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Abstract
In this paper, we developed a new method that progressively construct and update a set of
alignments by adding sequences in certain order to each of the existing alignments. Each of the
existing alignments is modelled with a profile Hidden Markov Model (HMM) and an added
sequence is aligned to each of these profile HMMs. We introduced an integer parameter for the
number of profile HMMs. The profile HMMs are then updated based on the alignments with
leading scores. Our experiments on BaliBASE showed that our approach could efficiently explore
the alignment space and significantly improve the alignment accuracy.
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1 Introduction
The alignment of multiple protein sequences is an important problem in bioinformatics. In
particular, given a set of protein sequences and a biological score function, the goal is to find
an alignment of the sequences that optimises the value of the score function. Software tools
for Multiple Sequence Alignment (MSA) have been extensively used to analyse protein
sequences in biological research. For example, the phylogenetic relationships of a set of
homologous sequences can often be inferred from an accurate alignment of these sequences
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(Phillips et al., 2000). Moreover, MSA has been used to identify the motifs with certain
biological functions in a set of homologous sequences (Thompson et al., 1999).

The optimal alignment of two protein sequences can be efficiently computed in quadratic
time using a dynamic programming algorithm (Needleman and Wunsch, 1970). In general,
MSA refers to the alignment of three or more protein sequences. The dynamic programming
algorithm for aligning two sequences can be straightforwardly extended to align L sequences
in time O((2L – 1)nL) (Gupta et al., 1995; Lipman et al., 1989). However, this algorithm
cannot be directly used to align multiple sequences in practice due to its high computational
complexity. Therefore, a variety of heuristic methods and software tools (Thompson et al.,
1994) have been developed to avoid the direct optimisation of the score function while
efficiently generating accurate alignment results. Most of these methods belong to four
categories: iterative, progressive, anchor-based and probabilistic.

Alignment tools using iterative methods include Muscle (Edgar, 2004) and DI-ALIGN
(Morgenstern et al., 1998). Iterative methods start with an initial alignment and then
iteratively refine the alignment until it cannot be further improved. In a single iteration, the
alignment can be improved with a stochastic or deterministic approach. ClustalW
(Thompson et al., 1994; Thomsen et al., 2003), T-coffee (Notredame et al., 2000), Treealign
(Hein, 1989) and POA (Lee et al., 2002) use progressive methods for sequence alignment. In
particular, these tools align the sequences in a set by repeatedly selecting two sequences
from the set and replacing them with their alignments. The process terminates when the set
contains only one ‘sequence’, which consists of a multiple alignment of all sequences in the
set. MAFFT (Katoh et al., 2002), Align-m (Walle et al., 2004), L-align (Huang and Miller,
1991), PRRP (Gotoh, 1996), HSA (Zhang and Kahveci, 2006) are anchor-based alignment
tools. These tools start the alignment by finding conserved local motifs in the sequences and
use them as the anchors of the alignment. Regions between two anchors are then aligned to
form an overall alignment of the sequences. Probcons (Chen, 2003), Hmmt (Eddy, 2003),
SAGA (Notredame and Higgins, 1996) use probabilistic methods and models to describe the
evolution of homologous sequences. Based on the substitution probabilities obtained from
available multiple alignments, the alignment can be constructed by maximising the overall
probability of substitutions.

So far, most of the existing alignment tools use methods designed to optimise the score
function associated with an alignment and can only generate a single alignment. However, it
has been pointed out recently that the alignment that optimises the score function may not be
the one that is biologically most desirable. Therefore, a method that can generate a list of
alignments with leading scores is more useful in practice. The major goal of this paper is to
develop such a method. In particular, our method starts with the two sequences with the
maximum similarity. A set of alignments with leading scores between the two can be
computed with a dynamic programming algorithm. For each alignment in the set, a profile
Hidden Markov Model (HMM) (Eddy, 2003) can be constructed to describe the statistical
distribution of amino acids for each column in the alignment. An ensemble of profile HMMs
can thus be constructed from the set of alignments with leading scores. The remaining
sequences in the set are then progressively aligned to the profile HMMs in the ensemble one
by one. After a given sequence is aligned to all profile HMMs in the ensemble, the statistical
parameters in these profile HMMs are updated based on the alignments with leading scores.
The process terminates when the set does not contain unaligned sequences. The alignments
with leading scores are then reported as the possible alignments of the sequences.

We have developed a software tool, PALIGN to implement this method and tested its
performance on BaliBASE benchmarks. We also compared its accuracy and efficiency with
those of other alignment tools, including ClustalW, Probcons, Muscle, and T-coffee. Our
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experiments showed that PALIGN can achieve accuracy comparable with that of other tools
on sequences with high or medium similarity and significantly improved accuracy on
sequences in the twilight zone (with similarity lower than 25%). In addition, the number of
profile HMMs in the ensemble can be used as a parameter and its value can be changed in
different runs of the program, the efficiency and alignment accuracy of PALIGN can thus be
adjusted based on the needs of the user. Our experiments also showed that, including
additional secondary structure information into this alignment approach can improve the
alignment accuracy.

