

Zhao, J., Zhou, J. and Yang, H. (2018) 'A matching approach

to business services and software services’, International

Journal of Computational Science and Engineering, 16 (2),

pp. 123-131.

Official URL: http://dx.doi.org/10.1504/IJCSE.2018.090458

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher

policies.

Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the

ResearchSPAce Metadata and Data Policies, as well as applicable law:-

https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have

permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

http://dx.doi.org/10.1504/IJCSE.2018.090458
http://researchspace.bathspa.ac.uk/

A Matching Approach to

Business Services and Software Services

Junfeng Zhao

Assistant Professor, College of Computer Science

Inner Mongolia University

Hohhot, China

cszjf@imu.edu.cn

Jiantao Zhou

Professor, College of Computer Science

Inner Mongolia University

Hohhot, China

cszjtao@imu.edu.cn

Hongji Yang

Professor, Centre for Creative Computing

Bath Spa University

Bath, England

h.yang@bathspa.ac.uk

Abstract—Recent studies have shown that Service-Oriented Architecture (SOA) has the potential to revive

enterprise legacy systems [1-10], making their continued service in the corporate world viable. In the process

of reengineering legacy systems to Service Oriented Architecture, some software services extracted in legacy

system can be reused to implement business services in target systems. In order to achieve efficient reuse to

software services, a matching approach is proposed to extract the software services related to specified

business services, where service semantics and structure similarity measures are integrated to evaluate the

similarity degree between business service and software services. Experiments indicate that the approach can

efficiently map business services to relevant software services, and then legacy systems can be reused as

much as possible.

Keywords-software service; business service; matching approach; sematics similiarity measure; structure

similarity measure.

I. INTRODUCTION

Service Oriented Architecture has been deployed in software reengineering, which can help reuse legacy
systems efficiently and protect the existing assets of IT systems. Through reengineering to SOA, legacy systems
can revive and operate in innovative and advanced ways, so that they can meet the new need of users better.

In the process of reengineering legacy systems to SOA, software developers implement service-oriented
analysis and designs according to the requirements of target systems, and then software acts as a group of loosely
coupled business services which describe the work related to some business but does not produce a tangible
commodity. The discovered business services are described by WSDL files according to web service
specification. To legacy systems, business modules can be extracted to form software services by bottom-up
analysis and relevant descriptions can be created by analysing the implementation of business modules. Contrary
to business service, software service is the reality existence that realises specific business functions. Based on the
description of business services and software services, an efficient matching algorithm need to be designed to
discover the most compatible software service with the desired business service, so business logic in legacy
system can be reused. In this paper, an iterative matching approach, which combines text semantics and structure
similarity measure, is proposed to achieve this goal. Text semantics similarity measure can assess the
compatibility between business service and software service on the whole, and structure similarity measure

This work was partially supported by National Natural Science Foundation of China (No. 61462066, No. 61262082, No. 61562064),
Key Project of Chinese Ministry of Education (No. 212025).

Jiantao Zhou is the corresponding author (email:cszjtao@imu.edu.cn).

mailto:cszjf@imu.edu.cn
mailto:cszjtao@imu.edu.cn

evaluates the compatibility by matching the interfaces of business service and software service specifically.

The rest of the paper is organised as follows. Section Ⅱ introduces the description specification of software

service. Section Ⅲ presents the matching approach between business service and software service. Related

experiment is presented in Section Ⅳ. Section Ⅴ introduces the related work to service identification and

similarity measure. Conclusions and future work are presented afterwards.

II. DESCRIPTION OF SOFTWARE SERVICES

For the effective reuse of software services extracted from legacy systems, matching between business service
and software service need to be considered according to their description documents. Therefore, effective
description to software service is necessary. For this purpose, a specific description specification is proposed to
express the functional and structural information of software service.

For the purpose of automatic matching between software service and business service, the description
specification should be compatible with WSDL specification that is used to describe business service. WSDL
specification is shown in Fig. 1, where “Types” is the container of data types; “Message” is the abstract type
definition for data structure of communication message that is defined by the types described in “Types”;
“Operation” describes the operations supported by service, and an operation represents the request/response
message pair of an access point; and “service” is the collection of related service access point.

