
Int. J. Computational Science and Engineering, Vol. 4, No. 3, 2009 195

Development of a grid enabled chemistry application

István Lagzi and Tamás Turányi

Institute of Chemistry,
Eötvös University,
P.O. Box 32, Budapest H-1518, Hungary
E-mail: lagzi@vuk.chem.elte.hu
E-mail: turanyi@elte.hu

Róbert Lovas*

Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI),
P.O. Box 63, Budapest H-1518, Hungary
E-mail: rlovas@sztaki.hu
*Corresponding author

Abstract: P-GRADE development and run-time environment provides high-level graphical
support to develop scientific applications and to execute them efficiently on various
platforms. This paper gives an overview on the parallelisation of two simulator algorithms;
for chemical reaction-diffusion systems and for accidental release of chemical (or radioactive)
substances. Applying the same user environment we present our experiences regarding the
execution of these chemistry applications on dedicated and non-dedicated clusters, and in
different grid environments.

Keywords: programming environment; grid; cluster; computational chemistry.

Reference to this paper should be made as follows: Lagzi, I., Turányi, T. and Lovas, R. (2009)
‘Development of a grid enabled chemistry application’, Int. J. Computational Science and
Engineering, Vol. 4, No. 3, pp.195–203.

Biographical notes: István Lagzi completed his PhD studies in Physical Chemistry at Eötvös
University (2004). He is currently a Postdoc Research Fellow at the Institute of Chemistry.
His scientific research fields are numerical simulation in air pollution modelling, adaptive
gridding, simulation of reaction-diffusion systems and chemical pattern formation.

Tamás Turányi is a Professor of Chemistry at the Institute of Chemistry of the Eötvös
University (ELTE). His degrees are MSc in Chemistry (1983), MSc in Applied Mathematics
(1988), PhD in Physical Chemistry (1988), DSc (2004), Dr. habil. (2005). University lecturing:
physical chemistry, reaction kinetics, mathematics, and combustion. Fields of research: gas
kinetics, air pollution, combustion, and simulation of complex reaction kinetic systems.
Participant of several international research projects with partners in the UK, Germany,
Italy, Spain, and Mexico.

Róbert Lovas is the Deputy Head of the Laboratory of Parallel and Distributed Systems,
Computer and Automation Research Institute of the Hungarian Academy of Sciences,
and the Member of the Technical Committee of the Hungarian Grid Competence Center.
He received his MSc (1998) and PhD (2006) Degrees at the Budapest University of
Technology and Economics. From 1997 he has been involved several national and European
research projects as a key developer of P-GRADE programming environment. In the
frame of Harness project he worked as a research associate at the Department of Math
and Computer Science, Emory University, Atlanta. Fields of research: parallel software
engineering and Grid computing tools particularly from design, debugging and application
aspects.

1 Introduction

Besides the widely applied PC clusters and
supercomputers, different computational grid systems
(Foster and Kesselman, 1999) are becoming more

and more popular among scientists, who want to
run their simulations (having high computational and
storage demands) as fast as possible. In such grid
systems, large number of heterogeneous resources can
be interconnected in order to solve complex problems.

Copyright © 2009 Inderscience Enterprises Ltd.



196 I. Lagzi et al.

One of the main aims of a joint national project,
Chemistry Grid and its application for air pollution
forecast is to investigate some aspects of Grids, such
as their application as high performance computational
infrastructure in chemistry, and to find practical
solutions. The Department of Physical Chemistry
(ELTE) applied P-GRADE environment to parallelise an
existing sequential simulator for chemical reactions and
diffusions in the frame of the Chemistry Grid project.
In this paper, we introduce briefly the fundamental
problems of reaction-diffusion systems (see Section 2)
and its parallelisation with P-GRADE programming
environment (see Section 3). We present our experiences
in details regarding the execution and performance of
this chemistry application on dedicated clusters and
Condor pools (see Section 4) as well as using non-
dedicated clusters (see Section 5) taking the advantages
of the built-in dynamic load balancer of P-GRADE
run-time environment. Finally, its successful execution
on Globus based Grids is also presented (see Section 6)
and the ongoing work concerning the simulation of
accidental release of chemical (or radioactive) substances
(Section 7).

