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Abstract: Montage is a portable software toolkit for constructing custom, science-grade 
mosaics by composing multiple astronomical images.  The mosaics constructed by 
Montage preserve the astrometry (position) and photometry (intensity) of the sources in the 
input images.  The mosaic to be constructed is specified by the user in terms of a set of 
parameters, including dataset and wavelength to be used, location and size on the sky, 
coordinate system and projection, and spatial sampling rate.  Many astronomical datasets 
are massive, and are stored in distributed archives that are, in most cases, remote with 
respect to the available computational resources.  Montage can be run on both single- and 
multi-processor computers, including clusters and grids.  Standard grid tools are used to run 
Montage in the case where the data or computers used to construct a mosaic are located 
remotely on the Internet. This paper describes the architecture, algorithms, and usage of 
Montage as both a software toolkit and as a grid portal.  Timing results are provided to 
show how Montage performance scales with number of processors on a cluster computer.  
In addition, we compare the performance of two methods of running Montage in parallel on 
a grid.  
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1 INTRODUCTION 

Wide-area imaging surveys have assumed fundamental 

importance in astronomy.  They are being used to address 

such fundamental issues as the structure and organization of 

galaxies in space and the dynamical history of our galaxy. 

One of the most powerful probes of the structure and 

evolution of astrophysical sources is their behavior with 

wavelength, but this power has yet to be fully realized in the 

analysis of astrophysical images because survey results are 

published in widely varying coordinates, map projections, 

sizes and spatial resolutions.  Moreover, the spatial extent of 

many astrophysical sources is much greater than that of 

individual images.  Astronomy therefore needs a general 

image mosaic engine that will deliver image mosaics of 

arbitrary size in any common coordinate system, in any map 

projection and at any spatial sampling rate. The Montage 

project (Berriman et al., 2002; 2004) has developed this 

capability as a scalable, portable toolkit that can be used by 

astronomers on their desktops for science analysis, 

integrated into project and mission pipelines, or run on 

computing grids to support large-scale product generation, 

mission planning and quality assurance.  Montage produces 

science-grade mosaics that preserve the photometric 

(intensity) and astrometric (location) fidelity of the sources 

in the input images. 

Sky survey data are stored in distributed archives that are 

often remote with respect to the available computational 

resources.  Therefore, state-of-the-art computational grid 

technologies are a key element of the Montage portal 

architecture.  The Montage project is deploying a science-

grade custom mosaic service on the Distributed Terascale 

Facility or TeraGrid (http://www.teragrid.org/).  TeraGrid is 

a distributed infrastructure, sponsored by the National 

Science Foundation (NSF), and is capable of 20 teraflops 

peak performance, with 1 petabyte of data storage, and 40 

gigabits per second of network connectivity between the 

multiple sites.  

The National Virtual Observatory (NVO, http://www.us-

vo.org/) and International Virtual Observatory Alliance 

(http://www.ivoa.net/) aim to establish the infrastructure 

necessary to locate, retrieve, and analyze astronomical data 

hosted in archives around the world.  Science application 

portals can easily take advantage of this infrastructure by 

complying with the protocols for data search and retrieval 

that are being proposed and standardized by these virtual 

observatory projects.  Montage is an example of one such 

science application portal being developed for the NVO. 

Astronomical images are almost universally stored in 

Flexible Image Transport System (FITS) format 

(http://fits.gsfc.nasa.gov/).  The FITS format encapsulates 

the image data with a meta-data header containing keyword-

value pairs that, at a minimum, describe the image 

dimensions and how the pixels map to the sky.  The World 

Coordinate System (WCS) specifies image-to-sky 

coordinate transformations for a number of different 

coordinate systems and projections useful in astronomy 

(Greisen and Calabretta, 2002).  Montage uses FITS for 

both the input and output data format and WCS for 

specifying coordinates and projections.   

Montage is designed to be applicable to a wide range of 

astronomical image data, and has been carefully tested on 

images captured by three prominent sky surveys spanning 

multiple wavelengths, the Two Micron All Sky Survey, 

2MASS (http://www.ipac.caltech.edu/2mass/), the Digitized 

Palomar Observatory Sky Survey, DPOSS 

(http://www.astro.caltech.edu/~george/dposs/), and the 

Sloan Digital Sky Survey (SDSS).  2MASS has roughly 10 

terabytes of images and catalogues (tabulated data that 

quantifies key attributes of selected celestial objects found 

in the images), covering nearly the entire sky at 1-arc-

second sampling in three near-infrared wavelengths.  

DPOSS has roughly 3 terabytes of images, covering nearly 

the entire northern sky in one near-infrared wavelength and 

two visible wavelengths. The SDSS fourth data release 

(DR4) contains roughly 7.4 terabytes of images and 

catalogues covering 6,670 square degrees of the Northern 

sky in five visible wavelengths. 

Two previously published papers provide background on 

Montage.  The first described Montage as part of the 

architecture of the National Virtual Observatory (Berriman 

et al., 2002), and the second described some of the initial 

grid results of Montage (Berriman et al., 2004).  In addition, 

a book chapter and a paper (Katz et al., 2005a; 2005b) 

provide highlights of the results reported in this paper.  We 

extend these previous publications by providing additional 

details about the Montage algorithms, architectures, and 

usage. 
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In this paper, we describe the modular Montage toolkit, the 

algorithms employed, and two strategies that have been 

used to implement an operational service on the TeraGrid, 

accessible through a web portal.  The remainder of the paper 

is organized as follows.  Section 2 describes how Montage 

is designed as a modular toolkit.  Section 3 describes the 

algorithms employed in Montage. Section 4 describes the 

architecture of the Montage TeraGrid portal.  Two strategies 

for running Montage on the TeraGrid are described in 

Sections 5 and 6, with a performance comparison in Section 

7.  A summary is provided in Section 8. 

2 MONTAGE COMPONENTS 

Montage’s goal is to provide astronomers with software for 

the computation of custom science-grade image mosaics in 

FITS format.  Custom refers to user specification of mosaic 

parameters, including WCS projection, coordinate system, 

mosaic size, image rotation, and spatial sampling rate.  

