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Abstract 

In order to improve the already existing models that are used extensively in bio sciences and applied sciences research, a 

new class of Weighted Power function distribution (WPFD) has been proposed with its various properties and different 

modifications to be more applicable in real life. We have provided the mathematical derivations for the new distribution 

including moments, incomplete moments, conditional moments, inverse moments, mean residual function, vitality 

function, order statistics, mills ratio, information function, Shannon entropy, Bonferroni and Lorenz curves and quantile 

function. We have also characterized the WPFD, based on doubly truncated mean. The aim of the study is to increase the 

application of the Power function distribution. The main feature of the proposed distribution is that there is no induction of 

parameters as compare to the other generalization of the distributions, which are complexed having many parameters. We 

have used R programming to estimate the parameters of the new class of WPFD using Maximum Likelihood Method 

(MLM), Percentile Estimators (P.E) and their modified estimators. After analyzing the data, we conclude that the proposed 

model WPFD performs better in the data sets while compared to different competitor models.  
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1. Introduction 

Weighted distributions have been extensively applied in the field of sampling which deals with unequal weighting of the 

units for example actuarial sciences, biomedicine, ecology and survival data analysis. Fisher (1934) has used firstly 

weighted distributions in order to estimate the frequencies by using methods of ascertainment. 

 

Let we have a random variable x with the following probability density function,  

𝑓(𝑥; 𝛼, 𝛽) =
𝑤(𝑥;𝛽)𝑓(𝑥;𝛼)

𝐸[𝑤(𝑥;𝛽)]
                         (1.1) 

We take  𝑤(𝑥; 𝛽) as the non-negative weight function.  

Patil and Ord (1976) utilized the concept of weighted distribution and presented the idea of 𝛽𝑡ℎ order size biased 

distribution utilizing the weight function as 𝑤(𝑥) = 𝑥𝛽, and that was called moment distribution. It is is called as size 

biased when 𝛽=1, whereas it is called the area biased distribution for 𝛽 =2. Afterwards many statisticians worked on 

weighted distribution such as Patil and Rao (1978), Arnold and Nagaraja (1991), Gove (2003), Mir and Ahmed (2009), Das 

and Roy (2011) applied this concept on different probability distributions. Ramos and Louszada (2016) discussed 

generalized weighted Lindley distributions with its different properties. Dar et al. (2017) introduced transmuted weighted 
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exponential distribution and discussed its application. Balakrishnan et al. (2017) introduced the weighted Poisson 

distribution and its application to cure rate models. Different works on the weighted distributions and its parameters 

estimations are discussed in (Para and Jan (2018), Perveen and Ahmad (2018), Acitas (2019))  

Dallas (1976) introduced the power function as the inverse of Pareto distribution. Meniconi and Barry (1996) showed that 

Power function distribution (PFD) is better to fit for failure data over exponential, lognormal and Weibull because it 

provides a better fit. Zaka and Akhter (2013) worked on parameters estimation for Power function distribution. Afterwards 

Zaka and Akhter (2014) provided the different modifications and Bayes inference of the parameters from power function 

distribution. Zaka et al. (2020) proposed the exponentiated class of Power function distribution. 

In this research paper, the effort is to introduce a new model called the Weighted Power function distribution (WPFD) 

which may be more suitable to the applied bio sciences and applied sciences data. We have studied the various properties 

of the under discussion distribution as moments, inverse moments, conditional moments, moments generating function, 

quantile function, mean residual function, vitality function, information function, mills ratio, bonferroni curve, lorenz 

curve, some entropies and order statistics. We have also produced some modifications of the WPFD. We have 

demonstrated the performance of the new models over already existing distributions by using a real life example from 

medical and applied sciences. The main feature of the proposed distributions is that there is no induction of parameters as 

compare to the other generalization of the distributions, which are complexed having many parameters. 

 

2. Weighted Power Function Distribution (WPFD) 

Power function distribution (PFD) may model life time data as a good fit. The pdf (probability distribution function) may 

be written as: 

                                  𝑓(𝑥) =
𝛾𝑥𝛾−1

𝛽𝛾  ;          0 < 𝑥 < 𝛽                    (2.1) 

 and                                                         𝐹(𝑥) = (
𝑥

𝛽
)

𝛾

 ; where β  and γ are the scale and shape parameters. 

