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Abstract: Palomar Transient Factory is a comprehensive detection system for the identification
and classification of transient astrophysical objects. The central piece in the identification pipeline
is represented by an automated classifier that distinguishes between real and bogus objects with
high accuracy. The classifier consists of two components—real-time and offline. Response time
is the critical characteristic of the real-time component, while accuracy is representative for the
offline in-depth analysis. In this paper, we make two significant contributions. First, we present an
experimental study that evaluates a novel implementation of the real-time classifier in GLADE—
a parallel data processing system that combines the efficiency of a database with the extensibility
of Map-Reduce. We show how each stage in the classifier — candidate identification, pruning,
and contextual realbogus — maps optimally into GLADE tasks by taking advantage of the unique
features of the system—range-based data partitioning, columnar storage, multi-query execution,
and in-database support for complex aggregate computation. The result is an efficient classifier
implementation capable to process a new set of acquired images in a matter of minutes even
on a low-end server. For comparison, an optimized PostgreSQL implementation of the classifier
takes hours on the same machine. Second, we introduce a novel parallel similarity join algorithm
for advanced transient classification. This algorithm operates offline and considers the entire
candidate dataset consisting of all the objects extracted over the lifetime of the Palomar Transient
Factory survey. We implement the similarity join algorithm in GLADE and execute it on a
massive supercomputer with more than 3000 threads. We achieve more than 3 orders of magnitude
improvement over the optimized PostgreSQL solution.

Keywords: Parallel Databases; Multi-Query Processing; Scientific Data Analysis; Similarity Join;
Astronomical Surveys; Transient Identification

of all detected sources (Figure 1 [Law et al. (2009)]).
The computational system supporting the project consists
of two separate processing pipelines [Law et al. (2009)]

1 Introduction

The Palomar Transient Factory (PTF) project [Palomar
Transient Factory (2016); Law et al. (2009)] aims to identify
and automatically classify transient astrophysical objects
such as variable stars and supernovae in real-time. As
a secondary objective, a catalog containing the identified
transients and other celestial objects is constructed for
subsequent querying and analysis. PTF is a comprehensive
transient detection system including a wide-field survey
camera, an automated real-time data reduction pipeline, a
dedicated photometric follow-up telescope, and a full archive

Copyright (©) 2009 Inderscience Enterprises Ltd.

fed with the images taken by the camera. Between 2000
and 4000 high-resolution (2048 x 4096 pixels) images are
taken each night and fed into the two pipelines through
high-speed communication links. The total amount of raw
data varies between 60 and 100 GB per night. The near-
real-time transient detection pipeline [Bloom et al. (2011)]
has the goal of identifying and classifying transient objects
within 30-45 minutes of images being taken. Observation of
potential transients by a network of follow-up telescopes is

Copyright (©) 2008 Inderscience Enterprises Ltd.
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triggered immediately after detection in order to confirm their
existence. The main objective of the time-consuming archival
pipeline [Grillmair et al. (2010)] is to create a comprehensive
catalog of high-quality images and celestial objects that can
be queried using a variety of criteria. It is executed on the
entire set of images acquired during one night in order to
achieve high accuracy. The execution of the archival pipeline
typically takes 4-5 hours [Grillmair et al. (2010)], but it can
extend to several days in some cases [Law et al. (2009)].
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Figure 1: PTF data flow [Law et al. (2009)].

Problem formulation. The problem we address in this
paper is the identification of real transient candidates in the
detection pipeline. Specifically, we focus on the classification
phase of the real-or-bogus classifier. The goal of this classifier
is to identify real transients with high accuracy. The input
consists of a set of candidates extracted during image
subtraction and a trained random forest classifier. In the
output, the candidates are given scores, i.e., the realbogus
score, quantifying the probability of them being real. Only the
candidates with realbogus score higher than a threshold and
satisfying a set of additional constraints are considered real.

Contributions. We target two objectives corresponding
to transient classification. The first objective is to design
and implement a real-time classifier capable to keep-up with
the continuously increasing size of the PTF repository. Our
motivation is the incapacity of the existing PostgreSQL
solution to identify transient candidates accurately due to
the larger data volumes it has to handle. We present a
novel implementation for the real-or-bogus classification
in GLADE [Cheng et al. (2012)]—a parallel multi-
query processing system targeted specifically at analytical
workloads. We show how each stage in the classification
process is natively supported in GLADE - this is not
true for the existing PostgreSQL solution — and prove
with experimental results the effect on query execution
performance. Since the GLADE implementation reduces the
time to investigate a set of candidates to minutes — from
hours in PostgreSQL — this allows for considerably more

candidates to be thoroughly evaluated, thus increasing the
likelihood to find many transients that are otherwise missed
by the current solution. These results have been presented
before in a shortened version of the paper [Rusu et al. (2014)].

The second objective is to design a holistic parallel
algorithm that considers the entire candidate dataset when
classifying potential candidates. The motivation for such an
algorithm is the extensive pruning applied by the real-time
classifier in order to keep-up with the strict time constraints
and the limited time horizon used in classification. Our
solution is to add a secondary data analysis component to
the PTF architecture—executed during the telescope offtime.
In this component, we compute all the candidate pairs that
are within a specified distance of each other across the entire
PTF survey and apply a series of statistical functions to
the resulting dataset. This corresponds to a similarity join
query across the candidates—problem known to be extremely
difficult. Our contribution is a new parallel similarity join
algorithm that builds a dynamic index incrementally and
allows for multiple pairs to be processed in batches. We
implement the similarity join algorithm in GLADE and
execute it on a massive supercomputer with more than
3000 threads, achieving more than 3 orders of magnitude
improvement over the optimized PostgreSQL solution. These
contributions are completely new with respect to the previous
conference version of the paper [Rusu et al. (2014)]. The
scientific benefit of secondary analysis is that it allows for
the retrospective evaluation of potentially mis-classified or
undetected transients.