Referencing WSDL specification, the description specification of software service is defined by XML
Schema as Fig. 2. The root element “reusablecomponent” represents software service, and attribute “name” is
used to identify a specific software service. The root element contains three child elements, respectively “desc”,
“types” and “operations”. Element “desc” explains the function of software service by a section of text document.
Element “types” contains child element “type” which is used to define the complex type related to the
implementation of software service. Complex type is described by exhibiting its attributes which are represented
as child element “attribute” in specification. Element “operation” defines the external interface of software
service, which includes child element “note”, “input” and “output”. Element “note” describes the function of
interface, “input” shows the input parameters of interface, and “out” indicates the result type of interface.
Through the definition of description specification for software service, the related information and description
format are specified, which facilitates the follow-up matching between software service and business service.

III. MATCHING ALGORITHM BETWEEN SOFTWARE SERVICE AND BUSINESS SERVICE

Based on the description specification of business service and software service, a novel algorithm is proposed
to realise matching between business service and software service, which integrates text similarity and structure
similarity measures. According to the text description of business service and software service, text similarity
measuring achieves comparison between business service and software service in general. In addition, taking
structure description of business service and software service as input, structure similarity measure carries out
comparison between business service and software service in detail, which takes advantage of semantics of
identifiers and compatibility of data types. Due to the possible granularity incompatibilities between business
service and software service, the combination adjustment to software services and iterative matching are
considered in the process of matching. The execution process of the matching algorithm is shown in Fig. 3.

A. Text similarity measurement

The process of text similarity measure can be divided into three steps. Firstly, the indexes of text description
for software services can be created by Lucene. Then, semantic expansion of text description for business service
will be obtained by using WordNet. Finally, taking the expanded description of business service as query text and
retrieving it from the indexes of text description of software services by Lucene, the similarity degree of text
description between business service and software services can be obtained. The process of text similarity
measure is shown as Fig. 4, which corresponds to the activity of text similarity measurement in Fig. 3.

The implementation of text similarity measurement is based on Lucene toolkit which can be embedded into
applications to realise full-text information retrieval [17]. When performing keyword retrieval, Lucene uses
TFIDF algorithm to compute the relevance between keywords and documentation.

B. Structure similarity measurement

Structure similarity measurement usually adopts the method of signature matching. In order to overcome the
shortcoming of signature matching, structure similarity measure for business service and software service
integrates the measure to semantic similarity of identifier and compatibility of data type, not only fall back on
data type. Description information of software service includes interface signatures and custom types. The
identifiers of interface and input parameter can reflect relevant functional semantics, and the identifiers of data
type, message and operation have functional semantics as well. In reality, the identifiers marking same entity
concepts or function concepts may not be based on different words literally, but have similar meaning
semantically. For example, the interface identifiers with ‘calculate’ and ‘count’ may describe the same business
logic, but with different words. So the similarity measurement to identifiers should carry out on semantics. The

experimental results in [11] show that the semantic structure measure can obtain better matching effects. Structure
similarity measure to business service and software service need to combine data type similarity measures in
addition to semantic structure similarity measures, because the identifier of operation result in software service
cannot be obtained but relevant data type can. So the measurement on operation results of business service and
software service need to be executed according to the compatibility of data types. The process of structure
similarity measurement is shown as Fig. 5.

Semantic similarity measure to service names adopts method Lin in Java WordNet Similarity. Java WordNet
Similarity is an open source project for semantic similarity calculation based on Java and WordNet, where many
semantic similarity algorithms are implemented[18]. Lin considers concept similarity from the viewpoint of
information theory, and believes that similarity degree depends on the intercommunity and difference between
meaning of concepts.

Operation similarity measurement is composed of similarity measure to identifiers, input parameters and
return results. Similarity measure to input parameters can be divided into two kinds of cases. When the data types
of input parameters are both simple, the similarity degree will be obtained by executing semantic similarity
measure to parameter identifiers. On the other hand, the attributes of complex type will be extracted as new input
parameters, then a new nested call to parameter similarity measure will be carried out; For the similarity measure
to return results, it is different to input parameters due to the absence of return result identifiers in description of
software service. The similarity measurement to return results relies on the compatibility measure to the data
types of return results. When the types are both simple, the similarity degree is assigned according to the
compatibility between the types; otherwise, the comparison should be executed according to the attributes in
complex types.

C. Adjustment to software service based on association degree

In the process of matching between business services and software services, the first matching may not
produce the desired result. There may be two kinds of reasons. One is that the desired software service related to
business service does not exist in legacy system originally. The other case may be that unreasonable extraction of
software service from legacy system leads to unsatisfactory matching result, although the relevant business logic
related to business service does exist.

