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1 Introduction

In a Banach space X = L∞(D), D ⊂ R
3 is a bounded domain, consider an

equation

Au := (I + T )u = f, Tu =
∫

D

T (x, y)u(y)dy, (1)
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where I is the identity operator and T is a linear compact operator. We assume
that N (A) := {u : Au = 0} = {0}. Then A is a bijection of X onto X and A−1 is
bounded.

Equation (1) with f = u0 := eikα·x, where α is a given unit vector, the direction
of the incident plane wave, and Tu :=

∫
R3

eik|x−y|
4π|x−y|q(y)u(y)dy, is the well-known

Lippmann-Schwinger equation for the scattering solution u. The motivation for
this paper came mainly from the author’s work (Ramm, 2007d, 2008) on wave
scattering by many small bodies. It is proved in Ramm (2007d) that (1) is the
limiting version of the linear algebraic system, derived in Ramm (2007d). The result
of this paper can be considered as a rigorous derivation of the error of the
approximation of the solution to (1) by the solution of the linear algebraic system,
derived in Ramm (2007d). A similar linear algebraic system was used also in Ramm
(2008), and our result is applicable to this system as well.

Let

sup
x∈D

∫
D

|T (x, y)|dy := N < ∞. (2)

Consider a partition of D by small cubes Dj with a side 1
n ,

D ⊂ ∪jn

j=1Dj , diamDj := dn =
√

3
n

,

where jn = O(n3) is the number of the partition cubes.
Denote by xj the centre of Dj , by χj(x) the characteristic function of Dj ,

χj(x) =

{
1 in Dj

0 in D′
j := D/Dj .

By ωu( 1
n ) we denote the continuity modulus of u,

ωu(δ) := sup
|x−y|≤δ,x,y∈D

|u(x) − u(y)|.

If u ∈ Ca(D) := Lipa(D), 0 < a < 1, then ωu(δ) ≤ cδa. Consider the equation inR
jn :

ui +
jn∑

j=1

Tijuj = fi, 1 ≤ i ≤ jn. (3)

Here

ui := u(xi), Tij :=
∫

Dj

T (xi, y)dy, fi := f(xi). (4)

Equation (3) is in one-to-one correspondence with the following equation in X:

ui(x) +
jn∑

j=1

χi(x)
∫

Dj

T (xi, y)uj(y)dy = fi(x), 1 ≤ i ≤ jn, (5)

where

ui(x) = uiχi(x). (6)
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Define

u(n)(x) :=
jn∑

i=1

uiχi(x). (7)

Equation (5) is equivalent to the following one:

(I + Tn)u(n) := u(n)(x) +
∫

D

T (n)(x, y)u(n)(y)dy = f (n)(x), (8)

where

T (n)(x, y) :=
jn∑

i=1

χi(x)T (xi, y). (9)

Lemma 1: Equation (8) in X is equivalent to equation (3) in R
jn in the following

sense: If {ui}jn

i=1 solves (3), then function (7) solves (8), and, conversely, if
function (7) solves (8), then {ui}jn

i=1 solves (3).

Proof: Let {ui}jn

i=1 solves (3). Multiply (3) by χi(x) and sum up over i from 1 to
jn to get (8) with T (n) defined in (9).

Conversely, if u(n), defined in (7), solves (8), then, setting in (7) x = xi one gets
the numbers ui, because χj(xi) = δij =

{ 0 if i �=j
1 if i=j . Setting in (8) x = xi, one gets (3)

with Tij defined in (4). Lemma 1 is proved. �

Let us make the following assumption:

Assumption A: The operator I + T is injective, T is compact in X, and

max
x∈D

∫
D

|∇xT (x, y)|dy := c0 < ∞.

Our main result is the following.

Theorem 2: If Assumption A holds, then for all sufficiently large n, say n > n0,
system (3) has a unique solution and

‖u(n)(x) − u(x)‖ ≤ cωu

(
1
n

)
−→ 0, as n → ∞, (10)

where u(n) is defined in (7).

In Section 2, Theorem 2 is proved. Collocation method, proposed in this paper
for solving equation (1), does not depend on the choice of the partition of D or
the choice of the collocation nodes xi ∈ Di. Different versions of the collocation
method were discussed in the literature. Originally a version of this method was
proposed by L.V. Kantorovich in 1934 Kantorovich (1934), its generalisation
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can be found in Kantorovich and Akilov (1980) and its version is discussed in
Krasnoselskii et al. (1972). The version, presented in our paper, is closely related to
the results in the author’s earlier papers Ramm (2007d, 2008).

Remark 1: Our results and the method remain valid if the operator I + T in (1) is
replaced by B + T , where B is an isomorphism of X onto X .

Remark 2: The collocation method (3) can be used for solving integral equation
of the first kind. The author hopes to give more in a separate paper. The idea
is to use the Dynamical Systems Method (DSM) developed in Ramm (2004,
2005a, 2005b, 2005c, 2006a, 2006b, 2007a, 2007b, 2007c) for solving ill-posed
problems, and applied specifically to solving ill-conditioned linear algebraic systems
in Hoang and Ramm (2008a, 2008b, 2009, 2010) and Ramm (2009). At the
end of Section 2 an example of an integral equation for the scattering solution
(the Lippmann-Schwinger equation) is discussed. It is checked that the collocation
method of Section 1 is applicable to this equation.

2 Proof of Theorem 1

The idea of the proof is simple: first we check that

lim
n→∞ ‖Tn − T‖ = 0. (11)

This and assumption A) imply that the operator I + Tn is boundedly invertible for
all sufficiently large n, say n > n0, that is, I + Tn is a continuous bijection of X
onto X . Thus, N (I + Tn) = {0}. By Lemma 1 equation (8) is equivalent to (3).
Therefore, the homogeneous equation (3) has only the trivial solution for n > n0,
so, by the Fredholm alternative, equation (3) is solvable for n > n0. Its solution
generates the function u(n)(x) by formula (7).