Outline. Section 2 presents automatic transient
identification and real-or-bogus classification in detail. It
also discusses the PTF solution deployed in production and
the problems it has. Section 3 introduces the novel parallel
similarity join algorithm designed for secondary analysis.
GLADE is introduced in Section 4. The implementation of
the real-or-bogus classifier in GLADE and the results of the
experimental evaluation are given in Section 5 which also
contains a comparison with two PostgreSQL solutions. We
conclude the paper in Section 6.

2 Automatic Transient Identification and

Classification

In this section, we present the details of the automatic
detection and classification stage in the real-time transient
detection pipeline (Figure 1 [Law et al. (2009)]). The input to
this stage is represented by the transient candidates extracted
during the image subtraction stage. There are in the order
of 10° such candidates extracted every 45 minutes. Two
questions have to be answered for every candidate:

1. Is the candidate real?

2. If real, what is the transient type of the candidate?
Both these questions are answered using automated
machine learning classification techniques, i.e., random forest
classifiers [Bloom et al. (2011)] in this case, that require
human intervention only in the follow-up stage. This is
necessary considering the number of candidates — 1 to
1.5 million — extracted every night. Since the focus of
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this work is identifying real candidates — the first question
— we present the details and the existing solution in the
following. A description of the type classifier can be found
elsewhere [Bloom et al. (2011)].

2.1 Real-or-Bogus Classification

Any machine learning method consists of multiple phases.
First, a series of features have to be defined for the input data.
These are used as parameters for the classifier. The features
used by the real-or-bogus classifier are extracted during
image subtraction and stored in the candidate database. There
are 28 features used by the classifier. Second, a training
dataset containing labeled examples is used to compute the
parameters of the classifie—the training phase. The training
dataset consists of 574 candidates manually labeled with
the realbogus score by multiple human scanners. At last,
the trained classifier is presented with unlabeled examples
and the class has to be determined—the classification phase.
The output consists of 5 classes, i.e., {bogus, suspect,
unclear, maybe, realish}. The probability of a
candidate being in each of these classes is returned by the
random forest classifier—probabilistic model. The score, i.e.,
realbogus score, for a candidate is computed as a weighted
average of the class probabilities. The final realbogus score
takes into account additional information, i.e., the scores of
neighboring candidates from the same subtraction. Moreover,
a high-scoring candidate is deemed real if and only if it
appears in at least two subtractions within 6 days. All the
candidates identified as real at the end of the classification
phase — 30 to 150 out of 10 — are flagged for immediate
follow-up and sent to the type identification classifier. We
present the exact details of the online classification phase in
the following since training is a one-time offline process.

Algorithm 1 Real-or-Bogus Classification

Input: new subtraction set (subtraction) with
corresponding candidate set (candidate) and their
probabilities (rb_classifier) computed by the random
forest classifier

Output: a subset of real candidates (real)

1. real ¢ IdentifyCandidates (subtraction,
candidate, rb_classifier)

2. forall r € real do

3. if SingleAppearance (r, subtraction,
candidate, rb_classifier) then

4. real <~ real-r

5. endif

6. end for

7. forall r € real do

8. ctxt_score — CtxtRealBogus (r,

subtraction, candidate,
rb_classifier)
9. if ctxt_score < threshold then

10. real < real-r
11. endif
12. end for

Identify candidates. The initial realbogus score — the
score returned by the random forest classifier — corresponding
to a candidate is computed during image subtraction. It is
stored together with other candidate data in the subtraction
and candidate database. Candidate identification requires
a simple query that returns all the candidates with high
realbogus score extracted from subtractions computed during
a specified time interval.

Prune single appearance candidates. In order to
increase the probability that a high-scoring candidate is
indeed real, a candidate identified in the first query has to
satisfy an additional condition. The candidate has to appear
at a close spatial position in other subtractions close in time
to its originating subtraction. Independent of its original
realbogus score, a single appearance candidate is pruned
away. Since the area and time interval are dependent on the
candidate, pruning requires a separate query with different
space and time bounds for every candidate. The larger the
number of candidates identified in the first query, the more
queries have to be executed for pruning.

Compute contextual realbogus score. The final
realbogus score of a candidate takes into consideration the
score returned by the random forest classifier for the closest
k other candidates extracted from the same subtraction. This
is called the contextual realbogus score since it considers
the candidate in the larger context of all the extracted
objects close in space. It is based on this score that the final
classification decision is made. Computing the contextual
realbogus score is a rather complicated process that involves
a nearest-neighbor query followed by a complex aggregate
computation. Unlike pruning, the nearest-neighbors are
computed only along the spatial dimension, i.e., in the
same subtraction. Nonetheless, a separate query has to
be executed for every candidate that survives pruning—a
considerable problem when the number of candidates is
large. Algorithm 1 summarizes formally the stages of the
real-or-bogus classification.

2.2 Secondary Analysis

As mentioned in the introduction, the goal of the secondary
analysis stage is accuracy rather than time efficiency. This
stage is executed during daylight, when the telescope
does not acquire new images. The algorithm executed
during secondary analysis eliminates the pruning steps
from Algorithm 1 and extends IdentifyCandidates to
operate over the complete set of candidates ever extracted.
Thus, the observation horizon is considerably larger than
the subtraction — or a small set around the subtraction —
from which the candidate is extracted. Essentially, the time
dimension is eliminated from identification which is done
exclusively based on the spatial coordinates of the candidates.
Abstractly, this corresponds to a similarity join query over the
spatial coordinates.

2.3 Existing Solution

The current real-time solution implemented in the PTF
pipeline is a standard Python application with a PostgreSQL
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database backend. The database contains 3 tables —
subtraction, candidate, and rb_classifier -
storing subtractions, candidates, and the scores returned
by the random forest classifier. subtraction and
candidate are wide tables having 51 and 46 columns,
respectively. Many of the columns are never used in queries.
The number of rows in these tables increases continuously
as more observations are taken daily. candidate and
rb_classifier already contain a few billion tuples each.
Data corresponding to a new set of images are added to
the tables during the image subtraction stage. Transient
identification and classification execute as database queries.
Possible candidates in a given time window are identified
with a complex query over the 3 tables. For each such
candidate, a time and space nearest-neighbor query is
executed from the application to find additional appearances
of the candidate. These queries are executed iteratively. For
the remaining candidates, another spatial nearest-neighbor
query is executed to find close candidates in the same
subtraction. The contextual realbogus score is computed in
the application by combining the score of the candidate
with those of its neighbors. This is another iterative process
that goes over the non-pruned candidates one at a time.
The secondary analysis stage is not part of the current PTF
production pipeline due to performance considerations. The
algorithm we introduce in this paper will allow for this to
happen in the future.