Science-grade mosaics preserve the calibration and 

astrometric (spatial) fidelity of the input images. 

There are three steps to building a mosaic with Montage: 

 Reprojection of input images to a common 

projection, coordinate system, and spatial scale, 

 Modeling of background radiation in images to 

rectify them to a common flux scale and 

background level, thereby minimizing the inter-

image differences, and 

 Coaddition of reprojected, background-rectified 

images into a final mosaic. 

Montage accomplishes these tasks in independent, 

portable, ANSI C modules.  This approach controls testing 

and maintenance costs, and provides flexibility to users.  

They can, for example, use Montage simply to reproject sets 

of images and co-register them on the sky, implement a 

custom background removal algorithm, or define another 

processing flow through custom scripts.  Table 1 describes 

the core computational Montage modules and Figure 1 

illustrates how they may be used to produce a mosaic. 

Three usage scenarios for Montage are as follows: the 

modules listed in Table 1 may be run as stand-alone 

programs; the executive programs listed in the table (i.e., 

mProjExec, mDiffExec, mFitExec, and mBgExec) may be 

used to process multiple input images either sequentially or 

in parallel via MPI; or the grid portal described in Section 4 

may be used to process a mosaic in parallel on a 

computational grid.  The modular design of Montage 

permits the same set of core compute modules to be used 

regardless of the computational environment being used. 

3 MONTAGE ALGORITHMS 

Table 1  The core design components of Montage 

Component Description 

Mosaic Engine Components 

mImgtbl  Extract geometry information from a set of 
FITS headers and create a metadata table 

from it. 

mProject  Reproject a FITS image. 

mProjExec  A simple executive that runs mProject for 
each image in an image metadata table. 

mAdd  Coadd the reprojected images to produce an 

output mosaic. 

Background Rectification Components 

mOverlaps  Analyze an image metadata table to determine 

which images overlap on the sky. 

mDiff  Perform a simple image difference between a 

pair of overlapping images. This is meant for 
use on reprojected images where the pixels 

already line up exactly. 

mDiffExec  Run mDiff on all the overlap pairs identified 
by mOverlaps. 

mFitplane  Fit a plane (excluding outlier pixels) to an 

image. Meant for use on the difference 

images generated by mDiff. 

mFitExec  Run mFitplane on all the mOverlaps pairs. 

Creates a table of image-to-image difference 

parameters. 

mBgModel  Modeling/fitting program which uses the 
image-to-image difference parameter table to 

interactively determine a set of corrections to 
apply to each image to achieve a "best" global 

fit. 

mBackground Remove a background from a single image (a 

planar correction has proven to be adequate 
for the images we have dealt with). 

mBgExec  Run mBackground on all the images in the 

metadata table 

 

 

Figure 1 The high-level design of Montage. 
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As described in Section 2, Montage constructs a mosaic 

through separate modules for image reprojection, 

background rectification, and coaddition.  This section 

describes the main algorithms used in these modules. 

3.1 General image reprojection 

The first step in mosaic construction is to reproject each 

input image to the spatial scale, coordinate system, and 

projection of the output mosaic.  Image reprojection 

involves the redistribution of information from a set of input 

pixels to a set of output pixels. For astronomical data, the 

input pixels represent the total energy received from an area 

on the sky, and it is critical to preserve this information 

when redistributed into output pixels. Also, in astronomy it 

is important to preserve the positional (astrometric) 

accuracy of the energy distribution, so common techniques 

such as adding all the energy from an input pixel to the 

“nearest” output pixel are inadequate.  Instead, we must 

redistribute input pixel energy to the output based on the 

exact overlap of these pixels, possibly even using a 

weighting function across the pixels based on the point 

spread function for the original instrument. 

The most common approach to determining pixel overlap 

is to project the input pixel into the output Cartesian space. 

This works well for some projection transformations but is 

difficult for others. One example of a difficult 

transformation is the Aitoff projection, commonly used in 

astronomy, where locations at the edge of an image 

correspond to undefined locations in pixel space. For 

Montage, we have decided instead to project both input and 

output pixels onto the celestial sphere. Since all such 

“forward” projections are well defined, the rest of the 

problem reduces to calculating the area of overlap of two 

convex polygons on a sphere (with no further consideration 

of the projections). The issue of handling reprojections thus 

becomes a problem of classical spherical trigonometry. 

General algorithms exist for determining the overlap of 

polygons in Cartesian space (O’Rourke, 1998). We have 

modified this approach for use in spherical coordinates to 

determine the intersection polygon on the sphere (a convex 

hull) and applied Girard's Theorem, which gives the area of 

a spherical triangle based on the interior angles, to calculate 

the polygon’s area. 

The result is that for any two overlapping pixels, we can 

determine the area of the sky from the input pixel that 

contributes energy to the output pixel. This provides a 

mechanism for accurately distributing input energy to 

output pixels and a natural weighting mechanism when 

combining overlapping images. 

Our approach implicitly assumes that the polygon defining 

a single pixel can be approximated by the set of great circle 

segments connecting the pixel’s corners. Since even the 

largest pixels in any realistic image are on the order of a 

degree across, the nonlinearities along a pixel edge are 

insignificant. Furthermore, the only affect this would have 

would be to the astrometric accuracy of the energy location 

information and it would amount to a very small fraction 

(typically less that 0.01) of the size of a pixel. Total energy 

is still conserved. 

http://math.rice.edu/~pcmi/sphere
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3.2 Rapid image reprojection 

Image reprojection is by far the most compute-intensive part 

of the processing because, in its general form, mapping 

from input image to output mosaic coordinates is done in 

two steps.  First, input image coordinates are mapped to sky 

coordinates (i.e., right ascension and declination, analogous 

to longitude and latitude on the Earth).  Second, those sky 

coordinates are mapped to output image coordinates.  All of 

the mappings from one projection to another are compute-

intensive, but some require more costly trigonometric 

operations than others and a few require even more costly 

iterative algorithms.  The first public release of Montage 

applied this two-step process to the corners of the input 

pixels in order to map the flux from input image space to 

output space.  Because the time required for this process 

stood as a serious obstacle to using Montage for large-scale 

image mosaics of the sky, a novel algorithm that is about 30 

times faster was devised for the second code release. 