We may consider the following weight function as: 

                                 w(x; α) =F (αx)         (2.2) 

Hence using (2.1) and (2.2) in (1.1), the pdf of the Weighted Power function distribution (WPFD) is    

                   𝑔(𝑥) =
2𝛾 𝑥2𝛾−1

𝛽2𝛾  ;          0 < 𝑥 < 𝛽                             (2.3) 

The cumulative distribution function (cdf), survival, and hazard functions of WPFD are 

                                             𝐺(𝑥) = (
𝑥

𝛽
)

2𝛾

                                                                                              (2.4)                                                     

    𝑠(𝑥) = 1 − (
𝑥

𝛽
)

2𝛾

        (2.5) 

                               h(x) =
(2γ)(X)2γ−1

(β)2γ−(x)2γ                                                (2.6) 

3. Asymptotic Behavior 

We may see the asymptotic behavior of the pdf, cdf, hazard and survival functions of WPFD as x → 0 and x → ∞. 

i. 𝑙𝑖𝑚𝑥 → 0 𝑔(𝑥) = 0 ; 𝑖𝑓 𝛾 = 0 𝑎𝑛𝑑 𝛽 > 0. 

ii. 𝑙𝑖𝑚𝑥 → ∞ 𝑔(𝑥) = ∞ ; ∀ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  𝛾 𝑎𝑛𝑑 𝛽. 

iii. 𝑙𝑖𝑚𝑥 → 0 𝐺(𝑥) = 0 ; ∀ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  𝛾 𝑎𝑛𝑑 𝛽. 

iv. 𝑙𝑖𝑚𝑥 → 0 𝐺(𝑥) = 1 ; 𝑖𝑓  𝛾 = 0 𝑎𝑛𝑑 𝛽 > 0. 

v. 𝑙𝑖𝑚𝑥 → 0 𝑆(𝑥) = 0 ; 𝑖𝑓 𝛾 > 0 𝑎𝑛𝑑 𝛽 > 0. 

vi. 𝑙𝑖𝑚𝑥 → 0 𝑆(𝑥) = ∞ ; 𝑖𝑓 𝛾 > 0 𝑎𝑛𝑑 𝛽 = 0. 

vii. 𝑙𝑖𝑚𝑥 → 0 𝑆(𝑥) = 1 ; 𝑖𝑓 𝛾 = 0 𝑎𝑛𝑑 𝛽 ≥ 1. 

viii. 𝑙𝑖𝑚𝑥 → ∞ 𝑆(𝑥) = ∞ ; 𝑖𝑓  𝛾 > 0 𝑎𝑛𝑑 𝛽 ≥ 1. 

ix. 𝑙𝑖𝑚𝑥 → 0 ℎ(𝑥) = 0 ; 𝑖𝑓 𝛾 = 0 𝑎𝑛𝑑 𝛽 > 0.  

x. 𝑙𝑖𝑚𝑥 → ∞ ℎ(𝑥) = 0 ; 𝑖𝑓 𝛽 > 0 𝑎𝑛𝑑 𝛾 ≥ 1. 

3.1. Characteristics of Hazard function using Glaser method 

We may use the conditions defined by Glaser (1980) as 

𝜂(𝑥) = −
𝑔′(𝑥)

𝑔(𝑥)
 

𝜂(𝑥) = −
(2𝛾 − 1)

𝑥
 

𝜂́(𝑥) =
(2𝛾 − 1)

𝑥2
 

If x > 0, then 𝜂́(𝑥) > 0 under the following conditions 

i. If 𝛾 ≥ 1, then 𝜂́(𝑥) > 0. 

ii. If 𝛾 = 0, then 𝜂́(𝑥) = 0. 
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iii. If 𝛾 < 1 𝑜𝑟 𝛾 = 0,  then 𝜂́(𝑥) < 0   

The above conditions shows that the hazard function of WPFD is increasing but if 𝛾 < 1 𝑜𝑟 𝛾 = 0, then it will be 

decreasing function.   

3.2.  Shapes 

Figures.1-3 (See Appendix) shows some plots of the pdf, cdf and hrf for some parameter values of WPFD. WPFD 

have different shapes like increasing, right and left skewed and J shapes.  