2 Reaction-diffusion equations

Chemical pattern formation arises due to the coupling of
diffusion with chemistry, such as chemical waves (Zaikin
and Zhabotinsky, 1970), autocatalytic fronts (Luther,
1906), Turing structures (Turing, 1952) and precipitation
patterns (Liesegang phenomenon) (Liesegang, 1896).
Evolution of pattern formation can be described by
second-order partial differential equations:

∂ci

∂t
= Di∇2ci + Ri(c1, c2, . . . , cn), i = 1, 2, . . . , n, (1)

where ci is the concentration, Di is the diffusion
coefficient and Ri is the chemical reaction term,
respectively, of the ith chemical species, and t is time.
The chemical reaction term Ri may contain non-linear
terms in ci. For n chemical species, an n dimensional set
of partial differential equations is formed describing the
change of concentrations over time and space.

The operator splitting approach is applied to
equations (1), decoupling transport (diffusion) from
chemistry, i.e.,

ci,t̂+∆t = T∆t
D T∆t

C ci,t̂

where TD and TC are the diffusion and the chemistry
operators, respectively, and ci,t̂+∆t and ci,t̂ are the
concentration of the ith species at time t̂ and t̂ + ∆t,
where ∆t is the time step.

The basis of the numerical method for the solution
of the diffusion operator is the spatial discretisation of
the partial differential equations on a two-dimensional
rectangular grid. In these calculations, the grid spacing
(h) is uniform in both spatial directions. A second
order Runge-Kutta method is used to solve the system

of ODEs arising from the discretisation of partial
differential equations with no-flux boundary conditions
on a 360 × 100 grid. The Laplacian is calculated using
nine-point approximation resulting in an error of O(h2)
for the Laplacian.

The equations of the chemical term have the form

dci

dt
= Ri(c1, c2, . . . , cn), i = 1, 2, . . . , n. (2)

The time integration of system (2) is performed with the
BDF method using the CVODE package (Brown et al.,
1989), which can solve stiff chemical kinetics equations.

3 Parallel implementation in P-GRADE

In order to parallelise the sequential code of the presented
reaction-diffusion simulation, the domain decomposition
concept was followed; the two-dimensional grid is
partitioned along the x space direction, so the domain
is decomposed into horizontal columns. Therefore,
the two-dimensional subdomains can be mapped
onto a one-dimensional logical grid of processes.
An equal partition of subdomains among the processes
gives us a well balanced load during the solution
of the reaction-diffusion equations. During the
calculation of the diffusion of the chemical species,
communications are required to exchange information
on the boundary concentrations between the nearest
neighbour subdomains. In the rest of this chapter we
illustrate how this idea can be implemented in P-GRADE.

The graphical language of P-GRADE consists of three
hierarchical design layers (Kacsuk et al., 2001):

• Application layer is a graphical level, which is used
to define the component processes, their
communication ports as well as their connecting
communication channels. Shortly, the Application
layer serves for describing the interconnection
topology of the component processes or process
groups (see Figure 1, Application window).

• Process layer is also a graphical level where
different types of graphical blocks are applied: loop
construct (see Figure 1, in window labelled Process:
sim → sim_2), conditional construct, sequential
block, input/output activity block and macrograph
block. The graphical blocks can be arranged in a
flowchart-like graph to describe the internal
structure (i.e., the behaviour) of individual processes
(see Figure 1, Process windows).

• Text layer is used to define those parts of the
program that are inherently sequential and hence
only pure textual languages like C/C++ or
FORTRAN can be applied at the lowest design
level. These textual codes are defined inside the
sequential blocks of the Process layer (see Figure 1,
at bottom of Process window labelled Process:
sim → sim_1).



Development of a grid enabled chemistry application 197

We defined a common process, called ‘master’
(see Figure 1, Process: master), which sets up the
initial conditions in a sequential code block, ‘init_cond’
and sends the necessary information, e.g., the initial
concentrations (A, B and C matrices), the diffusion
coefficient (dc), the time-step (dt) to each ‘worker’
process via the attached communication port with
label ‘0’ using collective communication operations
(see the selected communication action icon in Figure 1,
Process: master). The usage of predefined and scalable
process communication templates enables the user
to generate complex parallel programs from design
patterns. A communication template describes a
group of processes, which have a pre-defined regular
interconnection topology. P-GRADE provides such
communication templates for the most common regular
process topologies like process farm, pipe, 2D mesh
and tree, which are widely used among scientists. Ports
of the member processes in a template are connected
automatically based on the topology information.