The new much faster algorithm uses a set of linear 

equations (though not a linear transform) to transform 

directly from input pixel coordinates to output pixel 

coordinates. This alternate approach is limited to cases 

where both the input and output projections are “tangent 

plane” type (gnomonic, orthographic, etc.), but since these 

projections are by far the most common, it is appropriate to 

treat them as a special case. 

This “plane-to-plane” approach is based on a library 

developed at the Spitzer Science Center (Makovoz and 

Khan, 2004). When both images are tangent plane, the 

geometry of the system can be viewed as in Figure 2, where 

a pair of gnomonic projection planes intersects the 

coordinate sphere. A single line connects the center of the 

sphere, the projected point on the first plane and the 

projected point on the second plane. This geometric 

relationship results in transformation equations between the 

two planar coordinate systems that require no trigonometry 

or extended polynomial terms. As a consequence, the 

transform is a factor of thirty or more faster than using the 

normal spherical projection formulae. 

A bonus to the plane-to-plane approach is that the 

computation of pixel overlap is much easier, involving only 

clipping constraints of the projected input pixel polygon in 

the output pixel space. 

This approach excludes many commonly-used projections 

such as “Cartesian” and “zenithal equidistant,” and is 

essentially limited to small areas of few square degrees. 

Processing of all-sky images, as is almost always the case 

with projections such as Aitoff, generally requires the 

slower plane-to-sky-to-plane approach. 

There is, however, a technique that can be used for images 

of high resolution and relatively small extent (up to a few 

degrees on the sky). Rather than use the given image 

projection, we can often approximate it with a very high 

degree of accuracy with a “distorted” Gnomonic projection. 

In this case, the pixel locations are “distorted” by small 

distances relative to the plane used in the image projection 

formulae. A distorted space is one in which the pixel 

locations are slightly offset from the locations on the plane 

used by the projection formulae, as happens when detectors 

are slightly misshapen, for instance. This distortion is 

modelled by pixel-space polynomial correction terms that 

are stored as parameters in the image FITS header. 

While this approach was developed to deal with physical 

distortions caused by telescope and instrumental effects, it is 

also applicable to Montage in augmenting the plane-to-

plane reprojection. Over a small, well-behaved region, most 

projections can be approximated by a Gnomonic (TAN) 

projection with small distortions. For instance, in terms of 

how pixel coordinates map to sky coordinates, a two-degree 

“Cartesian” (CAR) projection is identical to a TAN 

projection with a fourth-order distortion term to within 

about a percent of a pixel width. Figure 3 shows this, in 

exaggerated form for clarity, with the arrows showing the 

sense of the distortion. 

3.3 Background rectification 

If several images are to be combined into a mosaic, they 

must all be projected onto a common coordinate system (see 

 

Figure 2  Plane-to-plane reprojection. 

 

 

Figure 3  Representation of a WCS projection as a distorted 

Gnomonic (TAN) projection, exaggerated for clarity. The 

arrows indicate the sense of the distortions. 
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above) and then any discrepancies in brightness or 

background must be removed, as illustrated in Figure 4. Our 

assumption is that the input images are all calibrated to an 

absolute energy scale (i.e., brightnesses are absolute and 

should not be modified) and that any discrepancies between 

the images are due to variations in their background levels 

that are terrestrial or instrumental in origin. 

The Montage background rectification algorithm is based 

on the assumption that terrestrial and instrumental 

backgrounds can be described by simple linear functions or 

surfaces (e.g., slopes and offsets).  Stated more generally, 

we assume that the “non-sky” background has very little 

energy in any but the lowest spatial frequencies. If this not 

the case, it is unlikely that any generalized background 

matching algorithm will be able distinguish between “sky” 

and rapidly varying “background”; background removal 

would then require an approach that depends on a detailed 

knowledge of an individual data set. 

Given a set of overlapping images, characterization of the 

overlap differences is key to determining how each image 

should be adjusted before combining them. We consider 

each image individually with respect to its neighbours. 

Specifically, we determine the areas of overlap between 

each image and its neighbours, and use the complete set of 

overlap pixels in a least-squares fit to determine how each 

image should be adjusted (e.g., what gradient and offset 

should be added) to bring it best in line with its neighbours. 

In practice, we adjust the image by half this optimal 

amount, since all the neighbors are also being analyzed and 

adjusted and we want to avoid ringing. After doing this for 

all the images, we iterate (currently for a fixed number of 

iterations, though a convergence criteria could be used).  

The final effect is to have subtracted a low-frequency 

(currently a gradient and offset) background from each 

image such that the cumulative image-to-image differences 

are minimized. To speed the computation and minimize 

memory usage, we approximate the gradient and offset 

values by a planar surface fit to the overlap area difference 

images rather than perform a least squares fit using all of the 

overlap pixels. 

3.4 Coaddition 

In the reprojection algorithm (described above), each input 

pixel’s energy contribution to an output pixel is added to 

that pixel, weighted by the sky area of the overlap. In 

addition, a cumulative sum of these sky area contributions is 

kept for the output pixels (called an “area” image). When 

combining multiple overlapping images, these area images 

provide a natural weighting function; the output pixel value 

is simply the area-weighted average of the pixels being 

combined. 

Such images are in practice very flat (with only slight 

slopes due to the image projection) since the cumulative 

effect is that each output pixel is covered by the same 

amount of input area, regardless of the pattern of coverage. 

The only real variation occurs at the edges of the area 

covered, since there an output pixel may be only partially 

covered by input pixels. 