Problems with the existing solution. The existing
approach suffers from a series of problems that make real-
time candidate identification and classification in the limited
time interval between two subtraction sets — approximately
45 minutes [Bloom et al. (2011)] — difficult. Experimental
results over a relatively small snapshot of the database
from the early stages of the project confirm this problem
(Section 6). As the size of the repository increases with the
acquisition of new images, the situation will become only
worse. As a result, many of the transients are missed simply
because there is not enough time to investigate them.

The fundamental limitation is raised by the need to evaluate
each candidate sequentially even though the same query
template is used across all the candidates. Essentially, two
passes over the candidates extracted based on the realbogus
score are required to take a decision. And in each pass, a
complicated nearest-neighbor query is executed for each
candidate. Since the time taken to process one query over the
increasingly larger candidate table grows continuously
with the size of the table, the number of candidates that can
be inspected between two subtractions decreases.

The PostgreSQL row-based storage format affects
query performance negatively considering the width of
subtraction and candidate tables and the number
of attributes used in the query—a small fraction out of the
overall number of attributes. While query execution speed
can be improved with appropriate indexes, this results in
data ingestion time increase due to index maintenance, thus
limiting the time available for querying. Essentially, indexing
moves the bottleneck from querying to data ingestion. With
the increase in repository size, index maintenance under data
ingestion only becomes worse.

Data transfer between the database and the application is
another limitation that is a direct consequence of the large
number of queries that have to be executed. The reason
for this is the lack of support for complex computations
inside the database. While user-defined functions (UDF)
and user-defined aggregates (UDA) provide extensibility
to in-database complex computations, the exclusive SQL
invocation limits their applicability. As a result, these
complex computations are executed in the application in the
current PTF solution.

The implementation of the secondary analysis in
PostgreSQL uses the g3c¢ package [Koposov and Bartunov
(2006)]. The initial results are not encouraging at all. It
is impossible to execute the complete similarity join query
across the entire dataset. Moreover, it takes 20 ms to compute
the spatial neighbors of a single candidate—this corresponds
to more than 150 days overall.

3 Secondary Analysis

In this section, we discuss the problem of secondary analysis
in detail and present a fast and scalable solution. After real-
time pipeline processing, each object is stored as a tuple
(idx,ra,dec), where idx is the index of the object and ra
and dec, respectively, correspond to the object position in
the equatorial coordinate system. This stage takes a list of
objects as input, and finds all the neighbors within threshold
c for each object—distance-based similarity join query. c is a
manually-set small constant, e.g., 1/3600°.

. 4
_North celestial pole :

]

(R

Vernal equinox ra
_0°ra, 0° dec

\

Figure 2: Equatorial coordinate system.

Equatorial coordinate system. The spherical
coordinates of a star are commonly expressed as ra and dec
in the equatorial coordinate system. Figure 2 depicts how
to find the corresponding coordinate of a celestial object,
where dec is the angular distance perpendicular to the Earth’s
Equator and ra measures the angular distance from the vernal
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equinox Eastward to the object’s projection on the Equator.
The vernal equinox is the origin point of the coordinate
system which corresponds to (0°ra,0°dec). The ranges of
ra and dec are [0, 360) and [—90, 90], respectively.

The computation of this stage can be expressed as the
following self-join SQL query:

SELECT a.idx, b.idx
FROM obj_list AS a, obj.list AS Db
WHERE dist (a.ra,a.dec,b.ra,b.dec) <= ¢

where dist is a user-defined function to compute the distance

between two objects in equatorial coordinate system. Exact
distance computation in the equatorial coordinate system
requires multiple trigonometric function calls. However, the
distance can be approximated as in Eq. (1) when c is small:

dist(ray,decy,ras, decs) =

\/(ral — ra2)2 - cos?(decy) + (decy — clecz)2 €))

Since each object has to be joined with all the other
objects detected before, including those objects detected in
previous months or even years, the list of objects contains
hundreds of millions of pairs. Executing the self-join query in
a naive way requires producing more than 10'6 pairs, which
is impractical.

The standard solutions [Das Sarma et al. (2014)] to
execute the similarity self-join query in acceptable time
require the construction of spatial data partitioning indexes,
e.g., quad-tree, kd-tree, that store the spatial information of
the data. Then, they iterate over the objects and find their
neighbors. The index accelerates the retrieving process by
avoiding checking all other objects. However, the index-based
methods execute the query for each object independently. The
relationship among queries is ignored so that unnecessary
repeated index accesses make the overall process inefficient.
We propose a novel method to dynamically build a
lightweight index on-the-fly and process the queries for all the
objects in a batch. Thus, our solution eliminates the excessive
cost of frequent index lookups for each object individually.

Data repartitioning. The original data are sorted by their
idx value. idx does not correspond to the spatial position
(ra,dec). Tt is necessary to ensure the neighbors of each
object are stored close enough, so that the original data
can be repartitioned with small overlapping. Unlike the
Euclidean coordinate system, we observe that ra and dec
are asymmetric in the distance function in Eq. (1). When
cos(dec) is close to 0, ra contributes almost nothing to the
distance. On the other hand, when |dec; — deca| > ¢, dist is
larger than c. Based on this observation, we sort the original
data on ra in ascending order.

Dynamic data allocation. Each worker thread is
dynamically assigned a corresponding data partition. Shared
parallel file systems are commonly used in supercomputer
centers, e.g., Lustre. Each partition is represented as a pair
(start,size), where start and size are the starting position offset
in the file and the size of the partition, respectively. These
offsets and sizes can be determined dynamically at runtime,
after the number of worker threads is set.

Algorithm 2 Partition Processing

Input: A partition P contains n objects. Objects are sorted in
the ascending order of dec.