In our case the pipe communication template was
selected (see Figure 1, Template window) as the most
suitable topology since the two-dimensional subdomains
should be mapped onto a one-dimensional logical grid
of processes and, during the calculation of the diffusion
of the chemical species, communications are required to
exchange information on the boundary concentrations
between the nearest neighbour subdomains. A pipe
communication topology consists of a linearly ordered set
of processes where each process is interconnected only
with its neighbours however, all processes in the pipe may
communicate with outsider processes via group ports if
such ports are defined for the template at Application
level (see Figure 1, Application window).

The user has to define only the code of the
representative processes the number of which depends on
the actual template attribute settings (see ‘edge condition’
below). In a separated dialog window (see Figure 1,
Template Attributes) the significant attributes of the
current template can be set by the user, e.g., in case of pipe:

Figure 1 Parallel code of reaction-diffusion simulation in P-GRADE



198 I. Lagzi et al.

• Size: Actual number of processes within the pipe at
runtime.

• Channel orientation: Communication channels
between neighbour processes can be directed
forward, backward or both directions
(i.e., bi-directional channels).

• Edge condition: Channel pattern can be cyclic if the
last process is connected to the first (i.e., ring) one,
or otherwise it is acyclic (i.e., pipe).

Without applying that cyclic communication pattern, a
pipe is defined by three representative processes since
the communication interfaces (i.e., number and types of
ports) of the first and last processes differ from those of
the middle ones. For illustration purposes we describe
only one inner process (see Figure 1, Process window
labelled Process: sim → sim_1). First of all, the process
receives the necessary input parameters for the calculation
from the ‘master’ process. After the initialisation phase in
each iteration step (applying loop construct) the process
exchanges the boundary conditions (a vector of double
precision numbers) with its neighbours (see Figure 1,
communication actions in window labelled Process:
sim → sim_1), and calculates the transportation and
reaction of chemical species (see Figure 1, sequential
code box of RD_solver in window labelled Process:
sim → sim_1). For the calculation the process invokes
external functions (see Figure 1, at the bottom of window
labelled Process: sim → sim_1), which are available as
sequential third-party code (Brown et al., 1989) written
in C. Finally, the process sends back the results
to the ‘master’ process, which is responsible for the
collection of the results via collective (gather-type)
communication. During the debugging stage we took all
the advantages of DIWIDE (Kovács and Kacsuk, 2001)
built-in distributed debugger of P-GRADE environment.
DIWIDE debugger provides the following fundamental
facilities of parallel debugging; the step-by-step execution
on both graphical and textual levels, graphical user
interface for variable/stack inspection, and for individual
controlling of processes.

4 Performance results on dedicated cluster
and condor pools

The parallel version of reaction-diffusion simulation with
1000 simulation steps has been tested on two clusters
using Condor (Thain et al., 2003) job-mode of P-GRADE
(Kacsuk et al., 2003): on a self-made Linux cluster
of MTA SZTAKI containing 29 dual-processor nodes
(Pentium III/500MHz) connected via Fast Ethernet, on
a dual mode cluster with 40 nodes (AMD Athlon/2GHz)
located at ELTE. The simulation has been also tested
with 10.000 iterations; the parallel application was able
to migrate automatically to another friendly Condor pool
when the actual pool had become overloaded, as well as

to continue its execution from the stored checkpoint files
(Kacsuk et al., 2003).

According to the available computational resources
the actual size of the scalable pipe communication
topology can be set by a dialog window in P-GRADE.
To take an example, the calculation was executed on
MTA SZTAKI’s cluster within 3min 26 s (see Figure 2,
PROVE window at the upper-right corner) with
10 worker processes, and it took 1 min 20 s to calculate
it with 40 processes (The sequential execution time is
approximately a half an hour).

In details, PROVE performance analyser (based on
the GRM/Mercury monitoring infrastructure (Balaton
and Gombás, 2003)) as a built-in tool of P-GRADE
system can visualise either event trace data, i.e., message
sending/receiving operations, start/end of graphical
blocks in a space-time diagram (see Figure 2, PROVE
windows), or statistical information about the application
behaviour (see Figure 2, Process State, Communication
Statistics, and Execution Time Statistics windows).
In all the diagrams of PROVE tool, the black
colour represents the sequential calculations, and two
different colours (green for incoming and grey for
outgoing communication) used for marking the message
exchanges.

