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Abstract
The exact relationship between protein active centers and protein functions is unclear even after
decades of intensive study. To improve the functional prediction ability based on the local protein
structures, we proposed three different methods. 1) We used statistical model (known as Markov
Random Field) to describe protein active region based on the structure motifs. 2) We developd a
filter that considers the local environment around the active sites to remove the false positives. 3) we
created multiple structure motifs by extending the motif to neighboring residues for delineating their
functions.

Our experimental results, as evaluated in five sets of enzyme families with less than 40% sequence
identity, demonstrated that our methods can obtain more remote homologs that could not be detected
by traditional sequence-based methods. At the same time, our method could reduce large amount of
random matches. Our methods could improve up to 70 % of the functional annotation ability
(measured by their Area under the ROC curve) in extended motif method.
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1 Introduction
Understanding structure-function relationship is a fundamental problem in Biology. Though
sequence based functional annotation has been used for many years, annotating remote
homologs — proteins that have similar functions but diverse sequences is a challenging
problem. Experimental methods like ChIP on chip, on the order hand, can accurately discover
protein functions. Nevertheless, most of them engage in expensive and lengthy processes. With
the fast growing number of protein structures (Berman et al. 2000), there is a pressing need to
perform a in silico discovery of proteins’ molecular functions using protein structure data, or
structure-based functional annotations, which is the focus of this paper.

There are accumulating evidences showing that proteins perform their functions in relative
small regions. These local structures are called active sites, which include enzymatic activity
centers and protein ligand-receptor binding sites. However, the mappings between an active
site and their functions are non-trivial. This is due to a couple of reasons: 1) The sizes of
functional regions are typically small [under 20 aa in length as mentioned in Kim et al.
(2003)], which causes random matches to unrelated proteins. 2) The shortcomings of current
motif models: some of the motif models may not be able to fully describe the active region of
a protein family due to its limited search space. For example, a simple sequence model with
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k residues can only represent 20k motif instances, which restricts its ability to obtain the optimal
result. Some motif models may also impose strict assumptions, e.g. independence among
residues. As a result, the motif model requires multiple motif instances to describe a single
protein family. Exact matching from maximum cliques would limit the number of annotations
since the composition of the active site trends to vary slightly within the protein family. To
conclude, improving active site-based function prediction is necessary.

In this paper, we explored two avenues (total three methods implemented) to improve the
prediction results. The first approach involved building a statistical model to describe the
functional site. Specifically, we used Markov Random Field to to refine a given active site
structure. Markov Random Field, as one of the statistical graph models, can preserve overall
topology of the active site while maintaining information about its amino acid composition. In
second approach, we improved annotations by considering the environments around the
functional site. We computed statistical distributions of environment, in this case, the
surrounding residues in 3D space in order to filter random matches. If a candidate protein had
a very surrounding profile than the other proteins from the same family, it would be considered
as unrelated. We also created multiple active site representations based on environment
information, then we aggregated final results using machine learning techniques such as voting
method and feature vectors method.

The rest of the paper is organized as follows. In section 2, we review the latest developments
on improving prediction results using motifs. In section 3, we go through basic graph theory
behind our methods. In section 4, we introduce our novel motif refinement algorithm and the
filter methods. In section 5, we present our experimental study and provide some performance
analyses. In section 6, we draw some conclusions from our experiments and discuss the future
works.

2 Related Works
To improve the sensitivity and specificity of protein functional annotations using an existing
functional site, researchers investigate the refinement/filter problem in two directions. First of
all, they introduce domain constraints to better identify functional homologs. For example,
Geometric Sieving (Brian Y. Chen 2006) compares the Least Root Mean Squared Distance
(LRMSD) distributions between a candidate motif and an external protein set in order to select
the optimal motif structure. LRMSD is a similarity measure between two point list
representations (the candidate motif and a protein from the data set). The assumption behind
Geometric Sieving is that an optimized motif should demonstrate the maximal geometric and
chemical differences to all known protein structures. As a result, the researchers first generate
a candidate motif set by considering all possible subsets of the original motif, and pick a
candidate motif with the highest median LRMSD distribution as the refined motif. Cavity-
aware motifs (Chen et al. 2006) combine structure motifs with a set of spheres known as C-
spheres to imitate the protein’s active site and its surrounding space for chemical reactions.
Other information like structure energy level from Kolinski et al. (2001), electric charge or
hydrophobicity can also be used for motif improvement.