To the second reason, one specific case is that the granularity of software service may be incompatible to the
desired business service. Under the premise that software service extraction prefers finer granularity, the
adjustment is to enlarge the granularity of software services by combing existing software services, through
which the adjusted software services will possess expanded business functions. The adjustment can be carried out
according to the association degree between software services.

In fact, multiple matching iteration may be needed before obtaining the desired results. After the first round
matching, the software service with the highest similarity degree to business service can be discovered. Then
calculating association degrees between this software service and all other software services, the software service
with the highest association degree will be chosen to combine with this software service. So a software service
with coarser granularity will be created, meanwhile adjusting the relationship between new software service and
other software services. When the software service with the highest association degree is not unique, the software
service with minimum number of classes should be selected. If it is still not unique, the software service with
higher overall similarity degree will be selected. To evaluate the association degree between software services, a
calculation expression is constructed as (1):

Coui,j = (Ii,j + Ij,i) ∗ WI + (Gi,j + Gj,i) ∗ WG + (Ai,j + Aj,i) ∗ WA + (Di,j + Dj,i) ∗ WD (1)

Coui,j represents the association degree between software service i and j. Ii,j and Ij,i represent the number of

edges with implementation relationship between software service i and j; similarly, Gi,j and Gj,i corresponds to

generalisation, Ai,j and Aj,i corresponds to association, and Di,j and Dj,i corresponds to dependency; WI, WG, WA,

WD represent the weights of implementation, generalisation, association and dependency.

After adjustment, the new software service will possess expanded text description and more comprehensive
function interfaces, due to the combination of previous software services. Evaluating the similarity degree
between the new software service and business service, then the new degree will be compared with the highest
similarity degree obtained by previous round. If the new similarity degree excels the previous, combination,
matching and comparison will be carried out again in the same way. Until the matching result is inferior to the
previous, the matching will stop and the matching result obtained by previous round will be returned as the
desired match.

The similarity degree between business service and software service is obtained by adding up text similarity
degree and structure similarity degree. In order to realise the comparison between matching results, the text
similarity degree and structure similarity degree will be normalised. In practical terms, every text similarity
degree will be divided by the sum of all text similarity degrees in the matching round, and every structure

similarity degree will be divided by the possible maximum value. So that the scopes of text similarity and
structure similarity will fall between 0 to 1. The calculation expression is shown as in Formula (2), where 𝑠𝑖𝑚𝑐𝑖,𝑠

represents the overall similarity degree between the ith software service and business service s, which is the sum
of normalised text similarity degree 𝑛𝑜𝑚𝑑𝑜𝑐𝑠𝑖𝑚𝑐𝑖,𝑠

 and normalised structure similarity degree 𝑛𝑜𝑚𝑠𝑡𝑟𝑠𝑖𝑚𝑐𝑖,𝑠
;

numopeci indicates the number of operations in ith software service, and numopes indicates the number of

operations in business service; docsimsum expresses the sum of text similarity degrees before normalisation; and

strsimci,s
 represents the structure similarity degree between business service and the ith software service.

𝑠𝑖𝑚𝑐𝑖,𝑠
= 𝑛𝑜𝑚𝑑𝑜𝑐𝑠𝑖𝑚𝑐𝑖,𝑠

+ 𝑛𝑜𝑚𝑠𝑡𝑟𝑠𝑖𝑚𝑐𝑖,𝑠

（2）
docsimsum = ∑docsimci,s

n

i=1

nomdocsimci,s
= docsimci,s

/docsimsum

nomstrsimci,s
= strsimci,s

/(3 ∗ max⁡(numopeci , numopes) + 1)

IV. EXPERIMENT

JUnit is a simple framework to write repeatable tests for Java developers, which makes Java unit test more
standard and efficient [19]. It is an instance of the xUnit architecture for unit testing frameworks. We take it as a
legacy system to verify the validity of our approach.

Based on the clustering analysis to JUnit, 6 software services were discovered in the implementation of JUnit.
By analysing the related public interfaces and their corresponding comments, the description file of the software
services was obtained. The excerpt of the description file is shown as Fig. 6.