Output: neighbor;, neighbors of the i object

1: Initialize an empty balanced tree T" whose key is ra
2: for each P; € P do

3. neighbor; =)

S )

5. for each P; € T.range(P;.ra — §,P;.ra+ 0) do
6 if P;.dec < P;.dec — c then

7 T.erase(P;)

8 else if dist(P;.ra, P;.dec, P;.ra, Pj.dec) < c then
9 neighbor; = neighbor; U P;

10: neighbor; = neighbor; U P;

11: end if

12:  end for

13:  T.insert(P;)

14: end for

Query processing. We process each object in a partition
iteratively and answer the query efficiently by maintaining
a balanced tree 7. Algorithm 2 depicts the computation
details. T'.range(lower_bound, upper_bound) extracts objects
whose key is located in [lower_bound,upper_bound).
T.insert/erase(P;) inserts/erases object P; into/from the
tree. According to the distance function in Eq. (1), only
objects whose ra is located in [P;.ra — 0, P;.ra + ¢] and
dec is located in [P;.dec — ¢, P;.dec + ¢] are possible to be
the neighbor of P;. These objects can be found efficiently
by querying 7. Lines 6 and 7 check whether an object is
impossible to be the neighbor of the following unprocessed
objects in the list and erase it from 7" in order to make queries
on T faster and more memory-efficient.

E 45 T updated
i i 4 4
1: s
* BERRE
: 5
2 ok md
IR O B T

3
Y
C

Figure 3: An example for partition processing.
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An example for Algorithm 2 is illustrated in Figure 3.
All the objects are sorted in the ascending order of dec.
The example shows a snapshot during the entire partition
processing. Consider we are processing the 5" object, Ps.
The previous 4 objects are stored in 7', ordered by their
ra. First, we compute the value of ¢ (6 = ¢/Ps.dec). By
searching the lower bound of Ps.dec — ¢ and the upper bound
of Ps.dec + 6 on T, we obtain a list of potential neighbors
of Ps, {Py, P, P»}. Then we iteratively go over the list, and
check the distance of each object in the list to Ps. Specifically,
when we process an object whose dec is less than P — ¢, we
immediately delete it from 7" without checking the distance.
When we process Py, P;.dec < Ps.dec — c, thus it can never
be the neighbor of any subsequent object. Therefore, P; is
deleted from T'. After these steps, we insert P5 into 7.

Merging. The borders of partitions are handled in the
merging stage. Consider two adjacent partitions a and b.
Objects in the tail of a are possible to be the neighbors
of objects in the head of b. Algorithm 3, a modification
from Algorithm 2, shows the process to merge the border
results. extract_tail/head( P, ¢) extracts objects in the tail/head
of P whose dec are no smaller/greater than minge.(P) — ¢/
mazge.(P) + ¢. min/mazxge.(P) is the dec of the first/last
object, since all objects are sorted by dec. The algorithm
inserts objects from one partition into the balanced tree and
then iteratively visits the objects from the other partition
without inserting them into 7'. Therefore, only neighbors
across partitions are computed by this process. Moreover, we
guarantee that maxz(dec) — min(dec) > c for each partition
in order to avoid merging non-adjacent partitions.

Algorithm 3 Border Merging

Input: Two adjacent partitions P and P’
Output: neighbor;, neighbors of the i object

1: Initialize an empty balanced tree 1" whose key is ra

2: Py = extract_tail( P, ¢)
3. Py,.g = extract_head(P’, c)
4. for each P; € P,;; do
5. T.insert(F;)
6: end for
7. for each P; € P}, ,, do
8:  neighbor; = ()
9: = ¢
cos(P;.dec)
10.  for each P; € T.range(P;.ra — 0,P;.ra + ¢) do
11: if Pj.dec < P;.dec — c then
12: T.erase(P;)
13: else if dist(P;.ra, P;.dec, Pj.ra, Pj.dec) < c then
14: neighbor; = neighbor; U P;
15: neighbor; = neighbor; U P;
16: end if
17 end for
18: end for

Complexity analysis. The time complexity of
Algorithm 2 is O(n x 1), where n is the number of objects,
and 7 is the average number of neighbors. The algorithm
can be divided into 3 stages: inserting/deleting objects,
querying ranges, and traversing the range. Each object is

inserted/deleted into/from 7T only once. Thus, the time
complexity of this stage is O(n logn). Each range query on
T takes O(log n) time which is a native function of balanced
trees. In addition, range queries are executed only once
for each object in the dataset. Therefore, querying all the
ranges takes O(n logn) time. Finally, we have to traverse the
range, check the distance, and update the answer. The time
complexity of this stage depends on the objects in the range.
The area of the range is ¢ x 2§, which is extremely small. It
is reasonable to assume the objects are uniformly distributed
in the small range. According to Eq. 1, the ratio of neighbors
to non-neighbors in the range is /(4 — ). The average
number of objects located in each range is %7]. Hence,
the time complexity of traversing ranges is O(n X %n) =
O(n x n). In conclusion, the time complexity of Algorithm 2
is O(nlogn+nlogn+mnxn)=0(nxmn). The time
complexity of Algorithm 3 is similar to Algorithm 2, which is
the number of neighbors we have on the borders of partitions.
Since the number of neighbors we have to explicitly output
is n X 7, our algorithms are theoretically optimal.