The PROVE space-time diagram presents a task bar
for each process, and the arcs between the process bars
are showing the message passing between the processes.
We focused on some interesting parts of the trace
(see Figure 2, PROVE windows) using zooming and
filtering facilities of PROVE. The process ‘master’ sends
the input data to each ‘worker’ process, and they are
starting the simulation and the message exchanges in each
simulation steps.

The Process State window (see Figure 2) is a Gantt
chart of the application showing only the state of the
processes, sorted by the different types of states. The
horizontal axis represents the time while the vertical axis
represents the three different states of the processes. For
each state, the height of the coloured column represents
the number of processes in that state. Thus, this graph
gives cumulative information about the state of the
application. The Execution Time Statistics window offers
another view; it shows the time of each process state
independently for each process in bars or in a pie chart.

The Communication Statistics (see Figure 2) provide
information on the amount of exchanged messages in
bytes for each process and for the entire application (see
‘Max. bytes’). It is easy to recognise, the first process and
the last one in the pipe communicates less (comparing to
the other processes of the pipe) since they have only one
neighbour.

According to our measurements and analysis with
PROVE the communication overhead is showing nearly
linear characteristics depending on the number of
processors, and the curve of speed-up is getting closer and
closer to the saturation when the number of processors
reaches 40 (see Figure 3).



Development of a grid enabled chemistry application 199

Figure 2 Performance visualisation with PROVE on MTA SZTAKI cluster

Figure 3 Performance results on MTA SZTAKI’s Condor
pool

5 Performance results on non-dedicated cluster

Generally, the exclusive access and use of a cluster
(e.g., at universities) cannot be guaranteed. Sometimes
the application is implemented inefficiently, and it may
cause unbalanced load (and less effective execution) on
the cluster nodes. In both cases the dynamic load balancer

(Tóth et al., 2002) of P-GRADE environment can be
applied.

In case of the reaction-diffusion simulator the
parallel application showed balanced CPU loads on a
homogenous and dedicated cluster but we experienced
significant slow-down if any of the nodes get an extra
calculation intensive task or the node can not deliver
the same performance as the other ones. The reason for
this phenomenon is that the application must synchronise
the boundary conditions at each simulation steps, and
they have to wait for the slowest running process. Such
situation can be inspected in Figure 4, Prove visualisation
window when the application was executed on the n2,
n3, n4, and n5 nodes in the first 3 min (see the details in
Figure 4, smaller Prove window in left).

Thus, we turned on the load balancing support in
P-GRADE and re-compiled the application under PVM
(see Figure 4, Application settings dialog window). In our
case, the actual period was set to 180 s when the load
balancer has to evaluate the execution conditions based
on the gathered information and to make decisions
(Tóth et al., 2002).



200 I. Lagzi et al.

Figure 4 Performance visualisation on non-dedicated cluster

As the online visualisation tool depicts (see Figure 4,
Prove window) at the beginning of the 4th min the
load balancer initiated the migration of processes to new
nodes: n19, n13, n21, and n0 (see Figure 4, Prove window
in right). One message was sent before the migration
from the node n2 (process sim_0) and delivered just
after the migration to the node n19 (process sim_1); the
co-ordinated checkpointer in P-GRADE can handle such
situations (on-the-fly messages) without any problems.

We could focus on the interesting parts of the
trace (see Figure 4, smaller PROVE windows) using its
zooming facilities. According to statistics the application
was executed almost optimally from the 5th min. The
migration took about 1min and 57 s due mainly to
the large memory images of processes (more than
95 MB/process), that must be transferred from the actual
nodes, stored at the checkpoint server, and must be
retrieved during the recovery phase of migration on the
new nodes. Since the current P-GRADE version launches
only one checkpoint server to store these checkpoint files,
the network connection of the single checkpoint server
may be a serious performance bottle neck. In our case the
migration caused almost 800 MB network traffic on the
Fast Ethernet network interface of the checkpoint server.

However, the cost of migration is still acceptable
since the application continued its execution more than
two times faster during the remaining calculation; one
simulation step needed 1.5–1.7 s contrary to the earlier
measured 3.5–5 s. Our application needed only 14min
(with 500 simulation steps) instead of 25min without the
intervention of load balancer tool. Obviously, with more
simulation steps we could get more significant speedup.