A business service related to core function of JUnit was defined, which includes three operations such as
starting test, ending test and test assertion. The excerpt of description file is shown as Fig. 7. Taking the
description files in Fig. 6 and Fig. 7 as inputs, the matching algorithm is used to measure the similarity degree
between business services and software services. The matching result of the first round is shown in Table 1,
which describes text similarity degrees, structure similarity degrees and overall similarity degrees between the
business services and the software services. It can be seen from the table that the text similarity degree between
the first software service and the business service is maximum and the second software service is the most similar
to business service from structure. On the whole, the first software service is the most similar to the business
service.

Based on the relationship between the software services, association degrees between software services can be
obtained by performing Equation (1). Through analysing the association degrees, we found that the 3rd software
service had the highest association degree with the first software service. The first software service and the 3rd
software service were combined to form a new software service with coarser granularity. Then the similarity
measurement between the new software service and business service was carried out again, and the matching
result is shown in Table 2. The data in table indicates that the similarity degree between the new software service
and the business service is higher than the first round match. So the new software service is considered to be more
compatible with the business service than the first software service before adjustment.

Adjusting software services according to the same way, further similarity measure was executed between the
new software service and the business service. Table 3 shows the measure result. The degree of similarity does
not increase as before, on the contrary, it is lower than the previous degree of similarity. It is suspected that
further adjustments are redundant, the matching algorithm terminates and returns the previous matching result.

By analysing the business function of software services, we can find that the first software service includes the
operations of test startup and end, and the second software service realises test assertion. So the matching result
conforms to the practical case. In addition to this business service, other three business services related to the
core functions of JUnit were defined and matched with software services, the matching results are consistent to
the matter of fact on the whole. It can be concluded that the matching approach is effective.

V. RELATED WORK

In service oriented projects, service identification plays an important role as the foundation for the follow-up
work. Service identification is used to define a set of services supporting business architecture in enterprise
application environment, which is a process of extracting services from business requirement or existing IT
systems [1]. Analysis and design about services can be divided into three kinds of methods, namely top-down,
bottom-up and convergence in the middle. Top-down methods take system business requirements as a starting
point, and abstract business requirements as a set of related business services. Bottom-up methods start from
legacy systems, and extract business logic as software services to support business services. Convergence in the

middle methods combine bottom-up and top-down methods. To reuse the business logic of legacy systems in
SOA, convergence in the middle methods not only make full use of the existing assets of legacy system, at the
same time but also achieve the real application requirements, where top-down methods implement the abstraction
of business services; bottom-up methods realise the extraction of software services; and finally business services
are mapped to software services.

For top-down methods, there exist many implementation approaches, including model-driven approaches [2,
3], pattern matching approaches [4, 5], ontology mapping approaches [6, 7] and so on. The abstracted business
services can be described according to WSDL specifications. Likewise, many technologies are adopted in
bottom-up methods, including concept analysis [8], information retrieval [9] and clustering analysis [10]. Therein,
the clustering analysis is paid more attention in many studies. For example, an improved agglomerative
hierarchical clustering algorithm was proposed to restructure legacy code and to facilitate legacy code extraction
for web service construction, which supports service identification and service packaging and archives legacy
system migration into service-oriented architectures by providing functional legacy code as Web services [11].

To achieve recognition services from legacy code, an approach combining text similarity measurement with
structure match was proposed in [12]. The text similarity measure is based on free text query and text description
extracted from legacy code, and structure match based on WSDL document and interface characteristics extracted
from source by reverse engineering. Two major steps are carried out to implement service recognition. First of all,
candidate services will be extracted from source code of legacy system, where method signatures will be
expressed as WSDL operations, and the complex types that are used in method signatures will be represented as
XML schema. Then, the target service will be compared with all possible candidate services. The comparison is
divided into two stages. First, the information retrieval technology is adopted to calculate the similarity between
description text of target services and candidate services, then using the matching algorithm in [13] to measure
structural similarity, and comparison results are ranked according to the relevance.

In [13], an evaluation approach based on vocabulary and structure similarity measurement was proposed to
measure similarities between service interfaces, which is adopted to realise web service discovery, service version
comparison, service classification and so on. Vocabulary match is used to calculate the semantic similarity
between concept description, and structure match is used to measure the similarity between combined concepts,
including service, operation, message, data type and so on.