To prove (10), one uses the following estimates

‖u(n) − u‖ = ‖(I + Tn)−1fn − (I + T )−1f‖
≤ ‖(I + T )−1‖‖fn − f‖ + ‖(I + Tn)−1 − (I + T )−1‖‖fn‖
≤ c

(‖fn − f‖ + ‖(I + Tn)−1 − (I + T )−1‖)
. (12)

If f ∈ Ca(D), 0 < a ≤ 1, then

‖f − fn‖ ≤ ωf

(
1
na

)
. (13)

In applications, for instance, in the example below, one often may assume that
a = 1. In this case

‖f − fn‖ ≤ c

n
as n → ∞.

In general, one has ωu(δ) ≤ cωf (δ), if the operator (I + T )−1 is bounded and the
kernel of T is sufficiently smooth, for example, satisfies Assumption A.
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Let us assume that

max
x∈D

∫
D

|∇xT (x, y)|dy := c0 < ∞. (14)

Then one has

‖T − Tn‖ = sup
x∈D

∫
D

|T (n)(x, y) − T (x, y)|dy ≤ max
i,x∈Di

∫
D

|T (n)(x, y) − T (x, y)|dy

≤ dn max
x∈D

∫
D

|∇xT (x, y)|dy ≤ c0dn ≤ c

n
. (15)

One may replace (14) by a less restrictive assumption

lim
n→∞ sup

x

∫
D

|T (n)(x, y) − T (x, y)|dy = 0. (16)

From (15) one concludes that (11) holds if (14) is assumed, and the rate of
convergence is specified in (15) by the factor dn =

√
3

n . If instead of (14) less is
assumed, namely,

lim
x→ξ

∫
D

|T (x, y) − T (ξ, y)|dy = 0, (17)

then (11) holds, but the rate of convergence is not specified. Theorem 2 is proved.
�

Remark 3: The usual collocation method can be described as follows. Let Xn ⊂ X
be a sequence of linear subspaces, dimXn = n, Xn ⊂ Xn+1, which is limit-dense in
X , i.e., for any u ∈ X one has limn→∞ dist(u,Xn) = 0. Let {wi(x)}n

i=1 be a basis
of Xn, and the points xj ∈ D, 1 ≤ j ≤ n, are chosen so that

detwi(xj) �= 0. (18)

Then the linear system

n∑
i=1

ciwi(xj) = fj , 1 ≤ j ≤ n,

is uniquely solvable for any fj .
An approximate solution un(x) of equation (1) is sought of the form

un(x) =
n∑

j=1

cjwj(x) (19)

and the constant coefficients cj are to be found from the system

n∑
j=1

cjwj(xi) +
n∑

j=1

cj

∫
D

T (xi, y)wj(y)dy = f(xi), 1 ≤ i ≤ n. (20)
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In this scheme, in contrast with our scheme, the choice of the points xj is subject
to the condition (18). As the basis function wj(x) one often takes polynomials
or trigonometric polynomials. In this case the projection operator Pn in C(D)
on the subspace of polynomials of degree ≤ n has a norm which tends to
infinity as n → ∞. In our version of the collocation method wj(x) = χj(x) and
χj(xi) = δij , so condition (18) holds for any choice of xi ∈ Di. Moreover Pn, the
projection operator onto Xn = span{χ1(x), . . . , χn(x)} is uniformly bounded by
the Banach-Steinhaus Theorem since Pn → I , where → denotes strong convergence.

In place of {χj(x)}jn

j=1 one may use linear or higher order splines in Dj . In this
case additional difficulties arise, namely, computing multidimensional splines in
the cubic subdomains, and the choice of the collocation points. The higher order
splines give a better approximation of smooth functions, but one may not have
a smooth solution to an integral equation, and the gain in the accuracy of the
approximation may be not compensating the complications due to the construction
of multidimensional splines corresponding to the chosen partition of D.

Remark 4: If the kernel T (x, y) is unbounded at some set, for example, on the
diagonal x = y, but supx∈D

∫
D

|T (x, y)|dy < ∞, then our method is still valid.

Remark 5: General necessary and sufficient conditions for convergence of
projection methods (see, e.g., Krasnoselskii et al., 1972; Ramm, 1986, p.152) can be
applied for a study of the convergence of collocation methods.

Example: Consider the integral equation for the scattering solution:

u(x) +
∫

D

g(x, y)q(y)u(y)dy = f(x), (21)

where D ⊂ R
3 is a bounded domain,

g(x, y) :=
eik|x−y|

4π|x − y| , k = const > 0, f(x) = eikα·x, (22)

α ∈ S2 is a given unit vector and q(x) ∈ L∞(D) is a real-valued given function.
It is proved in Ramm (2007d) that if q(x) ∈ L2(D), Imq ≤ 0, then equation (21)
has a unique solution in H2(D), where H2(D) is the usual Sobolev space. Since f
is differentiable (in fact f ∈ C∞(D)), one has ωf ( 1

n ) = O( 1
n ). In our example

T (x, y) := g(x, y)q(y), and one has:

∫
D

|∇xg(x, y)||q(y)|dy ≤ c. (23)

Thus, assumption (14) holds, Theorem 2 is applicable, and equation (21) can be
solved by the convergent collocation method (3). If D ⊂ R

3 and u ∈ H2(D), then
the Sobolev embedding theorem implies that u ∈ Ca(D), 0 < a < 1

2 . Thus, in this
case, one has ωu( 1

n ) = O( 1
na ).
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