On ve-degree molecular topological properties of silicate and oxygen networks
by Süleyman Ediz
International Journal of Computing Science and Mathematics (IJCSM), Vol. 9, No. 1, 2018

Abstract: Silicate based inorganic materials are important for the synthesis of a new inorganic molecules in which the studies for ultrahigh proton conductivity and catalysis. Quantitative structure-property and structure-activity relationships of the silicate oxygen networks necessitate expressions for the molecular topological features of these networks. In QSPR/QSAR studies, physicochemical characteristics and molecular topological indices such as atom-bond connectivity (ABC), geometric-arithmetic (GA), harmonic (H) and sum-connectivity (χ) indices are used to model the physicochemical properties of chemical compounds and networks. These topological indices are based on the degrees of the vertices (atoms) of a connected graph. Recently, two novel degree concepts have been defined in graph theory; ev-degrees and ve-degrees. In this study by using the ve-degree concept, we define ve-degree atom-bond connectivity (ve-ABC), ve-degree geometric-arithmetic (ve-GA), ve-degree harmonic (ve-H) and ve-degree sum-connectivity (ve-χ) indices as parallel to their corresponding classical degree versions. We show that the ve-degree sum-connectivity index give better correlation than Wiener, Zagreb and Randić indices to predict the acentric factor of octanes. Also, we compute the ve-degree topological indices for some silicate oxygen netwoks such as dominating oxide network (DOX), regular triangulene oxide network (RTOX), dominating silicate network (DSL) and derive analytical closed formulae of these networks.

Online publication date: Tue, 27-Mar-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com