Similarly, a group of web service discovery approaches are described in [14], which combine information
retrieval and structure matching. Therein, a kind of structure matching extends the signature matching of
component retrieval, involving the comparison of operation sets of services. Another kind of structure matching is
related to semantics, where the identifiers in service description are considered in addition to the types of
programming language and syntactic relations. WordNet is deployed to calculate the semantic distance between
the related element identifiers in WSDL specification, rather than the measurement based on the compatibility of
data types. An approach for web service retrieval based on the evaluation of similarity between web service
interfaces is presented in [15], which combines the analysis of structures and the terms used in them. A practical
approach is proposed to measure the similarity of web services based on their interfaces in [16], where both
semantic and lexical metrics are combined to match web services, operations, messages, parameter identifiers and
types. The experiment results show its practicability. In [20], a semantic matchmaking algorithm was proposed to
search cloud services that best meet the users’ requirements, and experimental results show that the semantic
technologies can enhance the performance of supply-demand matchmaking. A context-aware discovery process
was proposed to identify the related services in [21], which is based on the similarities of semantics and structure.
An approach was proposed to identify the best services in [22], which makes use of functional and non-
functional characteristics, moreover focuses on computational optimization of selection.

The application context of our paper is similar to [12], which is aimed at recognising services from legacy
code. [13, 14, 15, 16] have identical background, namely measuring the similarity of web services. Our paper and
[12] measure structural similarity in the similar way with [13, 14, 15, 16], meanwhile there exist some obvious
differences between these studies and our approach. The candidate services all come from individual classes in
the existing study, so the granularity of software service is too small to match target service. On the contrary, the
candidate services will be extracted from legacy systems by adopting clustering in our study, so the granularity
will be more compatible to target services. In addition, our approach have difference in structural similarity
measure, which combines semantic and data type similarity measure, meanwhile considers the adjustment to
candidate services.

VI. CONCLUSIONS

Reengineering legacy system to SOA can make legacy systems survive and meanwhile take full advantage of
the existing assets of legacy system. To achieve the effective reuse of software services extracted from legacy
systems, a matching approach between business service and software service was proposed. Based on the
description information of business service and software service, text similarity measurement and structure
similarity assessment are adopted to discover the software service related to business service. In view of the

granularity difference between software service and business service, an iteration strategy is adopted to realise the
match between business service and combined software service, which can improve the possibility of discovering
more accurate software service related to business service.

Currently, the scale of software systems analysed in the experiments is relatively small, and therefore large-
scale and complex legacy systems should be used in follow-up experiments. The efficiency of matching
algorithm can be further verified, and certain adjustments and optimisation to the matching algorithm may be
carried out to promote its practical role in reengineering.

Figure 1. WSDL Specification

Figure 2. Software Service Description Specification

Figure 3. Process of Matching

Figure 4. Process of Text Similarity Measuring

Figure 5. Process of Structure Similarity Measurement

Figure 6. Description File of Software Services in JUnit

Figure 7. Description File of A Business Service

TABLE I. MATCHING RESULT BETWEEN BUSINESS SERVICE AND SOFTWARE SERVICES

Software

services

Text similarity

degree

Structure

similarity

degree

Overall

similarity

degree

The first

software service
0.69 0.41 1.1

The second
software service

0.11 0.56 0.67

The third

software service
0.05 0.50 0.55

The 4th
software service

0.05 0.11 0.16

The 5th

software service

0.05 0.18 0.23

The 6th

software service

0.05 0.23 0.28

TABLE II. MATCHING RESULT BETWEEN BUSINESS SERVICE AND SOFTWARE SERVICES AFTER THE FIRST ADJUSTMENT

Software

services

Text similarity

degree

Structure

similarity

degree

Overall

similarity

degree

Combination of

the first and the
3th software

service

0.68 0.52 1.2

The second

software service
0.12 0.56 0.68

The 4th

software service
0.07 0.11 0.18

The 5th
software service

0.07 0.18 0.25

The 6th

software service
0.07 0.23 0.30

TABLE III. MATCHING RESULT BETWEEN BUSINESS SERVICE AND SOFTWARE SERVICES AFTER THE SECOND ADJUSTMENT

Software

services

Text similarity

degree

Structure

similarity

degree

Overall

similarity

degree

Combination of
the first, the

second and the

3th software
service

0.64 0.49 1.13

The 4th software

service
0.12 0.11 0.24

The 5th software

service
0.12 0.18 0.30

The 6th software

service
0.12 0.23 0.35

REFERENCES

[1] Cai S, Liu Y, Wang X. A survey of service identification strategies [C]. In: Proceedings of 2011 IEEE Asia-Pacific Services
Computing Conference (APSCC), IEEE, 2011, pp.464-470.