4 GLADE

Given the aforementioned problems of the existing solution
and the incapacity to accurately identify some highly-
probable candidates, novel solutions have to be explored. The
approach we take in this paper is a novel implementation
of the real-or-bogus classifier in GLADE—a parallel data
processing prototype we have developed from scratch over
the past few years. Although we showed the considerable
performance gains GLADE provides over PostgreSQL and
Hadoop on a limited set of tasks focused mostly on
SQL aggregate queries and analytics, including group-by
aggregation, k-means clustering, and top-k ranking [Cheng
et al. (2012)], we have not yet evaluated GLADE on a
complex real-life application. Moreover, the characteristics of
the PTF real-or-bogus classifier map perfectly on the GLADE
architectural features. While these are compelling reasons to
carry out such an investigation, the experimental results in
Section 6 prove that GLADE is indeed a suitable solution that
outperforms the existing PostgreSQL implementation.
GLADE. GLADE [Cheng et al. (2012); Cheng and Rusu
(2013)] is a parallel data processing system specifically
designed for the execution of analytical tasks specified in
SQL enhanced with Generalized Linear Aggregates (GLA).
This allows for the execution of a much larger class of
analytical computations beyond the standard SQL aggregates.
Essentially, GLADE provides an infrastructure abstraction
for parallel processing that decouples the algorithm from
the runtime execution. The algorithm has to be specified
in terms of a clean interface — SQL + GLA - while the
runtime takes care of all the execution details including
data management, memory management, and scheduling.
Contrary to existent parallel data processing systems
designed for a target architecture, typically shared-nothing,
GLADE is architecture-independent. It runs optimally both
on shared-disk servers as well as on shared-nothing clusters.
The reason for this is the exclusive use of thread-level
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parallelism inside a processing node while process-level
parallelism is used only across nodes. There is no difference
between these two in the GLADE infrastructure.

Coordinator

Manager Code Manager
Q Generator
uery
Catalog

/N

Node, Node,
Comm GLA Comm GLA
Manager Manager Manager Manager
Query Storage - Query Storage
Manager Manager Manager Manager

DataPath Code DataPath Code
Exec. Engine Loader Exec. Engine Loader

Figure 4: GLADE architecture.

Architecture. GLADE consists of two types of entities—
a coordinator and one or more executor processes (Figure 4).
The coordinator is the interface between the user and the
system. Since it does not manage any data except the
catalog metadata, the coordinator does not execute any
data processing task. These are the responsibility of the
executors, typically one for each physical processing node.
It is important to notice that the executors act as completely
independent entities, in charge of their data and of the
physical resources. Each executor runs an instance of the
DataPath [Arumugam et al. (2010)] relational execution
engine enhanced with a GLA metaoperator for the execution
of arbitrary user code specified using the GLA interface.
Communication Manager is in charge of transmitting data
across process boundaries, between the coordinator and the
executors, and between individual executors. Different inter-
process communication strategies are used in a centralized
environment with the coordinator and the executor residing
on the same physical node and for a distributed shared-
nothing system. The communication manager at the
coordinator is also responsible for maintaining the list
of active executors. This is realized through a heartbeat
mechanism in which the executors send alive messages at
fixed time intervals.
Query Manager is responsible for admission, setup, and
query processing coordination across executors and queries.
This is a particularly important task since processing is
asynchronous both with respect to executors as well as to
queries.
Code Generator fills pre-defined M4 templates with macros
specific to the actual processing requested by the user
generating highly-efficient C++ code similar to direct hard-
coding of the processing for the current data. The resulting
C++ code is subsequently compiled together with the system
code into a dynamic library. This mechanism allows for the
execution of arbitrary user code inside the execution engine
through direct invocation of the GLA interface methods.
Code Loader links the dynamic library to the core of the
system allowing the execution engine and the GLA manager
to directly invoke user-defined methods. While having the

code generator at the coordinator is suitable for homogeneous
systems, in the case of heterogeneous systems both the code
generator and the code loader can reside at the executors.
DataPath Execution Engine implements a series of relational
operators — SELECT, PROJECT, JOIN, AGGREGATE — and
a special GLA metaoperator for the execution of arbitrary
user code specified using the GLA interface. They are
all configured at runtime with the actual code to execute
based on the requested processing. The execution engine
has two main tasks—manage the thread pool of available
processing resources and route data chunks generated by the
storage manager to the operators in the query execution plan.
Parallelism is obtained by processing multiple data partitions
— chunks — simultaneously and by pipelining data from one
operator to another.
GLA Manager executes Merge at executors and
Terminate at coordinator, respectively. These functions
from the GLA interface [Cheng et al. (2012)] are dynamically
configured with the code to be executed at runtime based on
the actual processing requested by the user. Notice that the
GLA manager merges only GLAs from different executors,
with the local GLAs being merged inside the execution
engine.
Catalog maintains metadata on all the objects in the system
such as table names and attribute names and their partitioning
scheme. These data are used during code generation, query
optimization, and execution scheduling. In addition to
the global catalog, each executor has a local catalog with
metadata on how its corresponding data partition is organized
on disk.
Storage Manager is responsible for organizing data on disk,
reading, and delivering the data to the execution engine for
processing. The storage manager operates as an independent
component that reads data asynchronously from disk and
pushes it for processing. It is the storage manager rather than
the execution engine in control of the processing through the
speed at which data are read from disk. In order to support
a highly-parallel execution engine consisting of multiple
execution threads, the storage manager itself uses parallelism
for simultaneously reading multiple data partitions.
Range-based data partitioning. Parallel execution
is supported in GLADE through data partitioning, i.e.,
multiple partitions are processed simultaneously by different
executors. The tuples of a relation are divided horizontally
into chunks containing thousands to a few million tuples.
Chunks are stored continuously on disk. The larger the size
of the chunk, the longer the size of sequential scans, thus
the smaller the number of disk seeks. While tuples can
be assigned to chunks in arbitrary order, it is particularly
useful for many workloads to have tuples with close values
along some attributes grouped together in the same chunk.
This corresponds to range-based data partitioning. Generating
range-partitioned chunks is typically more complicated since
data have to be partially ordered along the partitioning
attributes. The benefit is faster execution for range queries
since a reduced number of chunks have to be processed.
Column-oriented storage. Inside a chunk the columns of
a relation are further partitioned vertically, with a disk page
storing only values from the same column. Attribute values
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corresponding to the same tuple are stored at the same relative
position inside each column. This allows for immediate tuple
reconstruction in memory. The benefit of column-oriented
storage is evident in the case of wide relations containing a
large number of attributes with only a few of them accessed
by every query. When range-based partitioning is combined
with columnar storage — the case in GLADE - the amount of
data read from disk is minimized since only the chunks and
the columns required by the query are retrieved.

