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Abstract 
 

For a set of mulitple sequences, their patterns,Longest Common Subsequences (LCS) and Shortest Common 

Supersequences (SCS)  represent different aspects of these sequences’ profile, and they can all be used for 

biological sequence comparisons and analysis. Revealing the relationship between the patterns and LCS/SCS might 

provide us with a deeper view of the patterns of biological sequences, in turn leading to better understanding of 

them. However, There is no careful examinaton about the relationship between patterns, LCS and SCS. In this paper, 

we have analyzed their relation, and given some lemmas. Based on their relations, a set of algorithms called the 

PALS (PAtterns by Lcs and Scs) algorithms are propsoed to discover patterns in a set of biological sequences. These 

algorithms first generate the results for LCS and SCS of sequences by heuristic, and consequently derive patterns 

from these results. Experiments show that the PALS algorithms perform well (both in efficiency and in accuracy) on 

a variety of sequences. The PALS approach also provides us with a solution for transforming between the heuristic 

results of SCS and LCS. 

 

1. Introduction 
 

DNA and protein sequences in organisms contain patterns that are strongly conserved through evolution because 

they are highly likely to be involved in vital biological functions. The coding regions in nucleotide sequences for 

DNA, for example, are highly conserved where they are important for gene expression or as marker for promoter 

binding sites. In proteins, conserved regions may be involved in important areas such as to define its most important 

fold, its many binding sites or simply its reaction to an enzyme. 

The frequent occurrence of the same pattern in biological sequences usually indicates that the sequences are 

biologically related (i.e., they contain similar motifs, such as transcription factor biding sites in DNA sequences), 

and it is assumed that these important regions are better conserved in evolution. These patterns are possibly related 

to an important function of a set of sequences, and are important factors in sequences classification. For these 

reasons, pattern discovery has become one of the important problems in bioinformatics.  

For the problem of deriving patterns in a set of biological sequences, it is given as input a set of (related or 

partially related) sequences, and the goal is to find a set of patterns that are common to all or most of the sequences 

in the set. A good algorithm for this problem should output patterns that are of high sensitivity and specificity. The 

problem of pattern discovery received wide attention in the literature [1-4]. 

It should be noted that besides patterns, there are two other closely related terminologies for multiple sequences, 

namely Longest Common Subsequence (LCS) and Shortest Common Supersequence (SCS). Given two sequences S 

= s1…sm and T = t1…tn, S is the subsequence of T (or, T is the supersequence of S) if for each 1≤j≤m, 1 ≤ i1 < i2 

< …< im ≤ n, sj = 
jit . Given a set of sequences S

+
 = {S1, S2, …, Sk}, the LCS (SCS) of S

+
 is the longest (shortest) 

possible sequence T such that it is a subsequence (supersequence) of each and every sequence in S at the same time. 

We emphasize that given a set of sequences, their LCS, SCS and pattern are related. They represent different 

aspects of these sequences’ profile, and they can all be used for biological sequence comparisons and analysis. 

However, not much research has been done to analyze their relationships and harness this relationship for pattern 

discovery problems in an effective manner. 



In this paper, our main contribution is in the analysis of the relationships among LCS, SCS and patterns for a 

profiled set of input sequences. We state that: every pattern (without wildcards) is a subsequence of SCS, and all 

patterns (without wildcards) are common subsequences at most as long as LCS.  

Based on these analysis of relationships, we subsequently propose the PALS and PALS* algorithms to derive 

patterns from the LCS and SCS of the input sequences. The PALS algorithm based on LCS (PALS-LCS) will first 

generate the approximate longest common subsequence of the input sequences by heuristic, map it back to the input 

sequences and derive the patterns from the results. As for the algorithm based on the shortest common 

supersequence (PALS-SCS), our method will also first generate the approximate SCS of the input sequences by 

heuristic, map the input sequences to it and derive the patterns from the results. The PALS* algorithms improve the 

PALS algorithms by incorporating pattern-driven approaches. 

Section 2 describes some of the existing work on pattern discovery, identification of LCS and SCS in biological 

sequences. We then present the problem formulation and analyses in Section 3, followed by the PALS and PALS* 

algorithms in Section 4. In Section 5, experiment settings and results are shown to measure the performance of our 

algorithms. Section 6 concludes our paper with possible future work and extensions. 

 

2. Existing work 
 

There is already much research on pattern discoery from a set of sequences [1-3]. Pattern discovery algorithms can 

be generally divided into two categories [2]. The first is the pattern-driven (PD) approach, which is based on 

enumerating candidate patterns in a given solution space and picking out the ones with high fitness. The advantage 

of PD is that it is possible to guarantee finding the best patterns of limited size, almost regardless of the total length 

of the sequences. The second is the sequence-driven (SD) approach, which tries to find patterns by comparison of 

the given sequences and to look for similarities between them. The SD approach is able to discover patterns of 

almost any arbitrary size, but in general it is impossible to guarantee optimality of the results without greatly 

decreasing efficiency. This is because the precise comparison of multiple sequences (such as multiple sequence 

alignment) is NP-hard. Hence SD algorithms tend to be based on heuristics. 