In data mining community, some studies focus on summarizing patterns using statistical
models or machine learning algorithms. Yan et al. (2005) construct pattern profile on a frequent
itemsets based on Bernoulli distributions with clustering techniques. Wang & Parthasarathy
(2006) reduce the number of frequent itemset patterns by building a model at each level
iteratively. In protein analysis, Berger & Singh (1997) implement another iterative method that
uses randomness and statistical techniques to improve the motif recognition on coiled coils
proteins. Shah et al. (2008) and Xiao & Segal (2008), on the other hand, use iterative method
on top of multiple classifiers. They both tackle this imbalanced dataset by training classifiers
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with unlabeled data. The unknown data is selected based on the closeness of the positive/
negiative data points. During the re-training process at each iteration, the classifiers become
more accurate and thus more proteins will be annotated correctly.

3 Background
This section introduces the concept of labeled graph from the graph theory. We treated all
protein structures and their active sites as labeled graphs. Hence, protein functional annotation
problem is converted to a graph problem.

A labeled graph is defined as the following,

Definition 1 (Labeled Graph)
A labeled graph G is a five elements tuple G = (V, E, ΣV, ΣE, λ) where,

• V is a set of vertices or nodes.

• E is set of undirected edges E = V x V.

• ΣV is disjoint sets of vertex labels

• ΣE is disjoint sets of edge labels

• λ is a function that assigns labels to the vertices and edges.

Figure (1) shows an example of a graph database. This representation has been used by many
researches, including our previous work(Huan et al. 2006). In this paper, we used the following
mappings between a protein structure and a labeled graph:

• Nodes ⇔ amino acids

• Edges ⇔ chemical / physical interactions among amino acids

• Node labels ⇔ 20 amino acid types

• Edge labels ⇔ Euclidean distances of the interactions

To increase the matching efficiency, two types of edges distances are included in the graph —
bond edges and proximity edges. Bond edges are polypeptide chains appear in the protein
primary sequence. Proximity edges consider the relations of neighbors in its 3D structure. Two
residues are treated as connected with a proximity edge if their Euclidean distance is less than
a threshold δ. In this paper, we select the δ to be 8.5 Å.

To identify the function of a protein, we employed the idea of graph matching. Given an active
site from a protein family and a protein structure, graph matching determines whether an one-
to-one mapping function exists between them. If such a mapping is found, the protein is
consider as part of the protein family (i.e. has functions similar to proteins in the same family).
Figure (2) shows a flowchart of this graph-based annotation process.

4 Methods
In this section, all proposed methods will be discussed in detail. These methods include: Motif
refinement with Markov Random Field motif model, the environment filter, and the extended
motif filter.

4.1 Motif refinement with Markov Random Field motif model
Our algorithm takes a functional site of a protein (known as initial motif) and a testing protein
dataset as input. The algorithm outputs a new statistical model which can better describe the
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remote homologs by repeatedly improving the functional site. Figure (3) shows an overview
of our algorithm. In general, this algorithm can be divided into three stages:

4.1.1 Initial graph matching (Approximate graph matching)—After the functional
site and proteins are represented as labeled graphs, we want to determine whether a functional
site graph M occurs in a graph G in a flexible manner while still be able to maintain the relevance
to the data set. Hence, we introduce a scoring matrix to the node mapping to quantify the degree
of the similarity between two graphs. Formally speaking,

Definition 2 (Initial Matching): Graph G = (V, E, ΣV, ΣE, λ) is subgraph isomorphic to G’ =
(V’, E’, ΣV’, ΣE’, λ’) if there exists a 1-1 mapping f: V → V’ such that,

(1)

(2)

where S is a node matching function that penalizes a node label mismatch, |V| is the size of the

graph (i.e. total number of nodes), T1 is a threshold for node label mismatch, and  is a
threshold for structural differences.

Formula 2 is defined as distance root-mean-square deviation(dRMSD) between G and G’. It
is a well-known standard for structural comparison(Zagrovic & Pande 2004)— Larger dRMSD

means more diverse protein structures. In this paper, we set  to be 0.8Å and S to be the scoring
matrix BLOSUM62(Henikoff & Henikoff 1992).

