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Abstract: We investigate exceedances of the process over a sufficiently high
threshold. The exceedances determine the risk of hazardous events like climate
catastrophes, huge insurance claims, the loss and delay in telecommunication
networks. Due to dependence such exceedances tend to occur in clusters. The
cluster structure of social networks is caused by dependence (social relationships
and interests) between nodes and possibly heavy-tailed distributions of the node
degrees. A minimal time to reach a large node determines the first hitting time.
We derive an asymptotically equivalent distribution and a limit expectation of the
first hitting time to exceed the threshold un as the sample size n tends to infinity.
The results can be extended to the second and, generally, to the kth (k > 2) hitting
times. Applications in large-scale networks such as social, telecommunication
and recommender systems are discussed.
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1 Introduction

Let {Xn}n≥1 be a stationary sequence with marginal distribution functionF (x) andMn =
max{X1, ..., Xn}. We investigate rare events, namely, exceedances of the sequence over a

sufficiently high thresholdu. Due to dependence such exceedances tend to occur in clusters.

Such clusters of rare events and the asymptotic distributions of the cluster and inter-cluster

sizes have been widely studied due to numerous applications, see Ancona-Navarrete and
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Tawn (2000), Beirlant et al. (2004), Ferro and Segers (2003), Markovich (2014), Markovich

(2016a), Robert (2009), Robert (2013), Roberts et al. (2006), Robinson et al. (2000) among

others. There are three approaches in the cluster size study, namely, the blocks method, the

runs method and the inter-exceedance times method. The first two methods define the cluster

as a block of data with at least one exceedance over the threshold or the clusters are blocks

of data with some number of exceedances which are separated by at least a fixed number

of observations running under the threshold, respectively, Smith and Weissman (1994),

Weissman and Novak (1998). Following the inter-exceedance times approach proposed in

Ferro and Segers (2003) we define the cluster as a conglomerate of consecutive exceedances

over the threshold between two consecutive non-exceedances. Our main objective is to

study the distribution of the first hitting time to exceed the threshold u.

Let us consider the inter-cluster size

T1(u) = min{j ≥ 1 : M1,j ≤ u,Xj+1 > u|X1 > u}, (1)

i.e. the number of inter-arrivals of observations running under the threshold between two

consecutive exceedances, where M1,j = max{X2, ..., Xj}, M1,1 = −∞. Let

T ∗(u) = min{j + 1 ≥ 1 :Mj ≤ u,Xj+1 > u}

be the first hitting time corresponding to the threshold u. We get

P{T ∗(u) = j + 1} = P{Mj ≤ u,Xj+1 > u}, (2)

j = 0, 1, 2, ..., M0 = −∞.

Let T ∗
T (u) be the first hitting time in the time interval [0, T ]. Let {Yn}n≥1 be a stationary

sequence of inter-arrival times between consecutive observations of the {Xn} and Sj =∑j−1
i=1 Yi denotes the time interval between arrivals of X1 and Xj . Then we have

P{T ∗
T (u) = j + 1} = P{Mj ≤ u,Xj+1 > u, Sj+1 ≤ T }. (3)

Similarly, we determine the probability of the k consecutive hitting times T ∗∗(u) by

P{T ∗∗(u) = k} = P{Mi1 ≤ u,Xi1+1 > u,Mi1+1,i2 ≤ u,Xi2+1 > u,

..., Mik−1+1,ik ≤ u,Xik+1 > u},

ij = 0, 1, 2, ...; j = 1, 2, ..., k.

The necessity to evaluate the distribution, quantiles and the mean of the first hitting

time is arising in many applications. In social networks it is important to compare

sampling strategies (Avrachenkov et al. (2012, 2015); Lee et al. (2012)) like random walks,

Metropolis-Hastings Markov chains, Page Ranks and others with regard to how quickly

they allow to reach a node with a large degree, that is the number of links with other nodes.

In Markovich (2015) it is proposed to compare sampling techniques by the mean first hitting

time that is illustrated on the real data of social networks. It is important to investigate the

first hitting time of significant nodes since it allows us to disseminate advertisements or to

collect opinions more effectively within clusters surrounding such nodes. It can be helpful

also for recommender systems with collaborative filtering, in which the system recommends

to a user some item or product that has been rated by previous users, Linyuan Lü et al.
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(2012). A similar problem occurs in telecommunication peer-to-peer networks, namely to

find a node with a large number of peers, Dán, G. and Fodor (2009); Markovich (2013).

