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Abstract

We consider the numerical irreducible decomposition of a positive di-

mensional solution set of a polynomial system into irreducible factors.

Path tracking techniques computing loops around singularities connect

points on the same irreducible components. The computation of a lin-

ear trace for each factor certifies the decomposition. This factorization

method exhibits a good practical performance on solution sets of relative

high degrees.

Using the same concepts of monodromy and linear trace, we present a

new monodromy breakup algorithm. It shows a better performance than

the old method which requires construction of permutations of witness

points in order to break up the solution set. In contrast, the new algo-

rithm assumes a finer approach allowing us to avoid tracking unnecessary

homotopy paths.

As we designed the serial algorithm keeping in mind distributed com-

puting, an additional advantage is that its parallel version can be easily

built. Synchronization issues resulted in a performance loss of the straight-

forward parallel version of the old algorithm. Our parallel implementation

of the new approach bypasses these issues, therefore, exhibiting a better

performance, especially on solution sets of larger degree.
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1 INTRODUCTION

1.1 Problem Statement

As polynomial equations emerge more and more often in various fields of science
and engineering, the question of simplification of polynomials and polynomial
systems becomes of the most importance. How can we simplify? One way to
understand better the solution set of a polynomial is to factor it; equivalently, in
case of a polynomial system we talk about finding an irreducible decomposition
of its solution set, a central problem in numerical algebraic geometry [34, 35].

A widely known family of polynomial systems used for benchmarking is
“cyclic n-roots”, which arose in Fourier analysis [3, 4]. The case n = 4 is our
running example:















x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0.

(1)

This system has a one dimensional solution component of degree four, which
becomes obvious by the substitution x3 = −x1 and x4 = −x2. After this
substitution, the first three equation vanish and the last equation simplifies to
x2
1x

2
2−1. Since x2

1x
2
2−1 = (x1x2−1)(x1x2+1), the curve of degree four factors

in two irreducible quadrics.
We denote systems of polynomial equations by f(x) = (f1(x), . . . , fm(x)) =

0, where fi ∈ C[x] = C[x1, . . . , xn] for all i. Very often, the coefficients
are known with limited accuracy. The solution set V to f(x) = 0 is natu-
rally organized into pure dimensional solution sets V = [V0, V1, . . . , Vn], where
dim(Vk) = k. A numerical representation of a pure dimensional solution set Vk

is a witness set [29] [35], which consists of

1. the polynomials fi (i = 1, . . . ,m);

2. k linear equations L(x) = (L1(x), . . . , Lk(x)) = 0 with generic coefficients
describing k generic hyperplane slices;

3. a list W of deg(Vk) solutions to the system f(x) = L(x) = 0.

By the generic choice of the coefficients of the L(x) = 0, the k hyperplanes
defined by L cut out exactly as many isolated regular solutions on Vk as deg(Vk).

Notice how the treatment of positive dimensional solution sets is reduced
to dealing with collections of generic points. Using slack variables we reduce
overdetermined polynomial systems to systems with as many variables as un-
knowns [28]. For a system like cyclic 4-roots in (1), we add one slack variable z
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to the system:






















x1 + x2 + x3 + x4 + b1z = 0
x1x2 + x2x3 + x3x4 + x4x1 + b2z = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 + b3z = 0
x1x2x3x4 − 1 + b4z = 0

c0 + c1x1 + c2x2 + c3x3 + c4x4 + z = 0,

(2)

where the coefficients b1, . . ., b4, c0, c1, . . ., c4 are randomly chosen complex
numbers. The extra linear equation reduces the dimension of the solution set
by one and we find generic points on the curve as regular solutions with z = 0.
For the cyclic 4-roots system the witness set contains four generic points, as the
degree of the curve equals four.

The main question now is: given a positive dimensional solution set V , can
we find its decomposition into the irreducible components? In the language
of witness sets this interprets as: given a witness set (f ,L,W ) of V , can we
find a decomposition W = W (1) ⊔ . . . ⊔W (r) such that for all i the witness set

(f ,L,W
(i)
k ) represents an irreducible component of V ?

Finding polynomial time algorithms for the factorization of multivariate
polynomial with approximate coefficients was posed in [20] as one of the chal-
lenges in symbolic computation. This challenge received a lot of attention [6, 7,
9, 8, 13, 14, 15, 19, 24, 33]; see [7] for a nice description of recent methods.

1.2 Numerical Homotopies define Loops around Singular-

ities

In [30], a new numerical algorithm using homotopy continuation methods was
proposed to decompose a positive dimensional solution set into irreducible fac-
tors. Linear traces were proposed in [31] to certify a numerical irreducible
decomposition. The implementation [32] was adjusted to the important special
case of factoring one single multivariate complex polynomial in [33].