4.1.2 Building refined functional site—Our new functional site model is defined as
follows,

Definition 3 (Pattern Statistical model): Our new functional site model is a triple (Θ, ΣE, λ),
where Θ is a Markov Random Field(MRF):  with n ∈ N. ΣE is a set of edge labels;
and the λ is a function that assigns the edge labels to the corresponding edges in the Markov
Random Field graph.

This model not only contains both labeled items and structure components, but also offers large
(almost infinite) search space for our algorithm to optimize a functional site. At the same time,
our model enforces certain restrictions on the edges labels and nodes labels (i.e. the potential
functions) such that dependencies among neighboring elements can be preserved.

MRF consists of many parameters, including normalization factor Z, and potential functions
V of the maximal cliques. To estimate those parameters, we apply Radim Jirousek’s Iterative
proportional fitting algorithm (IPF)(R. 1995). Given a set of instances from the previous
matching, IPF will try to modify the potential function for each clique V (Xc) such that the
marginal probability p(Xc = xc) equals to the maximum likelihood (ML) estimate (in this case
ML is the empirical marginal).
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4.1.3 Re-matching—This stage is similar to the initialization stage. Both stages determine
if the motif occurs in a protein structure. But in this stage, the newly constructed MRF model
from the last stage is used to match with proteins instead of the initial motif M. In other words,
criterion (2) in initialization stage will be reused in this stage, and criterion (1) is replaced with
the Gibb distribution formula as node matching function,

where Z and Vc are the parameters in MRF, and xc is a subgraph (maximal clique) configuration
of the candidate protein. In short, the Gibb distribution formula takes a MRF model and a
subgraph as inputs, and outputs the probability that the candidate protein is related to the protein
family. See (Hammersley & Clifford 1971) for the detail derivation of the formula.

In our actual implementation, the last two stages (Re-matching and model building) run
iteratively until the number of instances captured converges. As a result, our algorithm goes
through the MRF search space iteratively so that optimal parameters are found for a given
functional site. To carry out the graph matching in both initialization and re-matching stage,
we employ J. R. Ullman’s occurrence algorithm. For more detail about the proof and
implementation of occurrence algorithm, please refer to Ullman (1976).

4.2 The environment filter
The environment filter assumes that the local environment around the active site is a
determining factor for protein functions. If the surroundings of a probable motif location is
very different from other proteins in the same family, then this site may not be functional, and
thus having different functions. The environment filter works in two stages. In the first stage,
a profile is generated for a particular protein family, which is known as the environment profile.
The environment profile is defined as follows,

Definition 4 (The environment profile)—The environment profile P is an ordered list of
20 triples [(a1, μ1, σ1), ..., (a20, μ20, σ20)] where each element represents one amino acid, ai is
the amino acid identifier i, μi is the mean frequency of amino acid i, and σi is the standard
deviation of frequency in amino acid i.

To generate the environment profile in the first stage, it requires a set of proteins from the same
protein family, known as protein family set. For each protein in the protein family set, we first
collect the neighboring residues around the active site. The neighboring node of an active site
is described as following,

Definition 5 (Neighbors of a motif)—A node v is considered as the neighbor of active site
G’ = (V’, E’, ΣV’, ΣE’, λ’) which resides inside a protein structure G = (V, E, ΣV, ΣE, λ) if it
satisfies the following conditions:

For each protein in the protein family set, the normalized frequency distribution of its
neighboring nodes is computed, results in a tuple of twenty numbers. When all the distributions
values set are gathered from the family set, we can calculate the environment profile for the
protein family,
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Given the normalized frequency distributions for N proteins in the protein set:
(d1,1, ...d20,1), ..., (d1,N, ...d20,N), the environment profile P = [(a1, μ1, σ1), ..., (a20, μ20, σ20)]
is computed by the following formula,

where i = {1, 2, 3...20}

To apply the environment profile for improving protein annotations, we need an environment
profile P = [(a1, μ1, σ1), ..., (a20, μ20, σ20)], and a candidate protein which is matched to a
functional site using approximate matching (see 4.1.1 for detail). We calculate the normalized
amino acid distribution around matched site of the candidate protein (d1, ...d20). Then, the
difference between the distribution and the profile is obtained using this formula,

where T3 is called the filter threshold, which is an adjustable value for strictness of the filter.
If the result is smaller than the filter threshold, the candidate protein will be considered as a
real match .

4.3 The extended motif filter
Similar to the environment filter, the extended node filter also employs surrounding
information of the active site. We randomly embrace one of the neighboring nodes into the
functional site, thus enlarging the motif size by one. The definition of the active site neighbor
is identical to environment filter.

