survey on Data Security Issues in Cloud,”

Journal Of Software, Vol. 8, No. 5
Chen, D., Vachharajani, N., and Hundt R. (2010) ‘‘Taming Hardware Event Samples for

FDO Compilation, Proc. 8th Ann. IEEE/ ACM Int’l Symp. Code Generation and
Optimization (CGO 10), ACM Press, pp. 42-52.

Clarke, E.M., Grumberg, O. and Peled D.A. (2000) Model Checking. The MIT Press,
Massachusetts Institute of Technology, Cambridge, Massachusetts.

Eklov, D., Nikoleris N. and Hagersten E. (2012) “A Profiling Method for Analyzing
Scalability Bottlenecks on Multicores,” ACM.

Figliola, P.M., Fischer, E.A. (2015) “Overview and Issues for Implementation of the
Federal Cloud Computing Initiative: Implications for Federal Information
Technology Reform Management,” Congressional research service, CRS Report (7-
5700)

 L. Gupta, R. Jain and M. Samaka

22

Intel Whitepaper, “Optimizing Software for Multi-core Processors,”
http://www.intel.com/content/www/us/en/intelligent-systems/intel-
technology/multicore-optimizing-software.html

Jackson, D. and Rinard, M. (2000) “Software Analysis: A Roadmap,” Proceedings of the
IEEE International Conference on Software Engineering, pp. 133-145.

Kernprof (2015) “Kernprof Line_Profiler,” https://github.com/rkern/line_profiler.
Khan, M.A., Hankendi, C., Coskun, A.K. and Herbordt, M.C. (2011) “Software

Optimization for Performance, Energy, and Thermal Distribution: Initial Case
Studies,” International Green Computing Conference and Workshops (IGCC), pp. 1-
6.

Knuth, D., “Structured Programming with go to Statements,” Computing Surveys, vol 6,
No 4, December 1974.

Lantz, B., Handigol, N., Heller, B. and Jeyakumar, V. (2015) “Introduction to Mininet,”
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet.

Rinard, M. (2001) “Analysis of Multithreaded Programs,” Proceedings of the 8th
International Symposium on Static Analysis, pp. 1-19.

Mars, J. and Hundt, R. (2009) ‘‘Scenario Based Optimization: A Framework for
Statically Enabling Online Optimizations,’’ Proc. 2009 Int’l Symp. Code Generation
and Optimization (CGO 09), IEEE CS Press, pp. 169-179.

Microsoft (2013) “Concurrency Profiling,” http://msdn.microsoft.com/en-
us/library/dd264994.aspx

OpenDaylight, http://www.opendaylight.org/project/technical-overview
Oracle (2012) “Multithreaded Programming Guide,” “Timers, Alarms, and Profiling,”

https://docs.oracle.com/cd/E26502_01/html/E35303/gen-90808.html.
Paul S., Jain R., Samaka M. and Pan J., “Application Delivery in Multi-Cloud

Environments using Software Defined Networking,” Computer Networks Special
Issue on cloud networking and communications, Feb 2014

Hintjen, P. (2014) “The ZeroMQ Guide,” zguide.zeromq.org/page:all
Python (2015) “The Python Profilers,” https://docs.python.org/2/library/profile.html
Waddington, G.D., Roy N. and Schmidt D.C. (2009) “Dynamic Analysis and Profiling of

Multi-threaded Systems,” IGI Global.

http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/multicore-optimizing-software.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/multicore-optimizing-software.html
https://github.com/rkern/line_profiler
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
http://msdn.microsoft.com/en-us/library/dd264994.aspx
http://msdn.microsoft.com/en-us/library/dd264994.aspx
http://www.opendaylight.org/project/technical-overview
https://docs.oracle.com/cd/E26502_01/html/E35303/gen-90808.html
https://docs.python.org/2/library/profile.html

 Analysis of Application Delivery Platform for Software Defined Infrastructures

23

Figures, images and tables.

Figure 1 OpenADN Multi-Cloud Management System

Figure 2 Key Building Blocks of OpenADN

 L. Gupta, R. Jain and M. Samaka

24

Figure 3 Levels of OpenADN Profiling

Figure 4 Functions of OpenADN relevant to the bootstrap process

Function

Function

Function

Module

Function

Statements

Platform

Module

 Analysis of Application Delivery Platform for Software Defined Infrastructures

25

Figure 5 The OpenADN bootstrap flow diagram

Figure 6 Sample deterministic profile run showing creation of VMs and functions

GC instantiates WFM that is responsible for deployment and runtime
control of OpenADN workflows

WFM spawns one WFT for each zone where application is deployed

Each WFT spawns multiple workflow instances depending on the load

Each WFT needs a proxy to communicate with external users. WFM
allocates proxy when it has resources. WFT runs exponential backoff for
retrial.

WFM attempts to get resources. At this time Local Controllers boot up
independently and register with the GC

When WFM gets enough resources, the proxy node is initialized. It starts
gathering resources to deploy the other services within the workflow.

WFT starts the services for the workflow after the WFM has allocated it
the required resources. Message and packet routing services are set up

After each service is initialized, it connects to the OpenADN socket that
opens a communication channel between the service and the platform.
WFT attaches to a proxy port. Heartbeat reply service starts.

 L. Gupta, R. Jain and M. Samaka

26

Figure 7 Sample run showing creation of local controller and client_host

Figure 8 Creation of topology

 Analysis of Application Delivery Platform for Software Defined Infrastructures

27

Figure 9 Creation of global controller

Figure 10 Profile run for linking hosts to a switch

Figure 11 Time spent in sleep function in global controller module

 L. Gupta, R. Jain and M. Samaka

28

Figure 12 Time taken by polling function

Figure 13 Concurrency profiling output

Table 1 Run time used for user and system activities

(time unit: seconds)
Run 1 2 3 4 5 6 Average % Run time
User Space 0.62 0.59 0.55 0.63 0.72 0.74 0.64 1.45%
System Calls 0.65 0.73 0.75 0.96 1.58 1.65 1.05 2.38%
Run time 34.65 35.22 35.6 42.67 56.01 60.74 44.15 100

 Analysis of Application Delivery Platform for Software Defined Infrastructures

29

Table 2 Time used for user and system activities on physical machines

Function User Space System Calls Run Time User(%)
Name Server 14.161 5.072 229.438 6.17
Global Controller 83.637 15.797 200.835 41.64
Local Controller 18.549 7.16 175.57 10.57
Node Controller 19.95 8.86 156.99 12.71
Client 0.428 0.036 18.855 2.27
Total 136.725 36.925 781.688 17.49

Table 3 CPU Time of selected functions

Table 4 Time for different functional modules

Module

CPU time taken
(seconds)

Fakenameserver 5.010
Global controller 5.009
Local controller 0.008
Hosts 5.183
Client host 0.012