In this section we outline the idea of exploiting monodromy using homotopies
to define loops around singularities. Assume two witness sets (f ,L1,W1) and
(f ,L2,W2) represent the same positive dimensional irreducible component V .
Consider the system Hγ,L1,L2

(x, t):
{

f(x) = 0;
(1− t)L1(x) + γtL2(x) = 0.

(t ∈ [0, 1]) (3)

where γ is a generic nonzero complex number. Then, due to the generic choice
of γ, for a fixed value of t the solutions to Hγ,L1,L2

(x, t) are all isolated. In
particular, these are W1 for t = 0 and W2 for t = 1.

Tracking solutions of Hγ,L1,L2
(x, t) as t varies from 0 to 1 defines a 1-to-1

map φγ,L1,L2
: W1 → W2. If the composition of two such maps defines a loop

around a singularity for some t, then a permutation of the points of a witness
set is obtained, in particular:

πγ,L1,L2
= φγ2,L2,L1

◦ φγ1,L1,L2
(4)
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is a permutation of W1. All permutations that arise in this fashion form a
subgroup of the symmetry group acting on W1 and the orbits of this action are
witness sets that represent irreducible components.

The idea to exploit monodromy first appeared in a theoretical complexity
study [2]. Although our approach does not need to know the precise location
of the singularities, one could as in [11] compute those for algebraic curves, see
also the command algcurves[monodromy] in Maple.

The algorithm in [30] collects points connected by loops into the same witness
sets which converge to numerical representations of the irreducible components.
In [31], a stop criterion for this algorithm was presented, using the linear trace.
We explain this trace test on a system like cyclic 4-roots. Note our program
only works with generic points obtained as solutions of (2) and does not have
a symbolic polynomial of degree four. Via a generic projection we map the
points in 4-space down to the plane. If two of the four points to belong to the
same irreducible component, there must exist a quadratic polynomial p(x, y)
vanishing at those two points and at any point of the quadratic irreducible
factor. The linear trace is then defined rewriting p(x, y) as p(x, y(x)):

p(x, y(x)) = (y − y1(x))(y − y2(x)) (5)

= y2 − (y1(x) + y2(x))y + y1(x)y2(x) (6)

= y2 − t1(x)y + t2(x), (7)

where t1(x) is the linear trace. If t1 was not linear, then deg(p) > 2. So
t1(x) = ax + b, for some a and b to be determined by interpolation at x = x0

and x = x1, with corresponding y-values in (x0, y01), (x0, y02), (x1, y11), and
(x1, y12). If for an additional sample, at x = x2 with corresponding y-values
(x2, y21), (x2, y22), we have t1(x2) = y21 + y22, then we have an irreducible
quadratic factor, otherwise the two points do not lie on the same factor.

The linear trace test, called zero-sum relations, was first introduced in [27]
and further developed in [25, 26]. For factors of small to moderate degree, the
linear trace test can be applied in an exhaustive combinatorial enumeration as
was proposed in [13, 14, 23], [24] and improved in [6].

1.3 Parallel Algorithms

Homotopy continuation methods are very well suited for parallel processing as
after distributing the path tracking jobs among the computers in the network, no
further communications are needed, see [1, 5, 17] for granularity issues. For com-
putational algebraic geometry, this implies that homotopy methods can solve
much larger polynomial systems than methods in computer algebra which are
harder to adapt to parallel computers [21]. One recent example is the solution
of the cyclic 13-roots problems with PHoM [10, 16] for which 2,704,156 paths
were tracked.

Modern homotopies in numerical algebraic geometry often appear in a se-
quence like the Pieri homotopies [37] where the start solutions of one homotopy
lie at the end of paths defined by another homotopy. The homotopies to factor
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positive dimensional solution sets raise job scheduling issues as the decision to
certain track paths depends on the outcome of other paths. This paper can be
regarded as a solution to the job scheduling problems raised in [22].

The parallel algorithm proposed in [22] exhibited a good speedup in the path
tracking jobs, but the certification with linear traces executed in only by the
master node before the scheduling of new path tracking jobs diminished the
overall performance as all nodes were idling waiting for the assignment of new
path tracking jobs. At the end of [22] we outlined a probabilistic complexity
study simulated in Maple, suggesting various job scheduling techniques. In this
paper we report on its parallel implementation confirming the efficiency of the
approach.

2 USING MONODROMY MORE EFFICIENTLY

The monodromy breakup algorithm of [30, 31] is sketched by Algorithm 2.1.
On input is a witness set WL and on output a partition of WL, corresponding
to the irreducible decomposition.