Although enlarging existing motif can provide stronger discriminative power when doing
prediction, larger motif may tend to filter out true samples too. Therefore, we consult multiple
extended motifs and combine their matching results. In this study, we used two different
ensemble techniques from machine learning: the feature vector method and the voting method.

Feature vector method—Given a set of extended motifs, we apply the approximate
matching method (see 4.1.1 for detail) to each motif and gather a set of matched protein with
their node mismatch scores (as defined by criterion 1). Next, for every protein in the dataset,
we form an ordered list of length n , which is the total number of extended motifs (in this
experiment n = 4) as feature vector. Each feature value represents the matching score obtained
from an extended motif. Machine learning approaches like Support vector machine (SVM)
will then be utilized to study underlying patterns of the features. The trained model will be
used for functional predictions.

Voting method—Given a set of extended motifs which is enlarged by the neighboring
residues, we again apply the approximate graph matching method on them. The matched
proteins, along with the node mismatch scores from each motif are averaged by their geometric
mean.
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where vp is the voting score (averaged score) for protein p, n is total number of extended motifs,
and si,p is the mismatch score for protein p using extended motif i.

The matched proteins will be sorted according to the averaged voting scores. An extra
parameter T4 will be used to determine the number of top-scored results to pass the filter.

5 Experimental Study
Each of the proposed methods underwent a series of tests from the real-life protein dataset. In
particular, five enzyme families were selected for functional annotation. These enzymes, as
one type of proteins, are carefully categorized by Enzyme Commission according to their
molecular functions. We compared their performance trade-offs using receiver operating
characteristic (ROC) analysis, as well as the area under the ROC curve (AUC) measure. In the
followings sections, we will talk about how we construct the training and testing dataset, and
discuss the experiment results.

5.1 Data collection
We randomly picked up five protein functions which span several structural families (SCOP
family ID) for protein predictions. For each function (as described by the enzyme[EC] family
in table 1), we followed these steps to create the training and testing dataset:

• Retrieved all protein structures from the EC family from structural database Protein
Data Bank.

• Randomly picked one protein as query protein, then obtain its functional site from
literature database like PubMed a or catalytic residue database such as Catalytic Site
Atlas (CSA).The selected query protein from each EC family, along with their active
regions and their original sources are shown in table 1.

• Identified structural classification of query protein (i.e. SCOP family ID).

• Proteins with the same SCOP ID as query protein were positive training samples,
other proteins in the same EC family but NOT in the training set were used for positive
testing samples.

• Random proteins which are not in these five enzyme families were picked as negative
training and testing samples.

• Both training and testing samples went through pre-processing step.

In the preprocessing step, we first made sure there was no overlap between the training and
the testing dataset. Then, we removed all ‘trivial’ proteins by 1) eliminating proteins with
sequence identities > 40%. 2) All protein matches that can be done by sequence-based
annotation method such as PSI-Blast. The goal of this pre-processing step is to examine if our
methods can recognize remote homologs with very different folds.

All 3D coordinate information of the proteins and motifs in this study was obtained from the
Protein Data Bank b (PDB). The SCOP database (version 1.71)c provided information about

ahttp://www.ncbi.nlm.nih.gov/sites/entrez
bhttp://www.rcsb.org/pdb/home/home.do
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the protein structure families. Two proteins are considered as functionally related if EC
numbers are identical to the third levels, according to the classification scheme defined in
ENZYMEd database (version 11/2007). To gather the true members from those families, we
utilized the list provided by PDB-SProtEC e mapping (Martin 2004). Preprocessing step was
partly done by the Protein Sequence Culling Server (PISCES) (Wang & Dunbrack 2003). We
downloaded a pre-complied list provided by their server f. Table 2 shows the number of true
and false samples for the training and testing dataset after preprocessing.

5.2 Experiment procedures
We compared the following five methods for functional predictions using the training and
testing dataset mentioned in section 5.1:

1. For baseline comparison, we approximate matched the original functional site to the
proteins in testing set. Proteins would have similar function (i.e. come from the same
protein family) if they both contain the same functional site. BLSOUM62 was used
to match their nodes and dRMSD was used to match their edges. The matching scores
that pass a pre-defined threshold would be considered as related. This method is
known as approximate matching method (Approx.), see section 4.1.1 for more detail.