Our concept is also relevant in other areas of operations research and inventory control.

For instance, the first hitting time can be important to analyze the customer churn that has

a huge impact on companies, Mahajan et al. (2016). Considering the customer impatience

in multi-server queues Choudhury and Medhi (2011) and the customer waiting time in the

queue Zhao and Gilbert (2015), the first hitting time indicates the moment when the waiting

time exceeds a threshold and hence, the customer may leave the queue. Following Lättilä

and Hilmola (2012) the forecasting of exceedances of industrial production can be a driving

factor for the development of sea ports. The kth hitting time is important in Internet to find

the k-top web sites that are significant with regard to some topic.

The measure of the dependence between the rare events is expressed by the extremal index.

The notion of the extremal index is determined in Leadbetter et al. (1983), p.53.

Definition 1: The stationary sequence {Xn}n≥1 is said to have extremal index θ ∈ [0, 1]
if for each 0 < τ <∞ there is a sequence of real numbers un = un(τ) such that

lim
n→∞

n(1− F (un)) = τ and (4)

lim
n→∞

P{Mn ≤ un} = e−τθ (5)

hold.

The extremal index θ of {Xn} relates to the first hitting time T ∗(un), Roberts et al. (2006).

Really, since un is selected according to (4) it follows that P{Xn > un} is asymptotically

equivalent to 1/n. Notice, thatP{Mk ≤ un} = P{T ∗(un) > k}. Hence, substituting τ by

(4) we get from (5)

P{T ∗(un)/n > k/n} ∼ e−θkP{Xn>un} ∼ e−θk/n,

lim
n→∞

P (T ∗(un)/n > x) = e−θx

for positive x. It follows

lim
n→∞

E(T ∗(un)/n) = 1/θ. (6)

This implies, the smaller θ, the longer it takes to reach an observation with a large value. The

result is then interesting for processes which have θ = 0, e.g., for the Metropolis Markov

chain Roberts et al. (2006) and the Lindley process with subexponential step distribution

Asmussen (2000). A mixture of i.i.d. non-ergodic sequences with θ = 0 is given in Theorem

4 by Doukhan et al. (2015).

Using achievements regarding the limit geometric-like distribution of T1(xρn
) derived in

(Theorem 2, Markovich (2014), Markovich (2016a)), where the (1− ρn)th quantile xρn
of

{Xn} is taken as un, we derive in Section 2 a limit distribution of the first hitting time and

its expectation that specifies (6). The achievements are similarly extended to the second

hitting time, Section 3.
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Theorem 1 (that is Theorem 2 in Markovich (2014)) is based on the mixing condition

proposed in Ferro and Segers (2003)

αn,q(u) = max
1≤k≤n−q

sup |P (B|A)− P (B)| = o(1), n→ ∞, (7)

where for real u and integers 1 ≤ k ≤ l, Fk,l(u) is the σ-field generated by the events

{Xi > u}, k ≤ i ≤ l and the supremum is taken over all A ∈ F1,k(u) with P (A) > 0 and

B ∈ Fk+q,n(u) and k, q are positive integers.

To formulate the theorem we need the following partition of the interval [1, j]

1 = k∗n,0 ≤ k∗n,1 ≤ k∗n,2 ≤ k∗n,3 ≤ k∗n,4 ≤ k∗n,5 = j, j → ∞, (8)

where positive integers {k∗n,i} are such that

{k∗n,i−1 = o(k∗n,i), i ∈ {1, 2, ..., 5}}. (9)

Roughly speaking, the partition is required to split the conditional probability of the

maximum M1,j in P{T1(u) = j} = P{M1,j ≤ u,Xj+1 > u|X1 > u} into the product

of independent probabilities of partial maxima M1,k∗

n,1
, Mk∗

n,2
,k∗

n,3
and Mk∗

n,4
,j . The

independence follows from mixing conditions (10), (11). The statement (12) is obtained

from Theorem 2.1 and Corollary 2.3 of O’Brien (1987).