The limitations of available memory have been simply 

overcome in coaddition by reading the reprojected images 

one line at a time from files that reside on disk. Assuming 

that a single row of the output file does not fill the memory, 

the only limitation on file size is that imposed by the file 

system.  Indeed, images of many gigabytes have thus far 

been built with the new software. For each output line, 

mAdd determines which input files will be contributing 

pixel values, and opens only those files. Each contributing 

pixel value is read from the flux and area coverage files, and 

the value of each of these pixels is stored in an array until 

all contributing pixels have been read for the corresponding 

output row. This array constitutes a “stack” of input pixel 

 

Figure 4 A Montage mosaic before (left) and after (right) background rectification. 
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values; a corresponding stack of area coverage values is also 

preserved. The contents of the output row are then 

calculated one output pixel (i.e., one input stack) at a time, 

by averaging the flux values from the stack. 

Different algorithms to perform this average can be 

trivially inserted at this point in the program. Montage 

currently supports mean and median coaddition, with or 

without weighting by area. The mean algorithm (the default) 

accumulates flux values contributing to each output pixel, 

and then scales them by the total area coverage for that 

pixel. The median algorithm ignores any pixels whose area 

coverage falls below a specific threshold, and then 

calculates the median flux value from the remainder. 

If there are no area files, then the algorithm gives equal 

weight to all pixels. This is valuable for science data sets 

where the images are already projected into the same pixel 

space (e.g., MSX).  An extension of the algorithm to support 

outlier rejection is planned for a future release. 

3.5 Drizzle 

The Space Telescope Science Institute (STScI) has 

developed a method for the linear reconstruction of an 

image from under-sampled, dithered data. The algorithm is 

known as “drizzling,” or more formally as Variable-Pixel 

Linear Reconstruction (Fruchter and Hook, 2002).  Montage 

provides drizzle as an option in the image reprojection.  In 

this algorithm, pixels in the original input images are 

mapped onto the output mosaic as usual, except the pixel is 

first “shrunken” by a user-defined amount.  This is 

particularly easy to do in Montage. Since the Montage 

algorithm projects the corners of each pixel onto the sky, we 

implement drizzle by simply using a different set of corners 

in the interior of the original pixel.  In other words, the flux 

is modelled as all coming from a box centered on the 

original pixel but smaller by the drizzle factor. 

4 MONTAGE GRID PORTAL ARCHITECTURE 

The basic user interface to Montage is implemented as a 

web portal.  In this portal, the user selects a number of input 

parameters for the mosaicking job, such as the centre and 

size of the region of interest, the source of the data to be 

mosaicked, and some identification such as an email 

address.  Once this information is entered, the user assumes 

that the mosaic will be computed, and she will be notified of 

the completion via an email message containing a URL 

where the mosaic can be retrieved. 

Behind the scenes, a number of things have to happen. 

First, a set of compute resources needs to be chosen. Here, 

we will assume that this is a cluster with processors that 

have access to a shared file system. Second, the input data 

files and executable code needs to be moved to these 

resources.  Third, the modules need to be executed in the 

right order. In general, this might involve moving 

intermediate files from one set of resources to another, but 

the previous assumption makes this file movement 

unnecessary. Fourth, the output mosaic and some status 

information need to be moved to a location accessible to the 

user. Fifth and finally, the user must be notified of the job 

completion and the location of the output files. 

The Montage TeraGrid portal includes components 

distributed across computers at the Jet Propulsion 

Laboratory (JPL), Infrared Processing and Analysis Center 

(IPAC), USC Information Sciences Institute (ISI), and the 

TeraGrid, as illustrated in Figure 5.  Note that the 

description here applies to 2MASS mosaics, but can be 

easily extended to DPOSS and SDSS images as well.  The 

portal is comprised of the following five main components, 

each having a client and server as described below: (i) User 

Portal, (ii) Abstract Workflow Service, (iii) 2MASS Image 

List Service, (iv) Grid Scheduling and Execution Service, 

and (v) User Notification Service. 

 

Figure 5 The Montage TeraGrid portal architecture. 
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This design exploits the parallelization inherent in the 

Montage architecture.  The Montage grid portal is flexible 

enough to run a mosaic job on a number of different cluster 

and grid computing environments, including Condor pools 

and TeraGrid clusters.  We have demonstrated processing 

on both a single cluster configuration and on multiple 

clusters at different sites having no shared disk storage. 

4.1 User portal 

Users on the Internet submit mosaic requests by filling in 

a simple web form with parameters that describe the mosaic 

to be constructed, including an object name or location, 

mosaic size, coordinate system, projection, and spatial 

sampling rate. After request submission, the remainder of 

the data access and mosaic processing is fully automated 

with no user intervention. 

The server side of the user portal includes a CGI program 

that receives the user input via the web server, checks that 

all values are valid, and stores the validated requests to disk 

for later processing.  A separate daemon program with no 

direct connection to the web server runs continuously to 

process incoming mosaic requests.  The processing for a 

request is done in two main steps: 

1. Call the abstract workflow service client code 

2. Call the grid scheduling and execution service client 

code and pass to it the output from the abstract 

workflow service client code 

4.2 Abstract workflow service 

The abstract workflow service takes as input a celestial 

object name or location on the sky and a mosaic size and 

returns a zip archive file containing the abstract workflow as 

a directed acyclic graph (DAG) in XML and a number of 

input files needed at various stages of the Montage mosaic 

processing.  The abstract workflow specifies the jobs and 

files to be encountered during the mosaic processing, and 

the dependencies between the jobs.  These dependencies are 

used to determine which jobs can be run in parallel on 

multiprocessor systems.  A pictorial representation of an 

abstract workflow for computing a mosaic from three input 

images is shown in Figure 6. 

4.3 2MASS image list service 

The 2MASS Image List Service takes as input a celestial 

object name or location on the sky (which must be specified 

as a single argument string), and a mosaic size.  The 

2MASS images that intersect the specified location on the 

sky are returned in a table, with columns that include the 

filenames and other attributes associated with the images. 