2. Similar to the approximate matching method, except we matched our proposed MRF
model to the test proteins instead of the initial functional site. Proteins would have
similar function if they match to the MRF model with the joint distribution values
larger than a predetermined threshold. The MRF model, on the other hand, is
constructed using our proposed motif refinement method. This method is called motif
refinement algorithm (MRF).

3. We first computed environment filter using the positive training samples from each
EC family. Then we applied the approximate matching method to the testing samples.
Proteins have similar function if they pass the filter threshold with enough node
matching scores. This method is known as environment filter method (Env filter).

4. We created four extended motif by randomly adding an extra neighboring residue to
the original functional site. The amino acids that were selected to be in the functional
site are shown in Table 3. To aggregate the approximate match results from those
extended motif, we took the geometric mean from their node matching scores.
Proteins would have similar function if their averaged scores pass the score threshold.
We called this method as voting method (voting).

5. Rather than computing the averages like the voting method, we built an ordered list
(feature vector) of matching scores for each proteins. Support vector machine (SVM)
with radial basis function (RBF) kernel was utilized to study underlying patterns of
the features. After using 3-fold cross validation to select the best model parameters
from the training data, the trained SVM annotated testing proteins with their feature
vectors as inputs.

Because all of our proposed methods were designed on top of the approximate matching
algorithm, we fixed its parameters in all of our methods for the ease of performance comparison.
And for each of our proposed method, its discrimination threshold was varied to generate the
ROC curve. We performed our experiments on a cluster. It has total 128 nodes, 384 Intel Xeon
processors and 640 GB of memory. All of our proposed algorithms are implemented as a serial

chttp://scop.mrc-lmb.cam.ac.uk/scop/
dhttp://ca.expasy.org/enzyme/
ehttp://www.bioinf.org.uk/pdbsprotec/
fhttp://dunbrack.fccc.edu/PISCES.php. The parameters used in this list are: resolution=6.0, R factor=0.25.
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application using C++. For the C++ compilation environment, we used gcc compiler with 03
optimization. The SVM implementation for the feature vectors method is from the LIBSVM
package (Chang & Lin 2001).

5.3 Experimental results
Figure (4) summarizes the performance differences using ROC analysis for EC 3.4.21. In the
ideal case, a perfect method should have a curve that passes through the coordinate (0,1) point,
which reveals that it can achieve 100% true positive rate (100% precision) and 0 % false
positive rate (100% recall). On the other hand, a method which forms a diagonal line from
(0,0) to (1,1) would imply a performance of random guesses. In short, a good method should
have a ROC curve close to the top left corner of the graph. Figure (5,6,7,8) show the ROC
analysis for the rest of the EC families. Generally, other ROC graphs follow the similar trend
as Figure (4).

Table 4 lists the AUCs of the five methods testing five EC families. Larger area usually
indicates better performance.

In the following sections, we will discuss our observations of each method in detail.

5.4 Results of approximate match with original functional site
All families were reported with reasonable amount of true matches. And since ‘trivial’ matches
were removed during preprocessing, the approximate matching technique recovered more
remote homologs than PSI-Blast. The reason why sequence-based annotation methods like
PSI-Blast cannot detect those true positives is that they focus on the global configuration of
the proteins. For instance, BLAST tries to align the query sequence to the database, protein
which has a longer matches with the query sequence normally has higher probability to get
picked during the statistical computation of e-values. The advantage of this approach is that it
has very few false positives, as the matches are somehow similar to the query protein.
Nonetheless, proteins (especially enzymes) can retain their functions largely due to their active
regions, not the rest of the protein structures. As a result, although PSI-Blast can pick up
homologs accurately, it has difficulties to recover remote homologs which have diverse
structures. In short, the search space of sequence-based method is restricted, and in this case,
it may stuck with the local optimal solution.

However, the approximate matching method did not perform well when compared with other
proposed methods. Its ROC curves trended to stay at the bottom half of the graph, and its AUC
values were smaller than other proposed methods in most cases. In fact, some matches were
found within a single true positive in different locations, meaning that this method could not
event locate the active site correctly. The poor performance was attributed to random matches
occurred in various locations of unrelated proteins. The average size of a functional site is very
small, and the approximate matching method allows partial matches by introducing scoring
functions. These two factors resulted in large number of false positives and false negatives
results.