Algorithm 2.1 Monodromy Breakup certified by Linear Trace: P =Breakup(WL, d,N)
Input: WL, d, N .
Output: P .

0. initialize P with d singletons;
1. generate two slices L′ and L′′ parallel to L;
2. track d paths for witness set with L′;
3. track d paths for witness set with L′′;
4. for k from 1 to N do

4.1 generate new slices K and a random γ;
4.2 track d paths to a new slice;
4.3 generate a new random γ;
4.4 track d paths to return to the base slice;
4.5 compute the permutation and update P ;
4.6 if linear trace test certifies P

then leave the loop;
end if;

end for.

Our first parallel implementation of this algorithm, described in [22], uses a
master/servant model where the master node distributes the paths among the
available processors in the network. According to our experimental results, a
sizeable speedup is achieved by distributing the routine path-tracking jobs to
different nodes. However, a probabilistic study in [22] suggested that we can
save some work by taking a smaller one-path-one-point tracking job as an atomic
task.

Following the previous discussion, we take two generic slices L1 and L2 (in
this case these are hyperplanes) and look at the witness points W1 and W2.
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Consider the bipartite graph with vertices W1 on one side and W2 on the other.
One atomic step of the monodromy breakup algorithm consists of creating

a map like φγ,L1,L2
. We can visualize such a map by connecting the points of

W1 and W2 that map into each other with an edge.

✈

✈

❢

❢

✈

✈

❢

❢

W1 W2

✈

❢

first quadric

second quadric

✲

✲

✲

✲

✲
✲ map φγ,L1,L2✲
✲

Figure 1: The bipartite graph W1 ↔ W2 for cyclic4

As you may see in our example, in order to create one permutation we need
to construct 8 edges in the graph. If one is lucky then it may take [MBA-P]
only one permutation to decompose cyclic4:

✈

✈

❢

❢

✈

✈

❢

❢

W1 W2

✲

✲

✲

✲

✙❨

map φγ,L1,L2

❨✙

✲
✲

map φγ′,L2,L1

✲
✲

❨

❨

✙

✙

1

2

3

4

Figure 2: Permutation (12)(34) for cyclic4

The connected components of the graph in Figure 2 correspond to the two
witness sets that, in turn, represent two irreducible components of the solution
set of cyclic4: two quadric curves.

In fact 2 out of 8 edges in Figure 2 can be removed keeping the connected
components still connected, see Figure 2. Since each edge can be created by
tracking only one point of a witness set, we may avoid doing extra work by
trying to create as few edges as possible.
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✈

✈

❢

❢

✈

✈

❢

❢

W1 W2

✲

✲

✲

✲

❨

✙

1

2

3

4

Figure 3: A 6-edge graph for cyclic4

3 A NEW ALGORITHM

In this section we first describe the sequential version of our new monodromy
breakup algorithm before addressing its parallel execution.

3.1 Serial Version

The flow chart of our new algorithm is show in Figure 4. As in Algorithm 2.1,
we also have the initialization of the “trace grid”, which are the two witness
sets on two parallel slices needed to certify the irreducible decomposition using
linear traces. While Algorithm 2.1 first completes all the loops for all points in
a witness set before proceeding to the next level, our new approach initializes s
new witness sets which are available for generating loops.

The main loop of the new algorithm shown in Figure 4 leaves much freedom
to complete loops between any two slices. For every slice, the algorithm keeps
track of the number of loops that did not yielded a permutation, stored in Nrej .
Based on these statistics, the algorithm can discriminate against slices which
were not productive in the past and select those slices which led to more new
permutations.

As explained in the previous section, the algorithm typically returns with a
certified decomposition before all loops are completed. This is the main reason
why on single processors, our new algorithm outperforms Algorithm 2.1. At the
same time, the new algorithm is more suitable for parallel execution, as we will
explain next.

3.2 Parallel Version

The parallel version of our new algorithm runs in a master/servant model. The
initialization phase is very similar to the initialization of the parallel version of
Algorithm 2.1, with the master distributing path tracking jobs evenly among
all nodes. After the initialization, the master node keeps looking for available
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path tracking nodes to assign paths and the other nodes are either busy tracking
paths or ready to start new path tracking jobs.

Compared to our previous parallel algorithm described in [22], the computa-
tion of the linear trace by the master node is now interleaved by path tracking
jobs performed on the other nodes.

4 EXPERIMENTAL RESULTS

Our algorithms are implemented using the path tracking routines in PHCpack [36],
extended in [32] with facilities for a numerical irreducible decomposition. As
in [37], we apply MPI for message passing. Our main program is written in C
and links with the interface of PHCpack.