4.4 Grid scheduling and execution service 

The Grid Scheduling and Execution Service takes as input 

the abstract workflow, and all of the input files needed to 

 

Figure 6  Example abstract workflow. 
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construct the mosaic. The service authenticates users using 

grid security credentials stored in a MyProxy server 

(Novotny et al., 2001), schedules the job on the grid using 

Pegasus (Deelman et al., 2002; 2003; 2004), and then 

executes the job using Condor DAGMan (Frey et al., 2001).  

Section 6 describes how this is done in more detail. 

4.5 User notification service 

The last step in the grid processing is to notify the user 

with the URL where the mosaic may be downloaded.  This 

notification is done by a remote user notification service at 

IPAC so that a new notification mechanism can be used 

later without having to modify the Grid Scheduling and 

Execution Service.  Currently the user notification is done 

with a simple email, but a later version will use the Request 

Object Management Environment (ROME), being 

developed separately for the National Virtual Observatory.  

ROME will extend our portal with more sophisticated job 

monitoring, query, and notification capabilities. 

5 GRID-ENABLING MONTAGE VIA MPI 

PARALLELIZATION 

The first method of running Montage on a grid is to use 

grid-accessible clusters, such as the TeraGrid.  This is very 

similar to traditional, non-grid parallelization.  By use of 

MPI, the Message Passing Interface (Snir et al., 1996), the 

executives (mProjExec, mDiffExec, mFitExec, mBgExec, 

mAddExec) and mAdd can be run on multiple processors. 

The Atlasmaker (Williams et al., 2003) project previously 

developed an MPI version of mProject, but it was not 

closely coupled to the released Montage code, and therefore 

has not continued to work with current Montage releases.  

The current MPI versions of the Montage modules are 

generated from the same source code as the single-processor 

modules by preprocessing directives. 

The structure of the executives are similar to each other, in 

that each has some initialization that involves determining a 

list of files on which a module will be run, a loop in which 

the module is actually called for each file, and some 

finalization work that includes reporting on the results of the 

module runs. The executives, therefore, are parallelized 

straightforwardly, with all processes of a given executive 

being identical to each other.  All the initialization is 

duplicated by all of the processes.  A line is added at the 

start of the main loop, so that each process only calls the 

sub-module if the remainder of the loop count divided by 

the number of processes equals the MPI rank (a logical 

identifier of an MPI process).  All processes then participate 

in global sums to find the total statistics of how many sub-

modules succeeded, failed, etc., as each process keeps track 

of its own statistics.  After the global sums, only the process 

with rank 0 prints the global statistics. 

mAdd writes to the output mosaic one line at a time, 

reading from its input files as needed. The sequential mAdd 

writes the FITS header information into the output file 

before starting the loop on output lines. In the parallel 

mAdd, only the process with rank 0 writes the FITS header 

information, then it closes the file.  Each process then 

carefully seeks and writes to the correct part of the output 

file.  Each process is assigned a unique subset of the rows of 

the mosaic to write, so there is no danger of one process 

overwriting the work of another.  While the executives were 

written to divide the main loop operations in a round-robin 

fashion, it makes more sense to parallelize the main mAdd 

loop by blocks, since it is likely that a given row of the 

output file will depend on the same input files as the 

previous row, and this can reduce the amount of input I/O 

for a given process. 

Note that there are two modules that can be used to build 

the final output mosaic, mAdd and mAddExec, and both can 

be parallelized as discussed in the previous two paragraphs.  

At this time, we have just run one or the other, but it would 

be possible to combine them in a single run. 

A set of system tests is available from the Montage web 

site.  These tests, which consist of shell scripts that call the 

various Montage modules in series, were designed for the 

single-processor version of Montage. The MPI version of 

Montage is run similarly, by changing the appropriate lines 

of the shell script, for example, from: 

 

mProjExec arg1 arg2 ... 

to: 

 

mpirun -np N mProjExecMPI arg1 arg2 ... 

 

No other changes are needed.  If this is run on a queue 

system, a set of processors is reserved for the job.  Some 

parts of the job, such as mImgtbl, only use one processor, 

and other parts, such as mProjExecMPI, use all the 

processors.  Overall, most of the processors are in use most 

of the time.  There is a small bit of overhead here in 

launching multiple MPI jobs on the same set of processors.  

One might change the shell script into a parallel program, 

perhaps written in C or Python, to avoid this overhead, but 

this has not been done for Montage. 

The processing part of this approach is not very different 

from what might be done on a cluster that is not part of a 

grid.  In fact, one might choose to run the MPI version of 

Montage on a local cluster by logging into the local cluster, 

transferring the input data to that machine, submitting a job 

that runs the shell script to the queuing mechanism, and 

finally, after the job has run, retrieving the output mosaic.  

Indeed, this is how the MPI code discussed in this paper was 

run and measured.  The discussion of how this code could 

be used in a portal is believed to be correct, but has not been 

implemented and tested. 

6 GRID-ENABLING MONTAGE WITH PEGASUS 

Pegasus (Planning for Execution in Grids), developed as 

part of the GriPhyN Virtual Data (http://www.griphyn.org/), 
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is a framework that enables the mapping of complex 

workflows onto distributed resources such as the grid.  In 

particular, Pegasus maps an “abstract workflow” to a 

“concrete workflow” that can be executed on the grid using 

a variety of computational platforms, including single hosts, 

Condor pools, compute clusters, and the TeraGrid.   

An abstract workflow describes a computation in terms of 

logical transformations and data without identifying the 

resources needed to execute it. The Montage abstract 

workflow consists of the various application components 

shown in Figure 6.  The nodes represent the logical 

transformations such as mProject, mDiff and others. The 

edges represent the data dependencies between the 

transformations.  For example, mConcatFit requires all the 

files generated by all the previous mFitplane steps. 