Theorem 1: Let {Xn}n≥1 be a stationary process with the extremal index θ. Let {xρn
}

be a sequence of quantiles of X1 of the levels {1− ρn}, that satisfies the conditions (4)
and (5) if un is replaced by xρn

. Let positive integers {k∗n,i}, i = 0, 5, be as in (8) and (9),
respectively, ∆n,i = k∗n,i − k∗n,i−1, q∗n,i = o(∆n,i), i ∈ {1, 2, ..., 5}, be such that for each
ε > 0 there exist nε and j0 = j0(nε) such that for all n > nε and j > j0(nε)

α∗
n(xρn

) = max{αk∗

n,4,q
∗

n,1
;αk∗

n,3,q
∗

n,2
;α∆n,3,q∗n,3

;αj+1−k∗

n,2,q
∗

n,4
;

αj+1−k∗

n,1,q
∗

n,5
} < ε (10)

and

αj+1,k∗

n,4
−k∗

n,1
/ρn < ε (11)

hold, where αn,q = αn,q(xρn
) is determined by (7). Then for the same n and j it holds

|P{T1(xρn
) = j}/(θ2ρn(1− ρn)

(j−1)θ)− 1| < ε. (12)

The theorem implies that the probability P{T1(xρn
) = j} is close to the geometric form

corrupted by extremal index θ for sufficiently large n and j.
The paper is organized as follows. In Section 2 we derive the limit distribution and

expectation of the first hitting time to exceed a sufficiently high threshold. The limit

distribution of the second hitting time is obtained in Section 3. In Section 4 examples

of first hitting time distributions are obtained for different processes including real data.

Conclusions are given in Section 5. Proofs are presented in the Appendix.
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2 Distribution and expectation of the first hitting time

For all n and j sufficiently large one can rewrite (12) in a geometric form as

|
cnP{T1(xρn

) = j}

ηn(1− ηn)j−1
− 1| < ε, (13)

where cn = ηn/
(
θ2

(
1− (1 − ηn)

1/θ
))

, 0 < ηn < 1, using the replacement (1 − ρn)
θ =

1− ηn. We shall use (13) to prove the next theorem.

Theorem 2: Let all conditions of Theorem 1 be satisfied. Then for the same n and j as in
Theorem 1 we get

|
P{T ∗(xρn

) = j}

ψj−1(n)
− 1| < ε, (14)

where

ψj−1(n) =
θ2ρ2n(1− ρn)

θ(j−1)

1− (1− ρn)θ
. (15)

From (4)

ρn ∼ τ/n and (1− ρn)
θ = 1− θρn + o(ρn) (16)

hold as n→ ∞. Expressions (14) and (15) imply that for any positive ε there exists nε

such that for n > nε and j > j0(nε) the probability of the first hitting time has a geometric

distribution with probability θρn, i.e.

|
P{T ∗(xρn

) = j}

θρn(1− θρn)j−1
− 1| < ε.

Together with (12) it implies that for sufficiently large n and j it holds

P{T ∗(xρn
) = j} ≈ θP{T1(xρn

) = j}.

Lemma 3: Let the conditions of Theorem 1 be satisfied and for some β > 0

sup
n
E((T ∗(xρn

))1+β)/Λn <∞ (17)

holds. Then it follows

|ET ∗
j0(xρn

)/(Λnρn)− 1| < ε, (18)

where j0 = o(n), ET ∗
j0
(xρn

) =
∑∞

j=j0+1 jP{T
∗(xρn

) = j},

Λn =
θ2ρn

(1 − (1− ρn)θ)3
(1 − ρn)

θj0
(
j0(1− (1− ρn)

θ) + 1
)
. (19)
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The expression (18) specifies the rate of convergence in (6).

Remark 1: The condition (17) provides a uniform convergence of the series∑∞
j=1 jP{T

∗(xρn
) = j}/Λn by n. The condition is fulfilled particularly for

T ∗(xρn
) corresponding to the ARMAX process, see Section 4.1. From (25)

we have supnE((T ∗(xρn
))1+β)/Λn < supnE((T ∗(xρn

))2)/Λn ∼ supn(2− θρn)(1 −
ρn)

1−θ(j0+1)/(θ(1 + j0θρn)) <∞ for ρn ∼ τ/n.