Multi-query processing. GLADE supports concurrent
execution of multiple queries by sharing data access across
the entire hierarchy—from disk to CPU registers through
memory and cache. All the queries reading data from the
same relation are connected to a single circular shared scan
operator that reads a chunk only once and distributes it to all
the queries that require it. While this is standard practice in
any multi-query processing system, chunk sharing in GLADE
is taken considerably further. Essentially, chunks are shared
across all the common operators in the query execution trees
corresponding to two queries. This requires merging separate
operators with similar functionality into a single mega-
operator that combines the operations corresponding to each
query. For example, instead of having two selection operators
with different predicates — one for each query — a single
operator containing both predicates is created in GLADE.
The new combined operator is responsible for identifying
what queries a chunk is valid for and for setting the correct
tuple validity based on the query predicates. The same logic
can be applied to other relational operators, including JOIN,
GROUP BY, AGGREGATE, and the GLA metaoperator. The
code executed by each operator is dynamically generated at
runtime based on the running queries.

Complex aggregates. The GLA metaoperator supports
the execution of arbitrary user code specified using the
abstract GLA interface [Rusu and Dobra (2012)]. This
allows for the execution of complex computations far beyond
standard SQL aggregates inside the execution engine without
the need to extract data into an application with more
powerful computational capabilities. This paradigm shift —
bring the code near the data instead of moving data to the code
—results in considerable gains especially in the cases where a
large amount of data have to be moved.

5 Experimental Evaluation

In this section, we present the GLADE implementation
for real-or-bogus classification. We show how data are
mapped onto the GLADE storage model, how each task
in the classification is expressed as GLADE computations,
and how native GLADE features — range-based data
partitioning, columnar storage, multi-query processing, and
complex aggregate computation — are used in this workload.
We provide measurement results that prove a significant
improvement over the existing PostgreSQL solution and we
analyze the reasons for this.

Data. The data we use in the experiments are a
snapshot of the subtraction and candidate database. The 3
tables referenced in real-or-bogus classification and their

characteristics are given in Table 1. The overall size of the
3 tables when loaded in GLADE is 161 GB. Notice that
approximately 5,000 candidates are not classified by the
random forest classifier—rb_classifier contains less
tuples than candidate. There are 647 candidates per
subtraction on average.

The maximum chunk size is fixed at 22° ~ 1 million tuples
across all the tables. This generates a single subtraction
chunk and 642 chunks for the other two tables. The size
of a full chunk is different though across tables since they
contain a different number of columns. Notice that only the
columns required in query processing are read for a chunk
— not the entire chunk — due to the columnar storage. Thus,
even the subtraction table is never read in full unless
all the columns are requested by the query. candidate
and rb_classifier are range-based partitioned along the
subtraction_id attribute. This guarantees that all the
candidates extracted from the same subtraction end up in
the same chunk. Moreover, candidates from subtractions
close in time are also co-located in the same chunk
with high probability. This partitioning has two benefits.
It minimizes the number of chunks read from disk. And
it isolates processing to the chunk level, thus increasing
the amount of parallelism achieved by processing multiple
chunks simultaneously.

| Table name | Columns | Rows | Chunks |
subtraction 51 1,039,758 1
candidate 46 672,912,156 642
rb_classifier 9 672,906,737 642

Table 1 Tables used in real-or-bogus classification.

5.1 Real-Time Pipeline

Setup. The machine used in the experiments is a low-end
server with an Intel Core2 Quad CPU running at 2.66 GHz,
4 GB of memory, and a single 1 TB disk with sequential
I/O throughput of 100 MB/s. Ubuntu SMP 10.10 64-bit is
the operating system. There is a single GLADE executor in
this configuration. It is co-located with the coordinator. Only
thread-level parallelism is employed. The DataPath execution
engine is configured to use 4 worker threads — one for each
core — while the storage manager corresponding to every
table assembles 4 chunks simultaneously. The reader might
be surprised by our modest system choice given that the
PTF pipeline is running in production on a powerful NERSC
supercomputer. Nonetheless, our results confirm that even
on such a low-end machine GLADE manages to load and
classify the candidates in a set of subtractions in less than 20
minutes.

Data ingestion. The time it takes to ingest the entire
dataset depicted in Table 1 in GLADE is 8,222 seconds (=~
2 hours 15 minutes) out of which 7,056 are spent loading
the candidate table. This dataset corresponds though to
many nights of observations. To determine how long it takes
to ingest a set of subtractions generated at one instance in
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time, we chose a random night in the dataset, i.e., the night of
October 10, 2011, compute its corresponding statistics, and
then extrapolate the loading time based on these statistics.
There are 2,997 subtractions taken during this night and
1,939,059 candidates at an average rate of 647 candidates
per subtraction. The time taken to ingest these data into
GLADE is only 24 seconds. Considering that the ingestion is
distributed over 10 periods of 45 minutes each, the average
ingestion time for a set of subtractions is less than 3 seconds.

Candidate identification. The first stage in real-or-
bogus classification is to identify candidates with high
realbogus score assigned by the random forest classifier.
The corresponding query Q1 contains a 3-way join between
subtraction, candidate,and rb_classifieranda
series of selection predicates on each of the tables. The most
important predicate is a range selection on subtraction
that limits the search to the images acquired most recently.
Due to range-based partitioning and columnar storage, in the
GLADE implementation this query reads only the chunks
and columns that generate results. In the optimal situation, a
single chunk is processed from each of the 3 tables. Out of
the almost 2 million candidates detected during the night of
October 10, 2011, only 40,087 are classified as real by the
random forest classifier. This is only 2%. The number can
be easily increased by relaxing the conditions in the query.
It takes GLADE only 9.2 seconds to find the real candidates,
i.e., 0.92 seconds per subtraction.