 

4. Mathematical Properties of the WPFD 

We may discuss some general properties of WPFD under this current section; 

4.1.  Quantile Function 

 By inverting (2.4), we get the quantile function as: 

 𝑄(𝑢) = 𝛽𝑈(1/2𝛾)            

4.2. Moments and Inverse Moments 

The r
th 

moment and the r
th

 inverse moment of the random variable “X”, say 𝜇𝑟
′  may be expressed as 

            𝜇𝑟
′ =

2𝛾𝛽𝑟

(𝑟+2𝛾)
 and 𝜇(−𝑟)

′ =
2𝛾 𝛽−𝑟

(−𝑟+2𝛾)
                                                                                              

4.3.  Incomplete Moments and Conditional Moments 

The Incomplete and Conditional moments may be expressed as: 

𝜇𝑥|(𝛽,𝛾);𝑟(𝑝) = ∫ 𝑥𝑟𝑝

0

2𝛾 𝑥2𝛾−1

𝛽2𝛾 𝑑𝑥 = (
(2𝛾)

𝛽2𝛾 )
(𝑝)𝑟+2𝛾

𝑟+2𝛾
           

And Conditional moments of “X” 

𝐸(𝑥𝑟| 𝑥 > 𝑡) = (
(2𝛾)

𝐹(𝑡)𝛽2𝛾)
(𝛽)𝑟+2𝛾−(𝑡)𝑟+2𝛾

𝑟+2𝛾
               

4.4.  Moments Generating Function (MGF) 

The MGF of WPFD is expressed as 

𝑀0(𝑡) = 1 + ∑
(𝑡𝛽)𝑟

𝑟!(
𝑟

2𝛾
+1)

∞
𝑟=1                                                                                          

4.5.  Mean Residual function(MRF) and Vitality function(VF) 

The mean residual function is given by the relation: 

𝑒(𝑥) =
∫ 𝑆(𝑡)

∞
𝑥 𝑑𝑡

𝑆(𝑥)
=

(𝛽−𝑥)−
1

𝛽2𝛾(
𝛽2𝛾+1−𝑥2𝛾+1

2𝛾+1
)

1−(
𝑥

𝛽
)

2𝛾                                                  

                and                       𝑉(𝑥) =
∫ 𝑥 𝑓(𝑥)

∞
𝑥 𝑑𝑥

𝑆(𝑥)
=

2𝛾

𝛽2𝛾(
𝛽2𝛾+1−𝑥2𝛾+1

2𝛾+1
)

1−(
𝑥

𝛽
)

2𝛾                                                            

4.6.  Some Entropies and Information function 

The Rený i entropy of a random variable “X” is defined as; 

𝐼𝑅(𝑠) =
1

1−𝑠
𝑙𝑜𝑔 [∫ 𝑓𝑠(𝑥)

∞

0
𝑑𝑥] =

1

1−𝑠
𝑙𝑜𝑔 {(

2𝛾

𝛽2𝛾)
𝑠

(
𝛽𝑠(2𝛾−1)+1

𝑠(2𝛾−1)+1
)}                                

And Shannon entropy of “X” is defined as 

𝐸{− 𝑙𝑜𝑔[𝑓(𝑥)]} = − [𝑙𝑜𝑔
2𝛾

𝛽2𝛾 + (2𝛾 − 1) {𝑙𝑜𝑔𝛽 −
1

2𝛾
}]                                               

Also Information function provides the moments of self-information of the probability density function by taking the 

derivatives at certain at certain place 

𝐸{𝑓(𝑥)}𝑠 = (
2𝛾

𝛽2𝛾)
𝑠

(
𝛽𝑠(2𝛾−1)+1

𝑠(2𝛾−1)+1
)                                                                                

4.7.  Order Statistics 

The pdf of jth order statistics may be written as following, 

𝑓𝑗,𝑛(𝑥) =
𝑛!