5.4.1 Results of approximate match with environment filter—Compared with the
approximate matching method, as seen in Table 4, three out of five EC families showed a
positive response to the filter. And the AUC improvement rate raged from 15% to about 30%.
All of these facts entail that the surrounding distributions of residues can determine the
emergence of active regions. But the introduction of the environment filter also brought us
another side effect—the reduction of the` true positives. Both EC families 3.4.22 and FAD
binding sites exhibited drops on their AUCs after the environment filter was applied. The
implications of diminishing true positives can be attributed to the diversity of the true samples
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and lack of proteins for profile generation. If a protein had a really different structure than the
query protein, its active site environment might also be very different. This situation could be
seen when a true protein was filtered through a high threshold. Inaccurate distribution from
the profile was another reason for the loss of the true positives. Some amino acids in the profile
have very low standard deviation. During the profile difference calculation, the quotient
became very large. Including more proteins with distinct structures (e.g. different SCOP
families) during the profile generation should alleviate the problem.

5.4.2 Results of motif refinement algorithm—On average, the MRF generation
processes converged in 2 to 3 iterations. Overall, our refinement algorithm finished within 3
to 8 iterations as well. Both facts indicate that MRF model became more generalize to a
particular protein family as it converged. Nonetheless, the algorithm did not perform well as
expected. Only two (EC 6.3.2 and 1.1.1) out of five experiments had AUC values larger than
the baseline method, and their improvement rates were not significant compare to other
proposed methods. Although the refined MRF model did pick up additional remote homologs
during the initial and re-matching stages, large amount of false positives (FPs) also got
included, and those FPs increased as the algorithm iterated. As a result, FPs accumulated at
every iteration. This phenomenon is known as propagation effect and is very common in
iterative algorithms such as PSI-Blast. To avoid propagation effect, one have to make sure the
quality of initial matching results so that FPs cannot retain and propagate. We have already
applied the environment filter to filter out some of the FPs in the initial matching stage. One
may either crate an additional filter, or manually gather a list of TPs to bypass the first stage
of the algorithm.

5.4.3 Results of voting method using extended motif filter—Among all the methods
listed in the AUC analysis, voting method had the best performance in terms of the percentage
of improvement. In four out of five experiments, ROC analysis showed that voting method
outperformed the baseline approximate matching technique (except for the FAD binding
family). Its improvement rate can go up to 70% (EC 6.3.2). In addition, three experiments: EC
3.4.22, EC 6.3.2, and EC 1.1.1 showed that voting method formed the largest AUC among all
the proposed methods. The geometric mean heavily penalized the proteins to which the
extended motifs disagreed. As multiplication is used to aggregate the proteins’ mismatch
scores, a probable protein would have an averaged score of zero even if one of the extended
motifs could not capture that protein — any proteins that did not include in their matching
results would have a zero mismatch score. This effect of multiplication in geometric mean
computation would potentially filter out all the FPs: only proteins that acquired the consensus
from all the extended motifs were remained as functional homologs. This voting method
actually makes biological sense because every extended motif includes different additional
features from the active site environment. If a protein that satisfies all the characteristics
described by the motifs, that protein will have a high probability to be related to the query
protein.

5.4.4 Results of feature vector method using extended motif filter—Among all the
methods listed in the AUC analysis, feature vector method had the best performance in terms
of the stability of improvement. In all of our experiments, the feature vector method always
provided some degrees of improvement, up to 65% raise in AUC. Even in the FAD binding
family experiment, where no proposed method so far could improve the baseline approximate
matching results, the feature vector method could raise the AUC by 28.5 %. The results shown
in the ROC graphs and the AUC table were non-binary features using RBF as SVM kernel. To
further enhance the annotation ability of the feature vector method, one may try other machine
learning techniques such as feature selections, feature extractions, or different classifiers. One
can also use more extended motifs to enlarge the size of the feature vector so that better results
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can be achieved. The main purpose of this experiment is just a proof-of-concept — we just
want to show that it is feasible to use our extended motif to achieve better annotation results.