Ql:

SELECT s.ujd, c.sub.id, c.id, c.ra, c.dec,

c.xint new, c.yint_new, c.pos_sub

FROM subtraction s JOIN candidate c
ON (c.sub.id = s.id) JOIN rb_classifier
rbc ON (rbc.sub_id = c.sub_id AND

rbc.candidate_id = c.id)

WHERE (c.a-image < 3.0 OR c.mag < 15.0)
AND s.ujd > 2455844 AND s.ujd < 2455845
AND rbc.realbogus > 0.17
AND rbc.bogus < 0.35
AND c.b_image > 0.7
AND c.pos_.sub = ‘True’

Candidate pruning. Each of the candidates identified by
the random forest classifier is further checked before deemed
real. The first condition a candidate has to pass is that it
appears in more than one subtraction at a position close
to the original position where it was first spotted. This is
expressed as a complex nearest-neighbor query Q2 along the
space and time attributes. In the current implementation of
the PTF pipeline, one such query is executed sequentially
for every candidate. This is 40,087 queries for our example
night or approximately 4,000 queries for every subtraction
set. Since all these queries have to be executed in less than
45 minutes, this step is by far the bottleneck of the entire
process. GLADE multi-query processing kicks in perfectly
in this situation thus allowing for multiple candidates to be
checked at the same time. Most importantly though, the time
to check many candidates — up to 64 candidates in the current
GLADE implementation — is the same as checking a single

candidate. The reason for this is that the queries have identical
execution plans — more or less some constants — which
allows for maximum data access sharing. When coupled with
range-based partitioning and columnar storage, it takes only
18 minutes to check the 4,000 candidates identified in a
subtraction set—18 seconds for a group of 64 candidates. 560
candidates survive pruning on average for a subtraction set.

Q2:

SELECT COUNT (x*)

FROM subtraction s JOIN candidate c
ON (c.sub_id = s.id) JOIN rb_classifier
rbc ON (rbc.candidate_id = c.id)

WHERE c.ra BETWEEN (%1f,%2f)

AND c.dec BETWEEN (%3f, %4f)

AND (s.ujd BETWEEN (%5f,%6f) OR
s.ujd BETWEEN (%7f,%8f))

AND (rbc.realbogus > 0.07 OR
c.pos_sub <> ’"True’)

AND c.b_image > 0.7

AND (c.a-image < 3.0 OR c.mag < 15.0)

Contextual realbogus computation. For the surviving

candidates, the contextual realbogus score is computed based
on the probability of being real of their nearest-neighbor
candidates in the subtraction. This requires another iterative
process in which each surviving candidate is examined
independently. The difference from pruning is that the
contextual realbogus score cannot be computed inside the
database. Instead it is computed in a Python script that
extracts the necessary data from the database using query
Q3. This is not required in GLADE though since complex
aggregates can be expressed as GLAs and executed inside the
system without moving data between processes. In addition to
the savings in execution time, the GLA mechanism allows for
all the computation to be confined to the database engine—
a cleaner and easier to understand solution. In GLADE, the
contextual realbogus score for the 560 candidates surviving
pruning in a subtraction set is computed in 88 seconds—it
takes 10 seconds on average to compute the score for a group
of 64 candidates.
Table 2 summarizes the results we obtained for processing the
October 10, 2011 data in GLADE. These are average results
for processing a subtraction set. The overall time to classify
the candidates is less than 20 minutes. This is less than half
the length of the interval between two sets of images are
ingested, i.e., 45 minutes. The remaining time can be used
either to increase the rate at which images are ingested or
to analyze more candidates—some of the conditions based
on which candidates are pruned are arbitrary and they are
targeted at reducing the overall classification time. This is not
a problem in the GLADE implementation though.

Q3:

SELECT c.id,
\/(c.:vint,newf%1f)2+(c.yint,newf%Qf)2 AS dist
FROM subtraction s JOIN candidate c

ON (c.sub_id = s.id) JOIN rb_classifier
rbc ON (rbc.sub_id = c.sub_id AND
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rbc.candidate_id = c.id)
WHERE s.id = %3i AND c.pos.sub = ’%4s’
ORDER BY dist

PostgreSQL solutions. In order to compare the proposed
GLADE approach with the existent solution, we devise two
alternative PostgreSQL databases. The first database does
not contain any optimizations. There are no indexes or
any other structures for enhancing query performance. The
second database defines indexes for all the attributes used
in selection predicates or join conditions across the three
workload queries. This is the solution implemented in the
PTF production pipeline. We deploy these two databases on a
PostgreSQL 8.4 server running on the same test machine. We
modify the server configuration in order to maximize usage
of the available memory resources in the system, e.g., we set
shared.-buffers to3 GB.

Table 2 contains the results for the two PostgreSQL database
implementations. The indexed implementation outperforms
the non-indexed version considerably at query processing.
The gap is as much as 6 orders of magnitude for the
contextual realbogus computation. The reason for this is that
the non-indexed database has to read all data from all the
tables in order to perform any query. Since no indexes are
available, sequential scan is the only feasible path access
strategy. Indexes reduce dramatically query execution time
since the tuples satisfying the highly-selective predicates can
be identified with as little as a single disk access. Due to
the large buffer pool, disk access is not even required at all
in many situations. Indexes also play an important role in
the selection of the join algorithms used in query execution
plans. The situation is radically different though for data
ingestion. While it takes less than a minute to load a new
set of candidates in the non-indexed database, it takes 68
minutes to do so in the indexed version. This 61 factor
difference is entirely due to index maintenance. Adding tuples
to the candidate table requires insertions in each of the 9
indexes defined over it. Although this might not seem such
a difficult problem at first, in the case of a batch of 200,000
insertions the probability to encounter some time-consuming
index reorganizations is quite high.

Overall, none of the PostgreSQL solutions meets the
requirement to ingest and identify a new set of candidates
in less than 45 minutes. The index-based solution deployed
in production takes 75 minutes on our test machine—out
of which 60 minutes are spent for data ingestion. The non-
indexed version is far from this requirement. A possible
solution to decrease the loading time for the indexed database
is to reduce the number of indexes. The expectation is that
the decrease in loading time offsets the increase in query
execution time and for some combination of indexes the
overall time drops below 45 minutes. Finding the optimal
index combination is a hard problem that requires the
investigation of an exponential number of alternatives.