Our equipment consists of two personal cluster machines purchased from
Rocketcalc (www.rocketcalc.com) for a total of 12 2.4Ghz CPUs, served by
a Dell workstation with two dual 2.4Ghz processors. So in total we have 14
processors at our disposal.

4.1 Plain Parallel Path Tracking

In Table 1 we show with three runs the main defect of our first parallel imple-
mentation presented in [22]. While we have no real control over the number of
loops it takes to complete the factorization, we observe from the data in Table 1
that as the total number of loops increases, the work done by the master node
increases.

#loops 4 6 9
min track 8.0 sec 10.9 sec 18.5 sec
max track 10.8 sec 15.7 sec 21.8 sec
master 1.8 sec 3.8 sec 7.6 sec
total 12.6 sec 19.5 sec 29.4 sec

Table 1: Three runs with the first parallel monodromy breakup algorithm, exe-
cuting respectively 4, 6, and 9 loops to factor a curve of degree 144 in 8 space on
14 processors. We report the minimal and maximal time the nodes spent track-
ing paths, and the time spent by the master node certifying the decomposition
and scheduling the jobs.

Although the cyclic 8-roots system is a problem of modest size, we already
observe in Table 1 that for 9 loops, more than 25% of the time is spent by the
master node, while all the other nodes are idling. For larger problems and more
processors, the poor performance of this first implementation will become even
more apparent.
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4.2 Performance of the new Algorithm

Table 2 reports on five runs done on 14 processors to decompose the curve of
degree 144 defined by the cyclic 8-roots system. For three of the five runs we
used three new slices. In the last two runs we see that the total time decreases
if we use only two new slices.

3 new slices 2 new slices
#runs 1 2 3 4 5
initial 8.73 9.01 8.89 6.54 6.98
master 6.06 6.22 6.18 6.67 7.10

min track 5.96 6.16 6.07 6.60 7.02
max track 6.06 6.24 6.23 6.11 7.15

total 14.9 15.4 15.3 13.4 14.2

Table 2: Five runs with our new parallel monodromy breakup algorithm, three
times with 3 new slices and two times with 2 new slices. We report the time used
for initialization, the time spent by the master node, the minimal and maximal
time for the nodes spent tracking paths, and the total time. All reported times
are expressed in seconds.

In Table 2 we see an even distribution of the time spent by the nodes. Using
fewer slices reduces the initialization time at the expense of a slightly higher
running time in the main loop.

Comparing to the timings in Table 1 we do not notice such a wide fluctuation
in the total execution time between different numbers of loops. The total exe-
cution time of the most favorable situation reported in Table 1 is only slightly
lower than the best total time in Table 2.

Finally, we report on a calculation of a larger example, the ideal of adjacent
2-by-2 minors of a general 2-by-9 matrix of 18 unknowns, see [12] and [18]. This
system in 18 variables defines a 10-dimensional surface of degree 256 which
factors in 34 irreducible components. The total execution time of our new
monodromy breakup algorithm on 14 processors is 97.1 seconds, of which 62.7
are spent on the initialization, 33.8 seconds by the master node in the main loop
while the time path tracking on the other noeds fluctuated between 32.9 and
35.6 seconds.

The performance of our first parallel algorithm on this system is even more
erratic. The very best complete run of 3 monodromy loops took 122.9 seconds
on 14 processors, where the path tracking time ranged between 75.9 and 104.4
seconds. Even on this very best run, our new algorithm still takes only 80% of
the time spent by the first parallel monodromy breakup algorithm of [22].
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5 CONCLUSIONS

In this paper we report on the development and performance of a new mon-
odromy breakup algorithm. Experimental results show a more predictable and
regular performance than our first parallel implementation of [22]. Thanks to
this increased performance, it is now possible to factor solution sets of larger
degrees.
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#P 6= 0
❄

Return Q, Ntot, Nrej

Pick the smallest part p ∈ P

and a label a ∈ p

b := track(a, L1, L2)

Pick two slices L1 and L2

Find q ∈ P that contains the label b

q = p

✲

✲

Merge p and q:

P := P ∪ {p ∪ q}

Is p ∪ q irreducible?

P := P \ {p ∪ q}

Q := Q ∪ {p ∪ q}
Nrej := Nrej + 1

❄

❄

❄

❄

❄

❄

❄
yes

P := P \ {p, q}

Ntot := Ntot + 1

yes

yes

Initialization:

P := {{a} | 1 ≤ a ≤ d, {a} is not a component}

Q := {{a} | 1 ≤ a ≤ d, {a} is a component}

Ntot = Nred = 0

Construct s witness sets using random slices

Label the witness points on the slices

Construct the trace grid

❄

Figure 4: The flow chart of our new Monodromy Breakup Algorithm
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