(𝑗−1)!(𝑛−𝑖)!
 𝑓(𝑥)𝐹𝑗−1(𝑥){1 − 𝐹(𝑥)}𝑛−𝑗;   𝑗 = 1, … , 𝑛     

Therefore the pdf of lower order statistics 

𝑓1,𝑛(𝑥) = {
𝑛(2𝛾)(𝑋)2𝛾−1

𝛽2𝛾 } (1 −
(𝑥)2𝛾

𝛽2𝛾 )
𝑛−1

                                                                  

And the pdf of highest order statistic 

𝑓𝑛,𝑛(𝑥) = {
𝑛(2𝛾)(𝑋)2𝛾−1

𝛽2𝛾 } (
(𝑥)2𝛾

𝛽2𝛾 )
𝑛−1

                                                                        

 

4.8. The Mills Ratio  

This is defined as the inverse of hazard rate function and mathematically expressed as 

          m(x) =
s(x)

g(x)
=

(β2γ−x2γ)

(2γ)x2γ−1       
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4.9. Bonferroni and Lorenz curves 

𝐿(𝑝) =
1

𝜇
∫ 𝑥 𝑓(𝑥)𝑑𝑥 =

𝑞

0

(2𝛾)(𝑞)2𝛾+1

𝜇 𝛽2𝛾 (2𝛾+1)
                                                              

and                                       𝐵(𝑝) = 𝐿(𝑝)/𝑝 

 

5. Some Modified Weighted Power Function Distribution (MWPFD) 

5.1.  1st 
Modified Weighted Power Function Distribution (MWPFD-1) 

In this modification we replace the weight function in (2.2) by 𝐹 (𝛼𝜃𝑥𝜃) i.e. 

𝑤(𝑥;  𝛼, 𝜃) = 𝐹 (𝛼𝜃𝑥𝜃)    (See Table 1 in Appendix)                                         

5.2. 2nd 
Modified Weighted Power Function Distribution (MWPFD-2) 

In this modification we replace the weight function in (2.2) by 𝐹 (𝛼
1

𝜃𝑥
1

𝜃) i.e. 

𝑤(𝑥;  𝛼, 𝜃) = 𝐹 (𝛼
1

𝜃𝑥
1

𝜃)       (See Table 1 in Appendix)                                   

 

5.3. Characterization based on Conditional moment (Doubly Truncated Mean) 

Let “X” Weighted Power function Variable with Probability density function 

𝑔(𝑥) =
2𝛾 𝑥2𝛾−1

𝛽2𝛾
 ;          0 < 𝑥 < 𝛽 

And let 𝐺̅(𝑥) be the survival function respectively. Then the random variable “X” has Weighted Power function 

distribution if and only if 

𝐸(𝑋|𝑥 < 𝑋 < 𝑦) =
2𝛾

𝛽2𝛾{𝐺(𝑦) − 𝐺(𝑥)}
[
𝑦2𝛾+1 − 𝑥2𝛾+1

2𝛾 + 1
] 

where 𝐸(𝑋|𝑥 ≤ 𝑋 ≤ 𝑦): Doubly Truncated Mean . 

Proof: 

Necessary part: 

𝐸(𝑋|𝑥 ≤ 𝑋 ≤ 𝑦) =
1

𝐺(𝑦) − 𝐺(𝑥)
∫ 𝑥

2𝛾 𝑥2𝛾−1

𝛽2𝛾

𝑦

𝑥

𝑑𝑥 

𝐸(𝑋|𝑥 < 𝑋 < 𝑦) =
2𝛾

𝛽2𝛾−1{𝐺(𝑦) − 𝐺(𝑥)}
[
𝑦2𝛾+1 − 𝑥2𝛾+1

2𝛾 + 1
]                         (5.1) 

Now Sufficient Part: 

𝐸(𝑋|𝑥 ≤ 𝑋 ≤ 𝑦) =
1

{𝐺(𝑦) − 𝐺(𝑥)}
∫ 𝑥 

𝑦

𝑥

𝑔(𝑥)𝑑𝑥               

𝐸(𝑋|𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑦𝐺(𝑦) − 𝑥𝐺(𝑥) − ∫ 𝐺(𝑋)

𝑦

𝑥
𝑑𝑥

𝐺(𝑦) − 𝐺(𝑥)
                                  (5.2) 

Equate (5.1) and (5.2), we get 

𝑦𝐺(𝑦) − 𝑥𝐺(𝑥) − ∫ 𝐺(𝑥)
𝑦

𝑥
𝑑𝑥

𝐺(𝑦) − 𝐺(𝑥)
=

2𝛾

𝛽2𝛾{𝐺(𝑦) − 𝐺(𝑥)}
[
𝑦2𝛾+1 − 𝑥2𝛾+1

2𝛾 + 1
] 

After differentiating the above equation, we get 

𝑔(𝑦) =
2𝛾𝑦2𝛾−1

𝛽2𝛾
 

This is the pdf of WPFD. 