[2] Gaševic D, Hatala M. Model-driven engineering of Service- Oriented systems [J]. International Journal of Service Science,
Management, Engineering, and Technology, 2010, 1(1): 17-32.

[3] De Castro V, Marcos E, Vara J M. Applying CIM-to-PIM model transformations for the service-oriented development of information
systems[J]. Information and Software Technology, 2011, 53(1): 87-105.

[4] Chengjun W. Applying pattern oriented software engineering to web service development [C]. In: Proceeding of International Seminar
on Future Information Technology and Management Engineering (FITME'08), IEEE, 2008, pp. 214-217.

[5] Elgedawy I. Reusable SOA assets identification using e-business patterns [C]. In: Proceeding of 2009 World Conference on Services-
II, IEEE, 2009, pp. 33-40.

[6] Tian, C., Cao, R. Z., Ding, W., Zhang, H., & Lee, J. Business Value Analysis of IT services[C], In: Proceeding of IEEE International
Conference on Services Computing (SCC 2007), 2007, pp. 308-315.

[7] Chen, F., Zhang, Z., Li, J., Kang, J., & Yang, H. Service identification via ontology mapping[C]. In: Proceedings of 33rd Annual IEEE
International Computer Software and Applications Conference (COMPSAC'09), IEEE, 2009, vol. 1, pp. 486-491.

[8] Zhang Z, Yang H, Chu W C. Extracting reusable object-oriented legacy code segments with combined formal concept analysis and
slicing techniques for service integration [C]. In: Proceedings of 6th Int ernational Conference on Quality Software (QSIC
2006), IEEE, 2006, pp. 385-392.

[9] Sindhgatta R, Ponnalagu K. Locating components realizing services in existing systems[C]. In: Proceedings of 2008 IEEE
International Conference on Services Computing (SCC'08), IEEE, 2008, vol. 1, pp. 127-134.

[10] Khadka R. Service Identification Strategies in Legacy-to-SOA Migration[C]. In: Proceedings of the 27th IEEE International
Conference on Software Maintenance-Doctoral Consortium (ICSM-DC 2011), 2011.

[11] Zhang Z, Yang H. Incubating services in legacy systems for architectural migration[C]. In: Proceedings of 11th Asia-Pacific Software
Engineering Conference, IEEE, 2004, pp. 196-203.

[12] Aversano L, Cerulo L, Palumbo C. Mining candidate web services from legacy code[C]. In: Proceedings of 10th International
Symposium on Web Site Evolution (WSE 2008), IEEE, 2008, pp. 37-40.

[13] Kokash N. A comparison of web service interface similarity measures[J]. Frontiers in Artificial Intelligence and Applications, 2006,
142: 220-231.

[14] Stroulia E, Wang Y. Structural and semantic matching for assessing web-service similarity[J]. International Journal of Cooperative
Information Systems, 2005, 14(04): 407-437.

[15] Plebani, Pierluigi, and Barbara Pernici. URBE: Web service retrieval based on similarity evaluation. Knowledge and Data
Engineering, IEEE Transactions on 21.11 (2009): 1629-1642.

[16] Tibermacine, Okba, Chouki Tibermacine, and Foudil Cherif. WSSim: a Tool for the Measurement of Web Service Interface
Similarity. Proceedings of the french-speaking Conference on Software Architectures (CAL). 2013.

[17] http://lucene.apache.org/

[18] http://code.google.com/p/ws4j/

[19] http://junit.org/

[20] Modica G D, Tomarchio O. A semantic framework to support resource discovery in future cloud markets[J]. International Journal of
Computational Science & Engineering, 2015, 10(1/2):1-14.

[21] Ulizia A, Ferri F, Grifoni P. A similarity assessment method for discovering and adapting business services[J]. International Journal of
Computational Science & Engineering, 2010, 5(2):97-109.

[22] Surianarayanan C, Ganapathy G. Towards quicker discovery and selection of web services considering required degree of match
through indexing and decomposition of non-functional constraints[J]. International Journal of Computational Science & Engineering,
2015, 10(1/2).

http://lucene.apache.org/
http://code.google.com/p/ws4j/
http://junit.org/

	Article cover sheet
	A matching approach