Let us turn to (3). If {Xi} and {Yi} are mutually independent then

P{T ∗
T (u) = j + 1} = P{Mj ≤ u,Xj+1 > u}P{Sj+1 ≤ T }

= P{T ∗(u) = j + 1}P{

j∑

i=1

Yi ≤ T }

follows. From (14) and (15) we get

|P{T ∗
T (xρn

) = j + 1}/(ψj(n)(1 − P{

j∑

i=1

Yi > T }))− 1| < ε

for any ε > 0 and n > nε and j > j0(nε). Assuming Yi’s are iid regularly varying random

variables with tail index α ≥ 0 we have

P{

j∑

i=1

Yi > T } ∼ jP{Yi > T } ∼ jT−α

for j ≥ 1 as T → ∞, see Lemma 3.1, Jessen and Mikosch (2006). The condition 1−

jT−α > 0 is provided by T > j
1/α
0 since j > j0. Then the lemma follows.

Lemma 4: Let the conditions of Theorem 1 be satisfied. Let {Xi} and {Yi} in (3) be
mutually independent and {Yi}i≥1 be iid regularly varying random variables with tail index

α ≥ 0 and T > j
1/α
0 holds. Then for the same n and j as in Theorem 1 we get

|P{T ∗
T (xρn

) = j + 1}/(ψj(n)(1 − jT−α)− 1| < ε.

3 Distribution of the second hitting time

Let us denote the second hitting time of un as T ∗∗(un). The probability to hit un twice is

determined by

P{T ∗(xρn
) = j, T ∗∗(xρn

) = j +m} (20)

= P{Mj−1 ≤ un, Xj > un,Mj,j+m−1 ≤ un, Xj+m > un}, m = 1, 2, ...

Lemma 5: Let the conditions of Theorem 1 be satisfied. Then for the same n and j as in
Theorem 1 we have

|
P{T ∗(un) = j, T ∗∗(un) = j +m}

P{χ = j}P{χ = m}
− 1| < ε,
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where χ is a geometrically distributed random variable with probability ρnθ.

Similarly the statement can be extended to the probability of the kth hitting time, i.e. the

minimal time to find k large nodes of the network. Random walks used in social networks

as sampling may return to the same nodes with some positive probability. This may reduce

the number of distinct nodes in the sample and particularly ones which degrees exceed the

threshold. The degrees of repeated nodes may not exceed the threshold and hence, do not

impact on the probability to reach k different large nodes. Moreover, the degrees of repeated

nodes may change over time. These problems are out of scope of this paper.

4 Examples

4.1 ARMAX process

Let us obtain the distribution of the first hitting time of the ARMAX process. The latter

process is determined as

Xt = max{αXt−1, (1− α)Zt}, t ∈ Z,

where 0 ≤ α < 1, and {Zt} are iid standard Fréchet distributed r.v.s with the distribution

functionF (x) = exp (−1/x), x > 0. The r.v.Xt has the same distribution assumingX0 =
Z0. The extremal index is equal to θ = 1− α, Ancona-Navarrete and Tawn (2000).

Using that

P{Xi ≤ xρ} = 1− ρ = q = e−1/xρ (21)

and

P{αZi ≤ xρ} = e−α/xρ = (1 − ρ)α = qα (22)

we derive in Section 6.4 the following.

Proposition 6: For the ARMAX and MM processes we have

P{T ∗(xρ) = j} = (1− (1− ρ)θ)(1 − ρ)θ(j−2)+1, (23)

ET ∗(xρ) = (1 − ρ)1−θ/(1− (1− ρ)θ) (24)

and

E(T ∗(xρ))
2 = (1− ρ)1−θ(1 + (1 − ρ)θ)/(1− (1− ρ)θ)2. (25)
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4.2 MM process

We obtain the distribution of the first hitting time of the MM process. This process is

determined by the formula

Xt = max
i=0,...,m

{αiZt−i}, t ∈ Z,

where {αi} are nonnegative constants such that
∑m

i=0 αi = 1 and {Zt} are iid standard

Fréchet distributed r.v.s. The distribution of Xt is also standard Fréchet. The extremal

index of the process is determined by θ = maxi{αi}, Ancona-Navarrete and Tawn (2000).

Assuming α0 ≥ α1 ≥ ... ≥ αm we derive in Section 6.5 that the distribution of the first

hitting time is the same as for the ARMAX process.