 

6. Comparison between Maximum Likelihood and Percentile Estimation Methods of the Parameters of WPFD 

6.1.  Maximum Likelihood Method (MLM) 

Let x1, x2 ,..., xn be a random sample of size n from the WPFD. The log-likelihood function for the WPFD is given by 
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𝐿(𝛾, 𝛽) = 𝑛𝑙𝑛(2𝛾) + (2𝛾 − 1) ∑ 𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

− 2𝑛𝛾 𝑙𝑛(𝛽) 

The score vector is 

𝑈𝛽(𝛾, 𝛽) =
𝑛𝛾

𝛽
                                                   (6.1) 

𝑈𝛾(𝛾, 𝛽) =
𝑛

𝛾
+  2 ∑ 𝑙𝑛 𝑥𝑖

𝑛
𝑖=1 − 2𝑛 𝑙𝑛(𝛽)           (6.2) 

The parameters of Weighted Power Function distribution can be obtained by solving the above equations resulting from 

setting the two partial derivatives of L(𝛾, 𝛽) to zero; 

β does not exist, but the likelihood function can be maximize by taking  

     𝛽̂ =  𝑥𝑛   ;     Where “xn” is the maximum value in the data.                 (6.3) 

𝛾 =  (
𝑛

2(𝑛 𝑙𝑛(𝛽) − ∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1 )

) 

6.2. Modified Maximum Likelihood Method (MMLM) 

In this modification of the MLM, the (6.2) equation is replaced by the co-efficient of variation of WPFD.  

𝑐. 𝑣 =
1

√4𝛾(𝛾 + 2)
 

By solving the above expression, we get  

𝛾 =
−1 + √1 +

𝑥̅2

𝑆2

2
 

𝛽̂ =  𝑥𝑛 ;    Where “xn” is the maximum value in the data                                                                

6.3. Estimation of Weighted Power Function Distribution Parameters from “common percentiles” (P.E) 

Dubey (1967) proposed a percentile estimator of the shape parameter, based on any two sample percentiles. Marks (2005) 

also discussed it, in which he estimated the parameters of Weibull distribution with the help of percentiles. Let 

𝑥1 , 𝑥2, 𝑥3, … , 𝑥𝑛 be a random sample of size n drawn from Probability density function of Weighted Power function 

distribution. The cumulative distribution function of a Weighted Power function distribution with shape and scale 

parameters 𝛽 and 𝛾 , respectively  

       𝑥 =  𝛽(𝑅)
1

2𝛾⁄  ;   𝑅 =  𝐺(𝑥)                    (6.4) 

Let P75 and P25 are the 75
th

 and 25
th

 Percentiles, therefore (6.4) becomes  

𝑃75 =  𝛽(. 75)
1

2𝛾⁄                 (6.5) 

𝑃25 =  𝛽(. 25)
1

2𝛾⁄                 (6.6)  

    Solving the above equations, we get 

                       𝛾 =  
𝑙𝑛 (

.75

.25
)

2 ∗ 𝑙𝑛 (
𝑃75

𝑃25
)

      and             𝛽̂ =  
𝑃75

(. 75)
1

2𝛾̂⁄
 

generally           𝛾 =  
𝑙𝑛 (

𝐻

𝐿
)

2 ∗ 𝑙𝑛 (
𝑃𝐻

𝑃𝐿
)

    and            𝛽̂ =  
𝑃𝐻

(𝐻)
1

2𝛾̂⁄
 

Where H= Maximum Percentage, L= Minimum Percentage and P = Percentile 

6.4. Modified Percentile Estimator (M.P.E) 

In this modification of the percentile estimators, (6.6) is replaced by the Median of Weighted Power function distribution. 