6 Conclusion
We proposed three different approaches to refine the annotation results based on a query protein
with its functional site. One of which involves the reconstruction of the motif model using a
statistical model MRF, and the rest of them utilize the active center surroundings and multiple
extended motifs to eliminate the false positives. The experiments on five sets of enzyme
families demonstrated that our algorithms can get up to 70% increase in AUC when compared
with the baseline method. This fact illustrates that our methods obtain remote homologs across
diverse global structures using a single query protein. Among all of our approaches, voting
method has the best performance in terms of the percentage of improvement, and feature vector
method has the best performance in terms of the stability of improvement. To summarize, using
machine learning techniques with active site surrounding information resulted in the best
annotation performance. Model-based methods, in this case, did not perform well among other
proposed methods. In this study, all initial patterns were obtained from the literature/database.
For our future works, we can first make use of subgraph mining tools to gather a set of initial
motifs which occur in the input sets frequently. Our algorithm will then take over and refine
each of the functional site. Finally, these optimized models will be tested statistically to make
sure they are not generated by chance. By using this approach, we can truly perform a large-
scale automatic test to construct a more effective functional site.
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Figure 1.
Examples of labeled graphs. In this paper, protein/acitve site structures are modeled using
labeled graph. Node labels such as a; b; c; d represent amino acids, and the edge labels like x;
y are the Euclidean distance between two nodes.
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Figure 2.
Breakdown of graph-based protein function annotation
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Figure 3.
Flowchart of motif refinement algorithm.
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Figure 4.
The ROC analysis of EC 3.4.21 using five proposed methods.
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Figure 5.
ROC analysis of enzyme family EC 3.2.22.
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Figure 6.
ROC analysis of enzyme family EC 6.3.2.

Lei and Huan Page 18

Int J Data Min Bioinform. Author manuscript; available in PMC 2010 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
ROC analysis of enzyme family EC 1.1.1.
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Figure 8.
ROC analysis of FAD binding families (1.8.1 + 1.18.1).

Lei and Huan Page 20

Int J Data Min Bioinform. Author manuscript; available in PMC 2010 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lei and Huan Page 21

Table 1

Enzyme families used in this experiment. The source column indicates where initial motifs are obtained (either
from Catalytic Site Atlas [CSA] or from literature)

EC number Active Region (Query protein) Source

3.4.21 HIS57-GLY193-SER195 (1mcta) CSA

3.4.22 CYS25-HIS159-ASN175 (1pppa) CSA

6.3.2 GLU15-SER150-GLY276 (2dlna) Fan et al. (1994)

1.1.1 ASP201-ARG204-HIS229 (7mdha) CSA

FAD binding (1.8.1+1.18.1) GLY11-GLY13-GLY16-ALA20 (1q1ra) Hanukoglu & Gutfinger (1989)
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Table 2

Dataset statistics after preprocessing

EC Family
Training Testing

# Positive # Negative # Positive # Negative

3.4.21 10 10 23 1000

3.4.22 8 8 16 1000

6.3.2 9 9 21 1000

1.1.1 7 7 13 1000

FAD binding (1.8.1+1.18.1) 6 6 14 1000
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Table 3

The list of the extended motifs for different EC families, which are used for the voting method and the feature
vector method. The bold residues indicate some additional nodes added to the initial motifs. Note that even though
the additional nodes have the same type (e.g. both the second and third extended motifs in 3.4.21 include CYS
residue), their edge labels can still be diRerent. As a result, their approximate matching results will vary

EC number Query protein Extended motifs

3.4.21 1mcta ASN95-HIS57-GLY193-SER195

CYS42-HIS57-GLY-193-SER195

CYS58-HIS57-GLY-193-SER195

ILE212-HIS57-GLY-193-SER195

3.4.22 1pppa ALA160-CYS25-HIS159-ASN175

SER29-CYS25-HIS159-ASN175

VAL157-CYS25-HIS159-ASN175

ALA27-CYS25-HIS159-ASN175

6.3.2 2dlna SER19-GLU15-SER150-GLY276

HIS63-GLU15-SER150-GLY276

LEU62-GLU15-SER150-GLY276

THR278-GLU15-SER150-GLY276

1.1.1 7mdha LEU200-ASP201-ARG204-HIS229

VAL265-ASP201-ARG204-HIS229

GLY227-ASP201-ARG204-HIS229

ASN173-ASP201-ARG204-HIS229

FAD binding (1.8.1 + 1.18.1) 1q1ra HIS43-GLY11-GLY13-GLY16-ALA20

PRO42-GLY11-GLY13-GLY16-ALA20

ALA38-GLY11-GLY13-GLY16-ALA20

GLY111-GLY11-GLY13-GLY16-ALA20
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