In Figure 1 the comparison of the exact distribution of T ∗(xρ) for the ARMAX and MM

processes and the model obtained in Theorem 2 is shown. The model (15) is valid for

sufficiently large n and j. This corresponds to ρn close to zero and high quantiles xρn
using

as thresholds un. Thus the model approximates the distribution (23) better for small ρ and

large j.
The comparison of the mean first hitting time (24) and the theoretical model obtained in

Lemma 3 is shown in Figure 2. The difference is observed only for j0 = 0 and when ρ is close

to 1. It should be noted that we consider θ = 0.1 corresponding to a large local dependence

in the extremes of the process {Xn}. θ = 1 corresponds to independent observations.

4.3 AR(1) process

We consider the AR(1) process with uniform noise, Chernick et al. (1991). For a fixed

integer r ≥ 2 let ǫn, n ≥ 1 be iid r.v.s with P{ǫ1 = k/r} = 1/r, k = 0, 1, . . . , r − 1. The

process is defined by

Xj = (1/r)Xj−1 + ǫj, j ≥ 1 and X0 ∼ U(0, 1)

withX0 independent of the ǫj . SinceX0 ∼ U(0, 1) thenX1 ∼ U(0, 1) holds. The extremal

index of AR(1) is θ = 1− 1/r.

Proposition 7: For the AR(1) process we have

P{T ∗(un) = j} =






1− θ, j = 1
(1− θ)j (un − jθ(1− un)) , 2 ≤ j ≤ j0
(1− θ)j0+2 (un − jθ(1− un)) , j0 < j ≤ m− 1,

(26)

where j0 = [lnn/(2 ln r)] and m satisfies the inequality

−
ln(1 − un)

ln(r)
− 1 < m− 1 ≤ −

ln(1− un)

ln(r)
. (27)

Selecting un = 1− x/n, x > 0 we get un − jθ(1 − un) = 1− (x/n)(1 + jθ) that is

positive for sufficiently large n.

The proof is given in Section 6.6.

Remark 2: The mixing conditions (10) and (11) of Theorem 1 are fulfilled for the ARMAX

and the AR(1) processes if j > j0(n) holds, where j0(n) → ∞ as n→ ∞, and for the MM

process if j > m and α0 ≥ α1 ≥ ... ≥ αm hold, Markovich (2016b).
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4.4 Real data

We consider two real data sets of the Enron email and DBPL networks presented in Leskovec

and Krevl (2014) and investigated in Markovich (2015). The sets contain node degrees.

In Markovich (2015) it was found that the both data sets are heavy-tailed distributed and

their extremal index θ was calculated by intervals estimator proposed by Ferro and Segers

(2003). Typically, it may be assumed that the node degrees are regularly varying distributed.

In Figure 3 the model from Lemma 3 of the mean first hitting time against j0 is shown.

The j0 indicates the truncated expectationET ∗
j0(xρ). The theoretical model is valid for any

sampling technique (a random walk, Markov chain) that satisfies the mixing condition (10)-

(11) for j > j0, where j0 = j0(n) is sufficiently large. The latter condition is equivalent to

the j−dependence. The j−dependence may be checked in practice by an autocorrelation

function (ACF) (see, e.g., Markovich and Krieger (2010)). Since both data sets have infinite

variance according to Markovich (2015) it is better to use the special sample ACF for

heavy-tailed data recommended in Davis and Resnick (1985), i.e.

ρ̃(j) =

n−j∑

t+1

XtXt+j/

n∑

t=1

X2
t (28)

at lag j. This ACF is not centralized by the sample average X in contrast to the classical

sample ACF. Moreover, this estimate may behave in a very unpredictable way if one uses

the class of non-linear processes in the sense that ρ̃(j) may converge in distribution to

a non-degenerate random variable depending on j. For linear processes it converges in

distribution to a constant depending on j, Davis and Resnick (1985). From Figure 4 one

may conclude that the DBPL data are short-range dependent since its ACF decreases after

j ≈ 50 as far as the Enron data are not. This may indirectly indicate that the DBPL and

Enron data determine linear and non-linear processes, respectively.

Everything what we need for our model are the extremal index θ and the quantile threshold

1− ρ. We take ρ = 0.05 that corresponds to 95% quantilexρ of an underlying data set taken

as the threshold. We may conclude from Figure 3 that the mean minimal time required to

reach a node with degree larger than u = xρ is longer for the DBPL data than for the Enron

data.