6 Performance results in the grid

The application has been also executed successfully
on globus (Foster and Kesselman, 1998) based grid.
In order to support the transparent execution of
applications on local and remote (interactive or grid)
resources, P-GRADE provides a new I/O file abstraction
layer, where the physical data files of the application can
be assigned to logical names, which can be referenced in
the application by file operations. We defined the input
and output files and, in this way, all the necessary I/O files
can be automatically transferred to and from the remote
site, and the executable can be also staged by P-GRADE
run-time system.



Development of a grid enabled chemistry application 201

Figure 5 Performance results in Globus mode

Having a valid certificate to deploy a Globus
resource (instead of the local resources), the user
can turn on the Globus mode with MPI support
in P-GRADE (see Figure 5, Application settings).
Based on the GRM/Mercury monitoring infrastructure
(Balaton and Gombás, 2003) the online monitoring and
visualisation are also possible on Globus resources as
well, only a re-compilation is needed for the utilisation
of the Globus/MPI/Monitoring facilities.

The specific Globus resource can be selected in
the Manual Mapping Window (see Figure 5) by the
user, where the entire application will be executed
(in MPICH-G2 mode, the processes can be mapped
individually to different Globus resources but this
application showed poor performance in this scenario due
to the frequent message exchanges between simulation
steps). The monitoring infrastructure provides online
view similarly to the local execution of the job
(see Figure 3, PROVE window). In the presented case, we
executed the 10-process pipe version of the application as
a Globus job. The initial time before the real execution
and the transfer of output files back (i.e., the ‘cost’ of
Grid based execution from the user’s point of view) was
within 1 min because we selected the fork job-manager on
the Grid site, the cluster was not overloaded, the size of
transferred files was relatively small (less then 4MB), and
the Hungarian academic network (HBONE) provided
high bandwidth between the sites. Generally, this cost is
negligible comparing to the typically long (several hours
or days) execution time.

7 Atmospheric dispersion model

Modelling the accidental release of chemical (or
radioactive) substances from a single source requires
that the numerical simulations must be achieved
obviously faster than in real case in order to use them
in decision support. A feasible way is the parallelisation

of source code. Evolution of chemical species can be
described by second-order partial differential equations
in 2D layer:

∂ci

∂t
= Kx,i

∂2ci

∂x2 + Ky,i
∂2ci

∂y2 − u
∂ci

∂x
− v

∂ci

∂y

+Ri(c1, c2, . . . , cn), i = 1, 2, . . . , n, (3)

where ci is the concentration, Kx,i, Ky,i are the turbulent
diffusion coefficients, u, v are the components of the
horizontal wind velocity and Ri is the chemical reaction
term, respectively, of the ith chemical species. t is time,
and x and y are the spatial variables. The chemical
reaction term Ri may contain non-linear terms in ci.
For n chemical species, an n dimensional set of partial
differential equations is formed describing the change of
concentrations over time and space. These equations are
coupled through the non-linear chemical reaction term.

In these calculations, the grid spacing is uniform in
both spatial directions. The ‘method of lines’ has been
used to reduce the set of Partial Differential Equations
(PDEs) of three independent variables (x, y, t) to a
system of Ordinary Differential Equations (ODEs) of one
independent variable; time. A second order Runge-Kutta
method is used to solve the system of ODEs arising from
the discretisation of the transport terms with chemistry.

The phytotoxic nature of ozone was recognised
decades ago. Due to high emissions of ozone precursor
substances, elevated ozone concentrations may cover
large areas of Europe for shorter (episodic) or longer
periods under certain meteorological conditions. These
elevated concentrations can be potentially damaging
to agricultural and natural vegetation. Occasional
extreme concentrations may cause visible injury
to vegetation, while long-term exposure, averaged
over the growing season, can result in decreased
productivity and crop yield. For the computational
study of this phenomenon in Hungary, a coupled
Eulerian photochemical reaction-transport model and