6.1 Mapping application workflows 

Pegasus maps an abstract workflow description to a 

concrete, executable form after consulting various grid 

information services to find suitable resources, the data that 

is used in the workflow, and the necessary software. In 

addition to specifying computation on grid resources, this 

concrete, executable workflow also has data transfer nodes 

(for both stage-in and stage-out of data), data registration 

nodes that can update various catalogues on the grid (for 

example, RLS), and nodes that can stage-in binaries. 

Pegasus finds any input data referenced in the workflow 

by querying the Globus Replica Location Service (RLS), 

assuming that data may be replicated across the grid 

(Chervenak et al., 2002). After Pegasus derives new data 

products, it can register them into the RLS as well. 

Pegasus finds the programs needed to execute a workflow, 

including their environment setup requirements, by 

querying the Transformation Catalogue (TC) (Deelman et 

al., 2001).  These executable programs may be distributed 

across several systems. 

Pegasus queries the Globus Monitoring and Discovery 

Service (MDS) to find the available compute resources and 

their characteristics such as the load, the scheduler queue 

length, and available disk space (Czajkowski et al., 2001). 

Additionally, the MDS is used to find information about the 

location of the GridFTP servers (Allcock et al., 2002) that 

can perform data movement, job managers (Czajkowski et 

al., 2001) that can schedule jobs on the remote sites, storage 

locations, where data can be pre-staged, shared execution 

directories, the RLS into which new data can be registered, 

site-wide environment variables, etc. 

The information from the TC is combined with the MDS 

information to make scheduling decisions, with the goal of 

scheduling a computation close to the data needed for it.  

One other optimization that Pegasus performs is to reuse 

those workflow data products that already exist and are 

registered into the RLS, thereby eliminating redundant 

computation. As a result, some components from the 

abstract workflow may not appear in the concrete workflow. 

6.2 Workflow execution 

The concrete workflow produced by Pegasus is in the form 

of submit files that are given to DAGMan and Condor-G for 

execution.  The submit files indicate the operations to be 

performed on given remote systems and dependencies, to be 

enforced by DAGMAN, which dictate the order in which 

the operations need to be performed. 

In case of job failure, DAGMan can retry a job a given 

number of times.  If that fails, DAGMan generates a rescue 

workflow that can be potentially modified and resubmitted 

at a later time.  Job retry is useful for applications that are 

sensitive to environment or infrastructure instability.  The 

rescue workflow is useful in cases where the failure was due 

to lack of disk space that can be reclaimed or in cases where 

totally new resources need to be assigned for execution.  

Obviously, it is not always beneficial to map and execute an 

entire workflow at once, because resource availability may 

change over time.  Therefore, Pegasus also has the 

capability to map and then execute (using DAGMan) one or 

more portions of a workflow (Deelman et al., 2004). 

7 COMPARISON OF GRID EXECUTION STRATEGIES 

AND PERFORMANCE 

Here we discuss the advantages and disadvantages of each 

of the two approaches (MPI and Pegasus) we took to 

running Montage on the grid.  We quantify the performance 

of the two approaches and describe how they differ.  

7.1 Benchmark problem and system 

In order to test the two approaches to grid-enabling 

Montage, we chose a sample problem that could be 

computed on a single processor in a reasonable time as a 

benchmark. The results in this paper involve this 

benchmark, unless otherwise stated. 

The benchmark problem generates a mosaic of 2MASS 

data from a 6 x 6 degree region at M16.  This requires 1,254 

input 2MASS images, each about 0.5 megapixel, for a total 

of about 657 megapixels (about 5 GB with 64 bits/pixel 

double precision floating point data).  The output is a 3.7 

GB FITS (Flexible Image Transport System) file with a 

21,600 x 21,600 pixel data segment, and 64 bits/pixel 

double precision floating point data.  The output data is a 

little smaller than the input data size because there is some 

overlap between neighboring input images.  For the timing 

results reported in this section, the input data had been pre-

staged to a local disk on the compute cluster. 

Results in this paper are measured on the “Phase 2” 

TeraGrid cluster at the National Center for Supercomputing 

Applications (NCSA), unless otherwise mentioned. This 

cluster has (at the time of this experiment) 887 nodes, each 

with dual Itanium 2 processors with at least 4 GB of 

memory.  256 of the nodes have 1.3 GHz processors, and 

the other 631 nodes have 1.5 GHz processors.  The timing 

tests reported in this paper used the 1.5 GHz processors. The 

network between nodes is Myrinet and the operating system 
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is SuSE Linux. Disk I/O is to a 24 TB General Parallel File 

System (GPFS).  Jobs are scheduled on the system using 

Portable Batch System (PBS) and the queue wait time is not 

included in the execution times since that is heavily 

dependent on machine load from other users. 

Figure 6 shows the processing steps for the benchmark 

problem. There are two types of parallelism: simple file-

based parallelism, and more complex module-based 

parallelism.  Examples of file-based parallelism are the 

mProject modules, each of which runs independently on a 

single file.  mAddExec, which is used to build an output 

mosaic in tiles, falls into this category as well, as once all 

the background-rectified files have been built, each output 

tile may be constructed independently, except for I/O 

contention. The second type of parallelism can be seen in 

mAdd, where any number of processors can work together 

to build a single output mosaic. This module has been 

parallelized over blocks of rows of the output, but the 

parallel processes need to be choreographed to write the 

single output file correctly. The results in this paper are for 

the serial version of mAdd, where each output tile is 

constructed by a single processor. 

7.2 Starting the job 

In both the MPI and Pegasus implementations, the user can 

choose from various sets of compute resources. For MPI, 

the user must specify a single set of processors that share a 

file system.  For Pegasus, this restriction is removed since it 

can automatically transfer files between systems.  Thus, 

Pegasus is clearly more general.  Here, we compare 

performance on a single set of processors on the TeraGrid 

cluster, described previously as the benchmark system. 

7.3 Data and code stage-in 

In either approach, the need for both data and code stage-in 

is similar. The Pegasus approach has clear advantages, in 

that the RLS and Transformation Catalogue can be used to 

locate the input data and proper executables for a given 

machine, and can stage the code and data to an appropriate 

location.  In the MPI approach, the user must know where 

the executable code is, which is not a problem when the 

portal executes the code, as it then is the job of the portal 

creator.  Data reuse can also be accomplished with a local 

cache, though this is not as general as the use of RLS. 