5 Conclusions

We have obtained the limit distribution and expectation of the first hitting time for processes

which satisfy the mixing conditions of Theorem 1. The latter are fulfilled particularly

for Markov chains represented by the ARMAX, the MM and the AR(1) processes. Exact

distributions of the first hitting time for the latter processes are obtained. Markov chains

used in social networks as sampling techniques can be compared with regard to the quantiles

and expectation of the first hitting time. The presented research can be particularly useful

for such comparison of sampling strategies. The results are extended to the second hitting

time.
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6 Appendix

6.1 Proof of Theorem 2

It follows from (2) that

P{T ∗(un) = j + 1} = P{Mj ≤ un, Xj+1 > un} (29)

= P{Mj ≤ un} − P{Mj+1 ≤ un}.

Following Ferro and Segers (2003) we get alternatively for n ≥ 1

P{T1(un) > j} = P{M1,j+1 ≤ un|X1 > un}

= (P{M1,j+1 ≤ un} − P{Mj+1 ≤ un}) /P{X1 > un}

= (P{Mj ≤ un} − P{Mj+1 ≤ un}) /P{X1 > un}

= P{T ∗(un) = j + 1}/P{X1 > un}.

Thus, we get

P{T ∗(xρn
) = j + 1} = P{X1 > xρn

} · P{T1(xρn
) > j}

= ρn

∞∑

i=j+1

P{T1(xρn
) = i}.

From (13) we obtain

P{T ∗(xρn
) = j + 1} =

ρn
cn

∞∑

i=j+1

cnP{T1(un) = i} (30)

< (1 + ε)
ρn
cn

∞∑

i=j+1

ηn(1− ηn)
i−1 = (1 + ε)ψj−1(n),

P{T ∗(xρn
) = j + 1} > (1 − ε)ψj−1(n),

where ψj−1(n) is determined by (15). Since ψj−1(n) → 0 as n→ ∞ holds, the series in

(30) converges uniformly by all n > nε by Weierstrass’ theorem.

6.2 Proof of Lemma 3

Let us consider the expectation of the first hitting time

ET ∗(xρn
) =

∞∑

j=1

jP{T ∗(xρn
) = j}.

From (15) we get

∞∑

j=j0+1

jψj−1(n) =

∞∑

j=j0+1

j
θ2ρ2n(1− ρn)

θ(j−1)

1− (1− ρn)θ
= Λnρn,
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where Λn is determined by (19). Due to (16) we have

Λn ∼ (1 − θρn)
j0 (j0θρn + 1) /(θρ2n) ∼ exp(−τθj0/n)/(θρ

2
n) → ∞

as n→ ∞. Let us denote

aj(n) = jP{T ∗(xρn
) = j}

and

Sk(n) =

k−1∑

j=1

aj(n)/Λn, rk(n) =

∞∑

j=k

aj(n)/Λn.

We have to prove thatS(n) =
∑∞

j=1 aj(n)/Λn converges uniformly byn. For this purpose,

we shall prove that

lim
k→∞

sup
n
rk(n) = 0.

The latter follows from

sup
n
rk(n) = sup

n

∞∑

j=k

jkβP{T ∗(xρn
) = j}

kβΛn
≤

1

kβ
sup
n

E(T ∗(xρn
))1+β

Λn

and the assumption (17). It remains to prove that

lim
n→∞

Sj0(n)/ρn = 1, (31)

were Sj0(n) =
∑∞

j=j0+1 aj(n)/Λn.

Using the replacement (1− ρn)
θ = 1− ηn from (14), (15) and (19) we get for any ε > 0

that it holds

Sj0(n) <
(1 + ε)(1 − (1− ρn)

θ)2

(1− ρn)θj0(j0(1− (1− ρn)θ) + 1)

∞∑

j=j0+1

jρn(1− ρn)
(j−1)θ

=
(1 + ε)ηnρn

(1− ηn)j0 (j0ηn + 1)

∞∑

j=j0+1

jηn(1− ηn)
j−1.

Similarly, one can get

Sj0(n) >
(1− ε)ηnρn

(1− ηn)j0 (j0ηn + 1)

∞∑

j=j0+1

jηn(1− ηn)
j−1.