202 I. Lagzi et al.

a detailed ozone dry-deposition model were developed.
The Eulerian air pollution model was developed
through a co-operation between the Eötvös University,
Budapest, The University of Leeds and the Hungarian
Meteorological Service. This model fully utilised the
experience collected previously at the Leeds University
on the use of adaptive gridding methods for modelling
chemical transport from multi-scale sources. The model
has been elaborated within a flexible framework where
both area and point pollution sources can be taken
into account, and the chemical transformations can
be described by a mechanism of arbitrary complexity.
The reaction-diffusion-advection equations relating to
air pollution formation, transport and deposition are
solved on an unstructured triangular grid. The model
domain covers Central Europe including Hungary, which
is located at the centre of the domain and is covered
by a high-resolution nested grid. The sophisticated
dry-deposition model estimates the dry-deposition
velocity of ozone by calculating the aerodynamics, the
quasi-laminar boundary layer and the canopy resistance.
The meteorological data utilised in the model were
generated by the ALADIN meso-scale limited-area
numerical weather prediction model, which is used by
the Hungarian Meteorological Service. For Budapest,
the emission inventories for CO, NOx and VOCs were
provided by the local authorities with a spatial resolution
of 1 × 1 km and also include the most significant
63 emission point sources. For Hungary, the National
Emission Inventory of spatial resolution 20 × 20 km was
applied which included both area and point sources.
Outside Hungary, the emission inventory of EMEP for
CO, NOx and VOCs was used, having a spatial resolution
of 50 × 50 km.

The work demonstrates that the spatial distribution
of ozone concentrations is a less accurate measure of the
effective ozone load than the spatial distribution of ozone
fluxes. The fluxes obtained show characteristic spatial
patterns, which depend on soil moisture, meteorological
conditions, ozone concentrations and the underlying
land use. The simplified simulation of photochemical
air pollution is based on the presented approach
(Section 3) as well as the experiences concerning the
earlier developed P-GRADE version of ultra-short range
weather prediction system. In the final version of the
simulator the jobs have not been parallelised due
to the unavailable source code of some third-party
modules in the model. Thus, we were not able to take
advantages of multi-level parallelism, but the workflow
level parallelisation was feasbile as it is described in details
in Lovas et al. (2005). The P-GRADE portal server is in
the centre of air pollution simulation and dedicated to
HUNGRID infrastructure. Currently, it provides access
to three clusters located at different academic institutes;
MTA SZTAKI, KFKI-RMKI, and CRC-HAS. The
portal server has access to the meteorological data as
well, which are calculated numerically by the Hungarian
Meteorological Service based on the available radar and
satellite images, the observations, and results of other

models. The portal server can be accessed remotely
by submitting the simulations, i.e., the P-GRADE
workflows, and by downloading the visualisation of
execution traces and simulation results on the local
machine.

8 Related works

P-GRADE has been successfully applied for the
parallelisation of different algorithms; e.g., Institute of
Chemistry, Chemical Research Center of the Hungarian
Academy of Sciences has recently parallelised a classical
trajectory calculation written in FORTRAN (Bencsúra
and Lendvay, 2004) in the frame of Chemistry Grid
project.

Some other development systems, such as ASSIST
(Vanneschi, 2002), or CACTUS (Goodale et al., 2002),
target the same research community (biologist, chemists,
etc.), and they can offer several useful facilities similarly
to P-GRADE. On the other hand, P-GRADE is able to
provide more transparent run-time support for parallel
applications without major user interactions, such as code
generation to different platforms (Condor Thain et al.,
2003 or Globus-2 Foster and Kesselman, 1998 based
Grids, PVM or MPI based clusters and supercomputers),
migration of parallel jobs across grid sites (or within
a cluster) based on automatic checkpointing facilities
(Kacsuk et al., 2003), or application monitoring of
parallel jobs (Balaton and Gombás, 2003) on various grid
sites, clusters, or supercomputers.

9 Summary

P-GRADE is able to support the entire life-cycle of
parallel program development and the execution of
parallel applications for both parallel systems and the
Grid (Kacsuk et al., 2003). One of the main advantages of
P-GRADE is the transparency; P-GRADE users do not
need to learn the different programming methodologies
for various parallel systems and the Grid, the same
environment is applicable either for supercomputers,
clusters or the Grid.

As the presented work illustrates, P-GRADE enables
fast parallelisation of sequential programs providing an
easy-to-use solution even for non-specialist parallel and
grid application developers, like chemists (Bencsúra and
Lendvay, 2004) or engineers (Gourgoulis et al., 2004).

Acknowledgement

The research described in this paper has been
supported by the following projects and grants:
Hungarian IHM 4671/1/2003 project, Hungarian OTKA
T042459 and T68256 grants, OTKA Instrument Grant
M042110, OTKA Postdoctoral Fellowship (D048673),
Hungarian IKTA OMFB-00580/2003, and EU-GridLab
IST-2001-32133.



Development of a grid enabled chemistry application 203

References

Balaton, Z. and Gombás, G. (2003) ‘Resource and job
monitoring in the grid’, Proceedings of EuroPar’
Conference, Klagenfurt, Austria, pp.404–411.