2 Models and methods
The method progressively constructs the alignments in the following steps. Firstly, the order
to align sequences to the profile HMMs in the ensemble is determined by computing the
optimal pairwise alignment between each pair of sequences in the set. In particular, the two
sequences in the pair with the maximum alignment score are selected to construct the initial
profile HMMs in the ensemble. These two sequences are also called base sequences. We
initialise a sequence set S′ to contain the two base sequences and iteratively enlarge S′ by
computing the average alignment score between each sequence that is not in S′ and the
sequences in S′, the one with the maximum average alignment score is then included in S′.
Note that this procedure also determines the order by which the sequences will be aligned to
the profile HMMs in the ensemble. Secondly, assume the number of profile HMMs in the
ensemble is k, we use a dynamic programming algorithm to compute the alignments with k
maximum alignment scores in time O(k log2 kn2), where n is the length of the sequence.
Each of the alignment can be described with a profile HMM that contains the distribution of
amino acids in each column of the alignment.

Thirdly, following the order determined in the first step, the remaining sequences are then
aligned to the profile HMMs in the ensemble one by one. For a given sequence, we align it
to each of the profile HMMs in the ensemble and for each pair of sequence and profile
HMM, we use a similar dynamic programming algorithm to compute the alignments with k
maximum alignment scores. We thus can get k2 alignments in total for the sequence, we then
select the alignments with k maximum scores from the available k2 alignments and the
profile HMMs in the ensemble are then updated based on these alignments. This process is
repeatedly applied to each sequence while it is aligned to the profile HMMs in the ensemble
until no unaligned sequences exist in the set. As the last step, a list of k alignments with the
maximum scores are reported as the result of alignment. Figure 1(a)–(c) sketches the three
stages for this alignment method.

2.1 Ensemble initialisation
We modify the quadratic time dynamic programming algorithm for computing the optimal
pairwise alignment to obtain the alignments with k maximum alignment scores. To simplify
the notation, we assume that the alignment scores for two amino acids are stored in a matrix
M and the penalty for a contiguous gap region of length d is Pd, where P is a constant. Our
algorithm can be slightly changed to cope with the affine gap penalty function, where an
open penalty and an extension penalty are needed to compute the overall penalty arising
from a contiguous gap region.

We assume the two sequences are s1 and s2 and their lengths are m and n respectively. The
ith character in a sequence s is denoted with s[i] and the subsequence in s between i and j is
denoted with s[i…j]. To find the alignments with the k maximum alignment scores, we
maintain a k × m × n dynamic programming table A to store the intermediate results of the
dynamic programming. In particular, A[l][i][j] stores the lth largest alignment score between
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subsequences s1[1…i] and s2[1…j]. For a number set X, we use X(t) to denote the tth largest
number in M and define

(1)

(2)

(3)

(4)

It is then straightforward to see that the recursive relation for the dynamic programming is as
follows.

(5)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ l ≤ k. Such a dynamic programming procedure can be
performed in time O(k log2 knm) since we can sort all elements in Sij to find the k largest
ones. The values of A[1][m][n], A[2][m][n],…, A[k][m][n] are the k largest alignment scores
between s1 and s2. An additional table that stores the selection made to compute the value of
each cell in A can be used to determine the k alignments.

Based on the k alignments, we are able to construct an ensemble of k profile HMMs. Each of
the profile HMM in the set corresponds to one of the k alignments. A profile HMM contains
two states Di and Mi for column i in the corresponding alignment. A deletion state Di does
not emit any amino acids and is used to describe the gaps in column i, a matching state Mi
emits an amino acids and is used to describe the amino acids in column i. The probabilities
of emission and transition for each state can be computed from the alignment as well.

2.2 Ensemble update
The remaining unaligned sequences in the set are then aligned to the profile HMMs in the
ensemble one by one in the order determined in the first step. The alignment between a
sequence and a profile HMM can be performed with a dynamic programming algorithm
similar to the one for pairwise alignments. In particular, assume the sequence to be aligned
to a profile HMM is s, we maintain a k × m dynamic programming table AB for each state B
in the profile HMM, where m is the length of the sequence. AB [l][i] is the lth largest
alignment score for cases where s[i] is aligned to state B. To simplify the notation, we use
T(B) to denote the set of states with nonzero probabilities to transit to B, eB (a) to denote
probability for state B to emit amino acids a and T(C, B) to define the probability for a
transition from state C to B. In addition, we assume the set of amino acids is Σ and consider
Y ∈ T(Mj), Z ∈ T(Dj) for matching state Mj and deleting state Dj respectively, we define
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(6)

(7)

(8)

(9)

(10)

(11)

It is then straightforward to see that the recursive relationship for the dynamic programming
is as follows.

(12)

(13)

Since the number of states in T(B) is a constant for state B in a profile HMM, the
computation time of this dynamic programming procedure is O(k log2 knL), where L is the
number of states in the profile HMM.