Since

∞∑

j=j0+1

jηn(1− ηn)
j−1 =

(1 − ηn)
j0

ηn
(j0ηn + 1)

and ε is arbitrary then (31) and thus, (18) follows.
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6.3 Proof of Lemma 5

By (1) and the stationarity of {Xn} we obtain

P{T1(un) = n} = P{M1,n ≤ un, Xn+1 > un|X1 > un}

= (P{M1,n ≤ un, Xn+1 > un} − P{Mn ≤ un, Xn+1 > un}) /P{X1 > un}

= (P{Mn−1 ≤ un, Xn+1 > un} − P{Mn ≤ un, Xn+1 > un}) /P{X1 > un}

= (P{T ∗(un) = n} − P{T ∗(un) = n+ 1}) /P{X1 > un}. (32)

From (20) we get due to stationarity

P{T ∗(un) = j, T ∗∗(un) = j +m}

= P{Mj−1 ≤ un,Mj,j+m−1 ≤ un, Xj+m > un} − P{Mj+m−1 ≤ un, Xj+m > un}

= P{Mj+m−2 ≤ un, Xj+m−1 > un} − P{T ∗(un) = j +m}

= P{T ∗(un) = j +m− 1} − P{T ∗(un) = j +m}

= P{T1(un) = j +m− 1}P{X1 > un}.

The last two lines are obtained from (2) and (32). Then using (13) and denoting

ϕj+m−2(n) = ρnηn(1 − ηn)
j+m−2/cn one can rewrite

|P{T ∗(xρn
) = j, T ∗∗(xρn

) = j +m}/ϕj+m−2(n)− 1| < ε.

Since it holds

ϕj+m−2(n) ∼ θ2ρ2n(1− ρn)
(j+m−2)θ ∼ θρn(1− θρn)

j−1θρn(1− θρn)
m−1,

the statement of the lemma follows.

6.4 Proof of Proposition 6 for an ARMAX process

From the definition of the ARMAX process we obtain the distribution of the first hitting

time. It holds

P{T ∗(u) = j} = P{Mj−1 ≤ u,Xj > u}

= P{X1 ≤ u, .., Xj−1 ≤ u,Xj > u}

= P{X1 ≤ u, (1− α)Z2 ≤ u, ..., (1− α)Zj−1 ≤ u,max{αXj−1, (1− α)Zj} > u},

sinceXi+1 ≤ u, i = 1, ..., j − 2 leads to αXi ≤ u and (1 − α)Zi+1 ≤ u and together with

Xi ≤ u it implies bothXi ≤ u and (1− α)Zi+1 ≤ u due to 0 < α < 1. For an independent

sequence {Xt} α = 0 holds.

Let us considermax{αXj−1, (1− α)Zj} > u. SupposingαXj−1 > u contradictsXj−1 ≤
u. Hence, it follows (1− α)Zj > u and it holds

P{T ∗(u) = j} = P{X1 ≤ u, (1− α)Z2 ≤ u, ..., (1− α)Zj−1 ≤ u, (1− α)Zj > u}.

Taking the (1− ρ)-level quantile xρ as u and using (21) and (22) we get

P{T ∗(xρ) = j} = (1− ρ)(1 − ρ)(1−α)(j−2)(1− (1− ρ)1−α)
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and (23) follows.

We shall obtain ET ∗(xρ) for the ARMAX process. Denoting 1− η = (1− ρ)θ we get

ET ∗(xρ) =

∞∑

j=1

jP{T ∗(xρ) = j} = (1− ρ)(1 − (1− ρ)θ)

∞∑

j=1

j(1− ρ)θ(j−2)

= (1 − η)1/θ−1
∞∑

j=1

jη(1 − η)j−1 = (1− η)1/θ/(η(1 − η)).

Similarly, one can get (25).

6.5 Proof of Proposition 6 for a MM process

From the definition of the MM process we get

P{T ∗(u) = j} (33)

= P{ max
i=0,...,m

{αiZ1−i} ≤ u, .., max
i=0,...,m

{αiZj−1−i} ≤ u, max
i=0,...,m

{αiZj−i} > u}

Assuming α0 ≥ α1 ≥ ... ≥ αm we obtain that the right-hand side of (33) is equal to

P{αmZ1−m ≤ u, .., α0Z1 ≤ u, α0Z2 ≤ u, ..., α0Zj−1 ≤ u, max
i=0,...,m

{αiZj−i} > u}.