Observations. When we compare the proposed GLADE
solution to the PostgreSQL indexed database, we remark
some interesting aspects. Overall, GLADE outperforms
PostgreSQL by a factor of 3.88. This is entirely due to

the efficient GLADE data loading mechanism which is
faster by 3 orders of magnitude. Since GLADE does not
employ any secondary data structures to enhance query
performance, it is not as efficient as indexed PostgreSQL in
answering queries. The difference between the two systems
— only 24% - is considerably smaller when compared
to the basic PostgreSQL implementation. The GLADE
architecture specifically targeted at analytical processing
and optimized for read-mostly workloads is responsible for
providing similar query performance to indexed PostgreSQL
but without the associated increase in database size — the
indexed PostgreSQL database is twice as large as GLADE —
and ingestion time—GLADE loads new candidates a factor
of 60 faster. Range-based partitioning and columnar storage
combine together in order to minimize the amount of data
read from disk across all types of range queries. Dedicated
support for the execution of any user code inside the system
eliminates data movement almost entirely and allows for
complex computations to be executed right near the data. For
the PTF workload though, the most significant gains are due
to multi-query processing. Instead of verifying each candidate
one at a time, GLADE allows for up to 64 candidates to be
evaluated simultaneously in the same amount of time. This
is because all the queries have identical execution plans and
GLADE is capable to combine them into a single plan in
which the operators share access along the entire data path—
from disk to CPU registers through main memory and cache.

5.2 Secondary Analysis

Setup. The secondary analysis experiments are executed on
Edison — a Cray XC30 supercomputer at NERSC [Edison
(2016)] — with peak performance 2.57 PFlops/second on
5,576 compute nodes, 133,824 cores in total. Nodes are
linked by a high-speed interconnect with Dragonfly topology
having ~8 GB/sec MPI bandwidth. The aggregate memory
of Edison is 357 TB and the scratch storage capacity is 7.56
PB. In our experiments, we use 64 nodes which provide
3,072 hyper-threads. The distance parameter c is set to 0.001
degrees.

Implementation. An efficient file partitioner is
implemented in C++. It takes the desired number of partitions
as input and computes a coarse partition step size. Each
thread is assigned the corresponding partition and is in
charge of accessing it concurrently with the other threads.
Algorithms 2 and 3 are implemented as a GLADE GLA.
The state of the GLA consists of the balanced tree T—one
for each partition. Partition processing is implemented in the
Accumulate method, while merging in Merge. At the end
of processing a partition, only the objects at the boundaries
are saved in the GLA state for merging with the neighboring
partitions. We use the C++ STL set as the balanced tree T'.
range is implemented as function calls to set.:lower_bound
and set::upper_bound which run in O(logn) time, where
n is the size of 7T'. The running time of range depends on
the number of objects located between the lower and upper
bound.

PostgreSQL solution. g3c [Koposov and Bartunov
(2006)] is a package for PostgreSQL that implements a quad-
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| Phase | GLADE | PostgreSQL | PostgreSQL + indexes |
Data ingestion 3 sec 59 sec 1 hour 8 sec
Identification 0.92 sec 45 sec 4.67 sec
Pruning 18 min 607 hours 15 min 39 sec
Contextual realbogus || 1 min 30 sec 68 hours 0.79 sec

Table 2 Average results for processing a subtraction set on October 10, 2011.

tree index. After building the index with ¢3¢, we can find
the neighbors of an object by executing its corresponding
self-join SQL query in Section 3. Our goal is to execute
the query for each object in the partition. ¢3¢ does not
provide support for concurrent access beyond the standard
PostgreSQL mechanism and is, thus, not scalable. Therefore,
we can only compare the average query execution time of the
proposed solution with that of PostgreSQL for a single query.

| Phase | GLADE | PostgreSQL + g3c |
Computation 290 s N/A
Merge 10s N/A
Total 300 s N/A
Average per object || 0.004 ms 20 ms

Table 3 Execution time (in seconds) for secondary analysis.

Results. Table 3 depicts the results for GLADE
and PostgreSQL. The GLADE solution completes the
computation for all the partitions in 290 seconds. Merging
the borders takes 10 seconds, for a total of 300 seconds.
The average execution time per object in GLADE is, thus,
0.004 ms. The average execution time in PostgreSQL on 1
million random objects is 20 ms—a factor of 5000 larger.
We can observe that GLADE achieves more than 3 orders
of magnitude improvement over the optimized PostgreSQL
solution with g3c. The batch processing and lightweight
balanced tree significantly reduce the computation time.
The batch processing mechanism takes advantage of the
intermediate results for neighboring objects. In addition, the
balanced tree contains only objects whose dec is no larger
than the current dec — ¢, unlike ¢3¢ which builds the index
over all the objects. Therefore, our algorithm runs much faster
when answering lower bound and upper bound queries, which
is the bottleneck of the ¢3¢ solution.

6 Conclusions

In this paper, we present a novel implementation for the
real-or-bogus classification in GLADE—a parallel multi-
query processing system targeted specifically at analytical
workloads. We show how each stage in the classifier —
candidate identification, pruning, and contextual realbogus —
maps optimally into GLADE tasks by taking advantage of the
unique features of the system—range-based data partitioning,
columnar storage, multi-query execution, and in-database
support for complex aggregate computation. The result is
an efficient classifier implementation capable to process a

new set of acquired images in a matter of minutes even on
a low-end server. For comparison, the existing optimized
PostgreSQL implementation of the classifier is a factor of
3.88 slower. Due to this reduction in the time to investigate
a set of new candidates, considerably more candidates can
be thoroughly evaluated, thus increasing the likelihood to
find many transients that are otherwise missed by the current
solution.

In addition, we introduce a novel parallel similarity
join algorithm for advanced transient classification. This
algorithm operates offline and considers the entire candidate
dataset consisting of all the objects extracted over the lifetime
of the Palomar Transient Factory survey. We implement the
similarity join algorithm in GLADE and execute it on a
massive supercomputer with more than 3000 threads. We
achieve more than 3 orders of magnitude improvement over
the optimized PostgreSQL solution.

Our evaluation over two very different computational
architectures — a multi-core server and a distributed cluster
— confirm that GLADE is capable of optimally exploiting
the available resources and maximizing performance for
the PTF workload. In the future, we plan to apply
GLADE to other scientific applications that require diverse
computational resources, such as financial services [Duran et
al. (2014)], weather modeling [Almeida et al. (2016)], and
earth modeling [Wang et al. (2016)].
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