In any event, input data will sometimes need to be retrieved 

from an archive.  In the initial version of the portal 

discussed in this paper, we use the 2MASS list service at 

IPAC, but a future implementation will use the proposed 

standard Simple Image Access (SIA) protocol 

(http://www.ivoa.net/Documents/latest/SIA.html), which 

returns a table listing the files (URLs) that can be retrieved. 

7.4 Building the mosaic 

With the MPI approach, the portal generates a shell script 

and a job to run it is submitted to the queue.  Each command 

in the script is either a sequential or parallel command to 

run a step of the mosaic processing. The script will have 

some queue delay, and then will start executing. Once it 

starts, it runs until it finishes with no additional queue 

delays. The script does not contain any detail on the actual 

data files, just the directories.  The sequential commands in 

the script examine the data directories and instruct the 

parallel jobs about the actual file names. 

The Pegasus approach differs in that the initial work is 

more complex, but the work done on the compute nodes is 

much simpler.  For reasons of efficiency, a pool of 

processors is allocated from the parallel machine by use of 

the queue. Once this pool is available, Condor-Glidein 

(http://www.cs.wisc.edu/condor/glidein/) is used to 

associate this pool with an existing Condor pool.  Condor 

DAGMan then can fill the pool and keep it as full as 

possible until all the jobs have been run.  The decision about 

what needs to be run and in what order is made by the 

portal, where the mDAG module builds the abstract DAG, 

and Pegasus then builds the concrete DAG. 

Because the queuing delays are one-time delays for both 

methods, we do not discuss them any further. The elements 

for which we discuss timings below are the sequential and 

parallel jobs for the MPI approach, and the mDAG, Pegasus, 

and compute modules for the Pegasus approach. 

7.5 MPI timing results 

The timing results of the MPI version of Montage are 

shown in Figure 7.  The total times shown in this figure 

include both the parallel modules (the times for which are 

also shown in the figure) and the sequential modules (the 

times for which are not shown in the figure, but are 

relatively small). 

The end-to-end runs of Montage involved running the 

modules in this order: mImgtbl, mProjExec, mImgtbl, 

mOverlaps, mDiffExec, mFitExec, mBgModel, mBgExec, 

mImgtbl, mAddExec. 

 

Figure 7 Performance of MPI version of Montage building a 

6 x 6 degree mosaic. 
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MPI parallelization reduces the one processor time of 453 

minutes down to 23.5 minutes on 64 processors, for a 

speedup of 19.  Note that with the exception of some small 

initialization and finalization code, all of the parallel code is 

non-sequential.  The main reason the parallel modules fail to 

scale linearly as the number of processors is increased is 

I/O.  On a system with better parallel I/O, one would expect 

to obtain better speedups; the situation where the amount of 

work is too small for the number of processors has not been 

reached, nor has the Amdahl’s law limit been reached. 

Note that there is certainly some variability inherent in 

these timings, due to the activity of other users on the 

cluster.  For example, the time to run a serial module like 

mImgtbl shouldn’t vary with number of processors, but the 

measured results vary from 0.7 to 1.4 minutes. Also, the 

time for mDiffExec on 64 processors is fairly different from 

that on 16 and 32 processors. This appears to be caused by 

I/O load from other jobs running simultaneously with 

Montage. Additionally, since some of the modules’ timings 

are increasing as the number of processors is increased, one 

would actually run the module on the number of processors 

that minimizes the timing. For example, mBgExec on this 

machine should only be run on 16 processors, no matter 

how many are used for the other modules. 

These timings are probably close to the best that can be 

achieved on a single cluster, and can be thought of as a 

lower bound on any parallel implementation, including any 

grid implementation. However, there are numerous 

limitations to this implementation, including that a single 

pool of processors with shared access to a common file 

system is required, and that any single failure of a module or 

submodule will cause the entire job to fail, at least from that 

point forward. The Pegasus approach described in Section 6 

can overcome these limitations. 

7.6 Pegasus timing results 

When using remote grid resources for the execution of the 

concrete workflow, there is a non-negligible overhead 

involved in acquiring resources and scheduling the 

computation over them. In order to reduce this overhead, 

Pegasus can aggregate the nodes in the concrete workflow 

into clusters so that the remote resources can be utilized 

more efficiently. The benefit of clustering is that the 

scheduling overhead (from Condor-G, DAGMan and 

remote schedulers) is incurred only once for each cluster. In 

the following results we cluster the nodes in the workflow 

within a workflow level (or workflow depth). In the case of 

Montage, the mProject jobs are within a single level, mDiff 

jobs are in another level, and so on. Clustering can be done 

dynamically based on the estimated run time of the jobs in 

the workflow and the processor availability. 

Figure 8 shows the end-to-end time taken to create 

(mDAG and Pegasus) and execute (runtime) the concrete 

workflow to construct a 6 x 6 degree mosaic. As previously 

mentioned, Condor Glidein is used to acquire the resources.  

Once the resources are acquired, they are available for 

executing the workflow and there is no queuing delay at the 

remote resource. The workflow was executed using 

DAGMan running on a host at USC Information Sciences 

Institute.  The time taken to transfer the input data and the 

output mosaic is not included in this figure. These 

measurements were made using Montage version 3.05.  In 

this version mDiff and mFitplane are also available as a 

single module called mDiffFit, which has been used in the 

timing results shown. 

The figure shows the time in minutes for DAGMan to 

execute the workflow for different numbers of processors.  