Let us consider the event {maxi=0,...,m{αiZj−i} > u}. This is equivalent to {α0Zj >
u, α1Zj−1 ≤ u, ..., αmZj−m ≤ u}.

Really, suppose αmZj−m > u holds. But this is in contradiction with αm−1Zj−m ≤ u in

(33). Furthermore, α1Zj−1 > u contradicts α0Zj−1 ≤ u etc.

Summarizing we obtain

P{T ∗(u) = j} = P{αmZ1−m ≤ u, .., α0Z1 ≤ u, α0Z2 ≤ u, ..., α0Zj−1 ≤ u,

αmZj−m ≤ u, ..., α1Zj−1 ≤ u, α0Zj > u}

= P{αmZ1−m ≤ u, .., α0Z1 ≤ u, α0Z2 ≤ u, ..., α0Zj−1 ≤ u, α0Zj > u}.

Hence, from (21) and (22) it follows

P{T ∗xρ) = j} = qαm+...+α0+α0(j−2)(1− qα0) = (1− (1− ρ)α0)(1 − ρ)1+α0(j−2).

Thus, (23) follows.

6.6 Proof of Proposition 7

To prove (26) we use (29) and results obtained in Chernick (1981) and Chernick et al.

(1991). For j = 1 we have

P{T ∗(un) = j} = P{M0 ≤ un, X1 > un} = P{ǫ1 = (r − 1)/r} = 1− θ,

sinceX1 > un implies ǫ1 = (r − 1)/r for sufficiently largen and r < n/x. Really, suppose

ǫ1 ≤ (r − 2)/r holds. Then we getX1 = 1/rX0 + ǫ1 ≤ 1− 1/r. This contradicts toX1 >
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un = 1− x/n for r < n/x.

From Lemma 2.5 in Chernick et al. (1991) it follows that the eventXj+1 > un = 1− x/n,

x > 0 with 1 ≤ j ≤ j0 and j0 = [lnn/(2 ln r)] leads to

ǫ2 = ǫ3 = ... = ǫj+1 = (r − 1)/r (34)

for all n sufficiently large. From another side, from Lemma 2.6 in Chernick et al. (1991) it

follows that for all n sufficiently large, the event Xj+1 > un for j > j0 leads to

ǫt = (r − 1)/r, t = j − j0, ..., j + 1. (35)

If (r − 1)x < n holds, we get by formula (4.3) in Chernick (1981)

P{Mj ≤ un} = 1−
(j + 1)r − j

r
(1− un) (36)

and if j ≤ m− 1 holds, where m is the integer for which 1− rm(1− un) < 0 and 1−
rm−1(1 − un) ≥ 0 (i.e. (27)) hold.

Thus, (29) can be rewritten as

P{T ∗(un) = j + 1} = P{Mj ≤ un}P{Xj+1 > un}.

From (34) and (35) we get

P{Xj+1 > un} =

{
P{ǫt = (r − 1)/r, t = 2, ..., j + 1}, if 2 ≤ j ≤ j0,
P{ǫt = (r − 1)/r, t = j − j0, ..., j + 1}, if j0 < j ≤ m− 1

=

{∏j+1
t=2 P{ǫt = (r − 1)/r}, if 2 ≤ j ≤ j0,∏j+1
t=j−j0

P{ǫt = (r − 1)/r}, if j0 < j ≤ m− 1

Then the statement follows from (36).
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Figure 1 The distribution (23) of the first hitting time of the ARMAX and MM processes and the
model (15) with θ = 0.1 for j = 5 (top) and j = 20 (bottom) against ρ, where ρ close to
zero corresponds to a high quantile xρ as the threshold u.
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Figure 2 The mean first hitting time (24) of the ARMAX and MM processes and the model Λnρn
based on (18) and (19) with θ = 0.1 for j0 = 0 and j0 = 5 against ρ.

Figure 3 The model Λnρn of the mean first hitting time calculated by (18) and (19) of the Enron
and DBPL data sets with θ = 0.22 and θ = 0.15, respectively, for ρ = 0.05 against j0.
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Figure 4 The sample autocorrelation function (28) of the Enron and DBPL data sets.