𝑥̃ =
𝛽

2
1

2∗𝛾⁄
  ⇒     𝛽̂ = 𝑥̃2

1
2𝛾⁄             

               From (6.5)                      𝛽̂ =  
𝑃75

(.75)
1

2𝛾⁄
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       therefore                         𝑥̃2
1

2𝛾 ⁄ =  
𝑃75

(.75)
1

2𝛾⁄
⇒ 𝛾 =

𝑙𝑛 (2∗.75)

2∗𝑙𝑛 (
𝑃75

𝑥̃
)
 

𝛾 =
𝑙𝑛 (2 ∗ 𝐻)

2 ∗ 𝑙𝑛 (
𝑃𝐻

𝑥
)

 𝑎𝑛𝑑 𝛽̂ =  
𝑃𝐻

(𝐻)
1

2𝛾⁄
 

               Where H= Maximum Percentage and P = Percentile. 

A simulation study is used in order to compare the performance of the proposed estimation methods. We carry out this 

comparison taking the samples of sizes as n = 40 and 100 with pairs of (β, γ) = {(1, 2), (3, 2) and (4, 3)}. We generated 

random samples of different sizes by observing that if Ri is random number taking (0, 1), then xi =  βRi

1
2γ⁄

  is the random 

number generation from Weighted Power function distribution with (γ, β) parameters. All results are based on 5000 

replications. Such generated data have been used to obtain estimates of the unknown parameters. The results obtained from 

parameters estimation of the 2-parameters of Weighted Power function distribution using different sample sizes and 

different values of parameters with mean square error M.S.E. 

𝑀. 𝑆. 𝐸 (𝛽̂) =  𝐸 [(𝛽̂ –  𝛽)
2

] , 𝑀. 𝑆. 𝐸 (𝛾) =  𝐸[(𝛾–  𝛾)2]  

If we study the two results of the Table 2 and Table 3 from Appendix, in which sample sizes are (40 and 100) and the 

combinations of the values of (𝛽, 𝛾) = {(1, 2), (3, 2) and (4, 3)}. Then we get the results that MLM is the best for the 

estimation of 𝛽 and 𝛾. After MLM, the MMLM and Percentile method are best for the estimation of scale and shape 

parameters of the Weighted Power function distribution.  

7. Application 

In this section, we illustrate the usefulness of the WPFD and its modifications. We fit these distributions on real life 

data and compare the result with the existing distributions. 

 

7.1.  The Data about group of patients given Chemotherapy treatment 

The first data set is reported by Bekker et al. (2000), which corresponds to the survival times (in years) of a group of 

patients given chemotherapy treatment alone. The data consisting of survival times (in years) for 46 patients are:  

0.047,0.115, 0.121,0.132,0.164,0.197,0.203,0.260,0.282,0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 

0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326,  1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 

2.416, 2.444,  2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. We have estimated the parameters of the model 

by the method of MLE. We have used five other criteria’s to compare the performance of the proposed distributions 

with already existing distributions. We have used Akaike information criterion (AIC), consistent Akaike information 

criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC) for this 

comparison.  

We have compared our proposed distribution with the kumarswamy Marshal-Olkin family of distribution (Kw-MO) 

proposed by Alizadeh et al. (2015), Kumaraswamy Power function distribution (KPFD) by Ibrahim (2017), 
McDonald`s Power function distribution (McPFD) by Haq et al. (2018) and Power function distribution (PFD) for the 

same data set. The TTT-plot is displayed in Figure 4 (See Appendix), which indicates that the HRF associated with the 

data set has a bathtub shape, since the plot shows a first concave curvature. So, we can easily fit WPFD on the 

Chemotherapy treatment data. In Table 4 (See Appendix), we may see that WPFD provides better fit for the above 

data set as it provides minimum AIC, BIC, CAIC and HQIC. 

 

7.2. Devices failure times data 

The second data set refers to 30 devices failure times given in Table 15.1 by Meeker and Escobar (1998). The data 

are: 275, 13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212, 300, 300, 300, 2, 261, 293, 88,247, 28, 143, 300, 

23, 300, 80, 245, and 266. The same data has been used by Tahir et al. (2016) for Weibull Power function distribution 

(WP). We have used this data set to show the performance of our proposed Weighted Power function distribution 

(WPFD) over Tahir et al. (2016), Kumaraswamy Power function distribution (KPFD) by Ibrahim (2017), 
McDonald`s Power function distribution (McPFD) by Haq et al. (2018) and Power function distribution (PFD).  