The nodes in the workflow were clustered so that the 

number of clusters at each level of the workflow was equal 

to the number of processors.  As the number of processors is 

increased (and thus the number of clusters increases), the 

Condor overhead becomes the dominant factor. DAGMan 

takes approximately 1 second to submit each cluster into the 

Condor queue. Condor’s scheduling overhead adds 

additional delay. As a result we do not always see a 

corresponding decrease in the workflow execution time as 

we increase the number of processors. Also, as with the MPI 

results, the other codes running on the test machine appear 

to impact these timings. The 64-processor case seems to 

have worse performance than the 32-processor case, but it is 

likely that were it rerun on a dedicated machine, it would 

have better performance. This is discussed further below. 

Finally, there are sequential sections in the workflow that 

limit the overall parallel efficiency. 

7.7 Timing discussion 

Figure 9 shows a comparison of the time for the MPI run 

vs. the time needed to build and run the concrete DAG, for 

the benchmark problem. Notice that the performance of the 

Pegasus version seems to be faster than the MPI version 

except at 64 processors where the results are reversed. It is 

the authors’ belief that, for large jobs, the measured 

difference between the Pegasus and MPI runs is not 

significant, and that it is due to the I/O contention caused by 

 

Figure 8 Times for building and executing the concrete 

workflow for creating a 6 x 6 degree mosaic. 
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other jobs running on the test platform during these runs.  A 

dedicated system would serve to mitigate these differences. 

To examine some of these timings in more detail, we 

study the work needed to create a 1-degree square mosaic 

on 8 processors, as shown in Figure 10.  The first difference 

is that mImgtbl is run three times in the MPI code vs. only 

once in the Pegasus code, where mDAG and Pegasus are run 

in advance instead of the first two mImgtbl runs. This is 

because the DAG is built in advance for Pegasus, but for 

MPI, the inputs are built on the fly from the files created by 

previous modules. Second, one MPI module starts 

immediately after the previous module finishes, while the 

Pegasus modules have a gap where nothing is running on 

the TeraGrid. This is the overhead imposed by DAGMan, as 

mentioned above. Third, the MPI code is almost 3 times 

faster for this small problem. 

If we examine a larger problem, such as the 64 processor 

runs that create the 36 square degree test problem, as seen in 

Figure 11, we see some differences. First, the overall times 

are now comparable. Second, in the Pegasus case, the gaps 

between the modules are generally not noticeable, except 

between mProject and mDiffFit and between mBgModel and 

mBackground. Since the bars show the range of time of 64 

processes now, some of the gaps are just hidden, while some 

are truly insignificant. Finally, in the Pegasus case, the 

mDAG and Pegasus times are substantial, but the mAdd time 

is much shorter than in the MPI case.  Again, this is just a 

difference between the two implementations: mDAG allows 

the individual mAdd processes to open only the relevant 

files in the Pegasus case, whereas in the MPI case, the 

region of coverage is not known in advance, so all mAdd 

instances must open all files.  Many are then closed 

immediately, if they are determined to not intersect the 

output tile.  The I/O overhead in the MPI case is much 

larger, but the startup time is much shorter. 

It is possible that a larger number of experiments run on a 

large dedicated machine would further illuminate the 

differences in performance between the MPI and Pegasus 

approaches, but even on the heavily-loaded TeraGrid cluster 

at NCSA, it is clear that there is no performance difference 

that outweighs the other advantages of the Pegasus 

approach, such as fault tolerance and the ability to use 

multiple machines for a single large job. 

7.8 Finishing the job 

Once the output mosaic has been built, it must be made 

available to the user, and the user must be notified of this 

availability. The Montage portal currently transfers the 

mosaic from the compute processors to the portal, and 

emails the user.  In the case of Pegasus, the mosaic is also 

registered in RLS. The time required to transfer the mosaic 

and to notify the user are common to both the Pegasus and 

MPI approaches, and thus are not discussed here.  

8 CONCLUSION 

Montage was written as a very general set of modules to 

permit a user to generate astronomical image mosaics.  A 

Montage mosaic is a single image that is built from multiple 

smaller images and preserves the photometric and 

astrometric accuracy of the input images.  Montage includes 

modules that are used to reproject images to common 

coordinates, calculate overlaps between images, calculate 

coefficients to permit backgrounds of overlap regions to be 

matched, modify images based on those coefficients, and 

coadd images using a variety of methods of handling 

multiple pixels in the same output space.   

The Montage modules can be run on a single processor 

computer using a simple shell script.  Because this approach 

can take a long time for a large mosaic, alternatives to make 

use of the grid have been developed.  The first alternative, 

using MPI versions of the computation-intensive modules, 

performs well but is somewhat limited.  A second 

alternative, using Pegasus and other grid tools, is more 

general and allows for execution on a variety of platforms 

without requiring a change in the underlying code base, and 

appears to have real-world performance comparable to that 

of the MPI approach for reasonably large problems.  

Pegasus allows various scheduling techniques to be used to 

optimize the concrete workflow for a particular execution 

platform. Other benefits of Pegasus include 

opportunistically making best use of available resources 

through dynamic workflow mapping, and taking advantage 

of pre-existing intermediate data products. 

The Montage software, user guide and user support 

system are available on the project web site at 

http://montage.ipac.caltech.edu/.   Montage has been used 

by a number of NASA projects for science data product 

generation, quality assurance, mission planning, and 

outreach.  These projects include: two Spitzer Legacy 

Projects, SWIRE (Spitzer Wide Area Infrared Experiment, 

http://swire.ipac.caltech.edu/swire/swire.html) and 

GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey 

Extraordinaire, http://www.astro.wisc.edu/sirtf/); NASA’s 

 

Figure 9 Times for building and executing the concrete workflow 

for creating a 6 x 6 degree mosaic. 
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Infrared Science Archive, IRSA 

(http://irsa.ipac.caltech.edu/); and the Hubble Treasury 

Program, the COSMOS Cosmic Evolution Survey 

(http://www.astro.caltech.edu/~cosmos/). 
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Figure 11    Timing of modules for creating an 8 x 8 degree mosaic on 64 processors. The MPI modules and timing are on the left, and 

the Pegasus modules and timing are on the right.  The bars for the Pegasus modules show the start and end times of the first and last 

processes of each module. 
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