For each pair of a sequence and a profile HMM, the above dynamic programming algorithm
can provide k alignments with leading scores, we thus can obtain k2 such alignments in total
for the ensemble. We then pick k alignments with leading alignment scores from them. The
parameters in each profile HMM can then be updated based on these k alignments. The
overall alignment process needs time O(k log2 kn3) since we need to progressively align the
remaining n – 2 sequences to the profile HMMs in the ensemble.

3 Testing results
3.1 Without secondary structure information

We implemented this method in a computer program, PALIGN and tested its performance
on some of the BaliBASE benchmarks. (available at
http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE/) In particular, sequences are
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aligned to maximise the SP score of the alignment and we used PAM250 as the score matrix
and a gap open penalty of value −19.814 and a gap extension penalty −1.396. We performed
alignments on these benchmarks with ensembles containing a variety of different numbers
of profile HMMs and compared the maximum alignment scores that can be achieved. Table
1 provides the maximum alignment scores PALIGN has achieved on three benchmarks of
low similarity (with identity less than 25%), three benchmarks of medium similarity (with
identity in between 20% and 40%), and three benchmarks of high similarity (with identity
larger than 35%). From the table, we are able to see that, from the perspective of
maximisation, PALIGN can achieve the maximum alignment score on most of the tested
benchmarks using ensembles containing no more than four profile HMMs. Moreover,
ensembles containing more profile HMMs may lead to alignments with lower alignment
scores. We think the greedy strategy employed to update the ensembles during the
progressive alignment can partly explain this.

In addition to evaluating the effect of maximisation with ensembles of different sizes, we
also measured the computation time PALIGN needs to perform the alignments using these
ensembles. Table 2 shows the computation time needed by PALIGN on ensembles of
different sizes. From the table, we can see that PALIGN can perform multiple alignments in
a few seconds.

We then use the program provided by BaliBASE to evaluate the accuracy of PALIGN and
compared it with that of other alignment tools, including MULTALIGN (Corpet, 2006)
DIALIGN Morgenstern et al. (1998), MULTAL (Taylor, 1988) and HMMT Eddy (2003).
Comparison is performed on benchmarks of low, medium and high similarity values. To
achieve the maximum accuracy, we ran PALIGN using ensembles of size 1–5 and selected
the alignment with the highest BaliBASE score in the generated lists of alignments. Table 3
shows the BaliBASE accuracy scores of PALIGN and other alignment tools on some
benchmarks. The BaliBASE score is computed by comparing an alignment obtained by
running a software tool with the reference alignment of the benchmark. A higher score
indicates an alignment closer to the reference alignment. From the table, we can see that
PALIGN achieves significantly better accuracy than MULTALIGN, MULTAL and HMMT
in benchmarks in twilight zone (sequences with identity lower than 25%). PALIGN also
achieves comparable or slightly better accuracy than other alignment tools on benchmarks
with medium and high similarity.

3.2 With secondary structure information
Previous work has shown that, secondary structure information of the sequences can
significantly improve the alignment accuracy (Zhang and Kahveci, 2006). Our model can be
modified slightly to include the secondary structure information. In particular, a secondary
structure unit is associated with each amino acid residue in a protein sequence. In general,
there are three types of secondary structure units for protein sequences, they are C (coil), E
(β sheet), and H (α helix).

To integrate secondary structure information into the model, we include the secondary
structure matching score in the overall alignment score. In other words, the overall
alignment score is the weighted sum of the matching score of sequence content and the that
of secondary structure units. We can use a 3 × 3 score matrix to compute the secondary
structure matching score.

We used a simple score matrix to compute the secondary structure matching score, where
the score of a match is 1 and a mismatch is 0. A weight of 0.8 is allocated to the matching
score of sequence content and secondary structure matching score has a weight of 0.2. We
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use the same penalty scores for gaping opening and extension for both types of matching
scores.

We applied this modified approach to the same benchmark sets. Table 4 shows the
alignment accuracy of this approach on these sets. We can see from the table that a
significant amount of improvement is achieved on most of the benchmark sets. The
improvement is more significant on sequence sets in twilight zone. This may suggest that
structure information is more important for aligning sequences with low sequence identity.

4 Conclusions
In this paper, we develop a new method that can efficiently and accurately align multiple
protein sequences by exploring the alignment space. This method constructs and maintains
an ensemble of profile HMMs and progressively align the remaining unaligned sequences to
the profile HMMs in the ensemble and updates the profile HMMs in the ensemble based on
the alignments with leading scores. Our experiments have demonstrated that this method,
which has been implemented in an alignment tool PALIGN, can achieve significantly better
accuracy than other alignment tools on sequences of low similarity. The accuracy of
PALIGN is comparable or slightly better than these tools on sequences with medium and
high similarity. In addition, we have integrated the secondary structure information into this
approach, our experiments show that the alignment accuracy can be further improved while
taking into account structure information.
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Figure 1.
An illustration of the alignment method: (a) firstly, given a set of sequences, the order to
include the sequences in the alignment is determined; (b) secondly, an ensemble with k
profile HMMs is constructed and progressively updated while the remaining unaligned
sequences are aligned to the profile HMMs in the ensemble and (c) thirdly, k alignments
with leading scores can be generated from the profile HMMs in the ensemble when no
sequences in the set are unaligned
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