The TTT-plot is displayed in Figure 5 (See Appendix), which indicates that the HRF associated with the data set has 

an increasing shape, since the plot shows a first concave curvature. So, we can easily fit WPFD on the Devices failure 

time’s data. In Table 5 (See Appendix) provide the Statistics for Devices failure times. The proposed model WPFD is 

showing better results by providing the smallest AIC, BIC, CAIC and HQIC for the devices failure time’s data.  

 

8. Concluding Remarks 
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We have seen from Table 4 and 5 that WPFD best describe the discussed data sets as compare to the other models in 

literature. So may be used in order to describe the nature of life time data of medical sciences and applied sciences by 

providing the lowest values of the AIC, BIC, CAIC and HQIC among all fitted probability distribution functions. 

In this paper, we proposed the WPFD and its modifications. We derived some of its properties. The parameters of the 

distribution have been estimated by the Maximum Likelihood Method (MLM), Percentile Estimators (P.E) and their 

modified estimators. We have also characterized the distribution by doubly truncated mean (DTM). Different criteria’s 

has been used as discussed above to prove that the WPFD provides a better fit than existing distributions. It is hoped 

that the findings of this paper will be useful for researchers in different field of applied sciences. 
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Appendix 

 
Figure 1: Plots of pdf of WPFD. 

 

 
Figure 2: Plots of cdf of WPFD. 

 

 
Figure 3: Plots of hrf of WPFD. 
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Figure 4: TTT Plot for Chemotherapy treatment            Figure 5: TTT Plot for Devices failure times 

 

 

Table 1: The pdf and properties of the MWPFD-1 and MWPFD-2 

SR Properties MWPFD-1 MWPFD-2 

1 Complete 

pdf 
(𝛾𝜃 + 𝛾)(𝑥)𝛾𝜃+𝛾−1

𝛽𝛾𝜃+𝛾−1
;  0 < 𝑥 < 𝛽    

𝑤ℎ𝑒𝑟𝑒 𝛽 > 0 𝑎𝑛𝑑 𝜃 ≥ 0  

(
𝛾

𝜃⁄ + 𝛾)(𝑥)
𝛾

𝜃⁄ +𝛾−1

𝛽
𝛾

𝜃⁄ +𝛾
;  0 < 𝑥 < 𝛽 

𝑤ℎ𝑒𝑟𝑒 𝛽 > 0 𝑎𝑛𝑑 𝜃 > 0 
2 Moments (𝛾𝜃 + 𝛾)𝛽𝑟

(𝑟 + (𝛾𝜃 + 𝛾))
 

(
𝛾

𝜃⁄ + 𝛾)𝛽𝑟

(𝑟 + (
𝛾

𝜃⁄ + 𝛾))
 

3 cdf (𝑥)(𝛾𝜃+𝛾)

𝛽(𝛾𝜃+𝛾)
 

(𝑥)(
𝛾

𝜃⁄ +𝛾)

𝛽(
𝛾

𝜃⁄ +𝛾)
 

4 Moments 

Generating 

Function 

1 + ∑
(𝑡𝛽)𝑟

𝑟! (
𝑟

(𝛾𝜃+𝛾)
+ 1)

∞

𝑟=1

 1 + ∑
(𝑡𝛽)𝑟

𝑟! (
𝑟

(
𝛾

𝜃⁄ +𝛾)
+ 1)

∞

𝑟=1

 

5 Survival 

Function 1 −
(𝑥)(𝛾𝜃+𝛾)

𝛽(𝛾𝜃+𝛾)
 1 −

(𝑥)(
𝛾

𝜃⁄ +𝛾)

𝛽(
𝛾

𝜃⁄ +𝛾)
 

6 Hazard 

Function 
(𝛾𝜃 + 𝛾)(𝑋)(𝛾𝜃+𝛾)−1

(𝛽)(𝛾𝜃+𝛾) − (𝑥)(𝛾𝜃+𝛾)
 (

𝛾
𝜃⁄ + 𝛾)(𝑋)

(
𝛾

𝛽⁄ +𝛾)−1

(𝛽)(
𝛾

𝜃⁄ +𝛾) − (𝑥)(
𝛾

𝜃⁄ +𝛾)
 