Bencsúra, Á. and Lendvay, Gy. (2004) ‘Parallelization of
reaction dynamics codes using P-GRADE: a case
study’, Lecture Notes in Computer Science, Vol. 3044,
pp.290–299.

Brown, P.N., Byrne, G.D. and Hindmarsh, A.C. (1989)
‘Vode: a variable coefficient ode solver’, SIAM Journal
of Scientific and Statistical Computing, Vol. 10,
pp.1038–1051.

Foster, I. and Kesselman, C. (1998) ‘The globus project: a status
report’, Proceedings of the IPPS/SPDP ’98 Heterogeneous
Computing Workshop, pp.4–18.

Foster, I. and Kesselman, C. (1999) Computational Grids,
Chapter 2 of The Grid: Blueprint for a New Computing
Infrastructure, Morgan-Kaufman, San Francisco, CA,
USA, pp.15–54.

Goodale, T., Allen, G., Lanfermann, G., Mass0́, J., Radke, T.,
Seidel, E. and Shalf, J. (2002) ‘The cactus framework
and toolkit: design and applications’, Proceedings of the
5th International Conference on Vector and Parallel
Processing, Porto, Portugal, pp.197–227.

Gourgoulis, A. et al. (2004) ‘Creating scalable traffic simulation
on clusters’, 12th Euromicro Workshop on Parallel,
Distributed and Network-Based Processing, Los Alamitos,
USA, pp.60–65.

Kacsuk, P., Dózsa, G. and Lovas, R. (2001) ‘The GRADE
graphical parallel programming environment’, in
Kacsuk, P., Cunha, J.C. and Winter, S.C. (Eds.):
Parallel Program Development for Cluster Computing:
Methodology, Tools and Integrated Environments,
Chapter 10, Nova Science Publishers, pp.231–247.

Kacsuk, P., Dózsa, G., Kovács, J., Lovas, R., Podhorszki, N.,
Balaton, Z. and Gombás, G. (2003) ‘P-GRADE: a grid
programming environment’, Journal of Grid Computing,
Vol. 1, No. 2, pp.171–197.

Kovács, J. and Kacsuk, P. (2001) ‘The DIWIDE distributed
debugger’, Scalable Computing: Practice and Experience,
Vol. 4, No. 4, pp.5–24.

Liesegang, R.E. (1896) ‘Uber einige eigenschaften von
gallerten’, Naturwissenschaflichee Wochenschrift, Vol. 11,
pp.353–362.

Lovas, R., Patvarczki, J., Kacsuk, P., Lagzi, I., Turányi, T.,
Kullmann, L., Haszpra, L., Mészáros, R., Horányi, A.,
Bencsura, Á. and Lendvay, Gy. (2005) ‘Air pollution
forecast on the HUNGRID infrastructure’, in
Joubert, G.R., Nagel, W.E., Peters, F.J., Plata, O.,
Tirado, P. and Zapata, E. (Eds.): ParCo 2005. Parallel
Computing: Current and Future Issues of High-end
Computing, Malaga, Spain, pp.121–128.

Luther, R. (1906) ‘Raumliche fortpflanzung chemischer
reaktionen’, Zeitschrift fur Elektrochemie, Vol. 12,
pp.596–600.

Thain, D., Tannenbaum, T. and Livny, M. (2003) ‘Condor and
the grid’, in Berman, F., Hey, A.J.G. and Fox, G. (Eds.):
Grid Computing: Making The Global Infrastructure a
Reality, John Wiley, NJ, USA.

Tóth, M., Podhorszki, N. and Kacsuk, P. (2002) ‘Load
balancing for P-GRADE parallel applications’,
Proceedings of DAPSYS 2002, Linz, Austria, pp.12–20.

Turing, A.M. (1952) ‘The chemical basis of morphogenesis’,
Philosophical Transactions of the Royal Society of
London Series B, Vol. 327, pp.37–72.

Vanneschi, M. (2002) ‘The programming model of ASSIST,
an environment for parallel and distributed portable
applications’, Parallel Computing, Vol. 28, pp.1709–1732.

Zaikin, A.N. and Zhabotinsky, A.M. (1970) ‘Concentration
wave propagation in two-dimensional liquid-phase
self-oscillating system’, Nature, Vol. 225, pp.535–537.