7 Random 

Number 

Generator 

𝛽(𝑅)
1

(𝛾𝜃+𝛾) 𝛽(𝑅)

1

(
𝛾

𝜃⁄ +𝛾) 

8 Inverse 

Moments 

(𝛾𝜃 + 𝛾) 𝛽−𝑟

(−𝑟 + (𝛾𝜃 + 𝛾))
 

(
𝛾

𝜃⁄ + 𝛾) 𝛽−𝑟

(−𝑟 + (
𝛾

𝜃⁄ + 𝛾))
 

 

Table 2: Estimates for the parameters of Weighted Power function distribution with different estimation methods 

under the sample size 40 

Methods True Values Estimated Values M.S.E 

 𝛽 𝛾 𝛽̂ 𝛾 𝛽̂ 𝛾 

MLM 1 2 0.9938524 2.104826 0.00007404 0.1308768 

 3 2 2.981884 2.098744 0.0006498764 0.1283807 

 4 3 3.983295 3.154041 0.0005503625 0.2938336 

MMLM 1 2 0.9936337 2.079167 0.00008128 0.1669906 

 3 2 2.981997 2.072701 0.0006456896 0.1585582 

 4 3 3.9833 3.146969 0.0005463373 0.4190948 

P.E 1 2 0.9927462 2.177096 0.0008329366 0.3118459 

 3 2 2.97946 2.181738 0.007721837 0.3214192 

 4 3 3.980408 3.267518 0.006049237 0.6997704 

M.P.E 1 2 0.9942221 2.249254 0.001039149 0.6753827 

 3 2 2.980275 2.273176 0.009635285 0.7130634 
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 4 3 3.982908 3.418103 0.007461182 1.716589 

 

 

Table 3: Estimates for the parameters of Weighted Power function distribution with different estimation methods 

under the sample size 100 

Methods True Values Estimated Values M.S.E 

 𝛽 𝛾 𝛽̂ 𝛾 𝛽̂ 𝛾 

MLM 1 2 0.9974972 2.039611 0.00001267 0.0452979 

 3 2 2.99268 2.041316 0.0001078838 0.04401944 

 4 3 3.993276 3.05943 0.00009112 0.1004658 

MLM-1 1 2 0.9974775 2.03012 0.00001305 0.05853799 

 3 2 2.992459 2.026962 0.000112158 0.05775556 

 4 3 3.993253 3.046534 0.00009274 0.1397898 

P.E 1 2 0.9976476 2.064303 0.0003183863 0.09982225 

 3 2 2.992453 2.064008 0.003019171 0.09917686 

 4 3 3.992342 3.117756 0.002340664 0.2392223 

P.E-1 1 2 0.9975793 2.101732 0.0004208572 0.1971112 

 3 2 2.992632 2.110028 0.003701643 0.2164466 

 4 3 3.993442 3.144727 0.002941814 0.4740981 

 

Table 4:    Statistics for Chemotherapy Treatment Data 

Distribution AIC CAIC BIC HQIC 

WPFD 107.5513 

 

107.6489 

 

109.3125 

 

108.2008 

PFD 108.7513 

 

108.7482 

 

110.5125 

 

109.3788 

 

MWPFD-1 109.5513 

 

109.8513 

 

113.0737 

 

110.8503 

 

MWPFD-2 109.6419 

 

109.8711 

 

113.0934 

 

110.8704 

 

KPFD 109.8881 

 

109.9035 

 

114.4717 

 

111.1366 

 

McPFD 111.1315 

 

112.1841 

 

118.1763 

 

113.7294 

 

Kw-MOW 119.134 120.672 128.167 122.501 

 

 

Table 5: Statistics for Devices failure times 

Distribution AIC CAIC BIC HQIC 

WPFD 250.5577 

 

250.7577 

 

251.6487 

 

250.8147 

MWPFD-1 252.5577 253.1893 254.7398 253.0717 

MWPFD-2 252.7557 253.3894 254.9378 253.5713 

KPFD 254.2257 

 

255.559 

 

257.4988 

 

254.9968 

 

McPFD 256.2535 

 

258.6064 

 

260.6177 

 

257.2816 

 

PFD 258.5577 

 

258.7577 

 

261.6487 

 

259.8147 

 

WP 311.1535 312.0766 315.3571 312.4983 
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