Some of the well-known pattern discovery algorithms include the TEIRESIAS algorithm [1] and Pratt algorithm 

[6], which are algorithms that combine PD and SD approaches. In the TEIRESIAS algorithm [1], all elementary 

(short) patterns are found in the scanning phase, and then these elementary patterns are glued with other elementary 

patterns at both ends (in all possible ways using depth first search) into maximal patterns in the convolution phase. 

The TEIRESIAS algorithm can guarantee all patterns that appear in at least a (user-defined) minimum number of 

sequences. The patterns used in TEIRESIAS have the format Y..A, which match any sequences containing a 

substring starting with Y, followed by 2 arbitrary characters, followed by A. A drawback of this algorithm is that it 

does not handle flexible gaps, and only allow sole residue (a single alphabet) to occupy a single position. The Pratt 

algorithm [6] is designed for pattern discovery in a set of protein sequences. It aims to find at least m in the given n 

sequences according to a fitness measure based on minimum description length (MDL). The patterns used in Pratt 

have the format Y-x(1,3)-[AC], which match any sequences containing a substring starting with Y, followed by 1 to 

3 arbitrary characters, followed by either A or C. Recently, Ng and Shinohara [7] had proposed the minimal multiple 

generalization (MMG) method to find patterns in very scarce sequence samples. The patterns used in MMG have the 

format Y*A, which match any sequences containing a substring starting with Y, followed by any number of 

arbitrary characters (but usually of a limited length due to biological constraints), followed by A. This algorithm is 

proven empirically to derive patterns close to known patterns, but it requires specific initial patterns to be used. 

Despite the vast effort devoted to pattern discovery in biological sequences, current algorithms still face the 

problem of significant degradation of performance with the increasing number of sequences [8]. 

For the LCS and SCS problems, it is a fact that the SCS problem is NP-hard. Owing to that, a |∑|-approximation 

is produced by using the periodic supersequence Sps = (α1α2…α|∑|)
K
, where ∑ = {α1,α2, …α|∑|}. Better results are 

produced by simple Sum Height (SH) or Min Height (MH) algorithms [9] which examine the characters in the 

sequences one by one (character-by-character approach), or variants of them that involve methods like 

randomization, look ahead, etc. In our recent paper [10], we have shown that none of these heuristic algorithms on 

short sequences are constantly better than other algorithms, and we have proposed the LAP algorithm that 

outperforms other algorithms in most of the cases. The LAP algorithm is a post-processing algorithm based on 

character-by-character approach that first generates a synthesis sequence for all of the sequences and then tries to 

shorten this synthesis sequence while preserving the common supersequence property. Currently, the LAP algorithm 

is one of the best heuristic algorithms (in terms of results length and efficiency) for the SCS problem. 



The LCS problem is also NP-hard. To tackle the LCS problem, we have proposed the Deposition and Extension 

algorithm [11], in which we first generate a common subsequence for a set of sequences based on searching for 

common characters in a certain range of every sequences, then concatenate these common characters to form a 

common subsequence, and subsequently extend this common subsequence to get the result. This is also based on 

character-by-character approach. The Deposition and Extension algorithm is currently one of the best heuristic 

algorithms (also in terms of results length and efficiency) for the LCS problem. 

 

3. The relationship between patterns, LCS and SCS 
 

In this section, we first formulate the problem and describe the terminologies used. Next we examine the 

relationship between patterns, LCS and SCS. We observe that patterns, LCS and SCS of a set of sequences are 

highly related, which leads to the intuition behind the PALS algorithms. 

 

3.1. Terminologies and problem formulation 
A pattern, without wildcard, should be a subsequence of one or more sequences in S. A pattern of a set of sequences 

S = {S1, S2 … Sn} can be represented as sequence P = p1p2…pm, in which every character pi is in alphabets set 

∑∪{*}. ∑ include all of the possible alphabets in the set of sequences S, and ‘*’ matches any string of length 0 or 

more over ∑. A language L(P) defined by pattern P contains all of the sequences that can be derived from P by 

substituting ‘*’ with a sequence composed of characters in ∑ (with maximum length of L and average length of l). A 

pattern P' is said to be derived from pattern P if P ≠ P' and P is a substring (without wildcard) of P'. For example, 

*AT* and A*T* are derived from *T*. For a pattern P' derived from P, P' is said to be more specific than P. A 

pattern P is called maximal on sequences set S if and only if there is no pattern P' that is more specific than P, and 

that S∩|L(P)| = |L(P')|∩S. 

The PD approach for deriving the patterns from a set S of sequences is formally defined as follows: Given a set 

S = {s1, s2, …, sn} of n sequences, and parameters m (m ≤ n) and k (optional), find maximal patterns of length k that 

appear in at least m sequences (support). The SD approach for deriving the patterns from a set S of sequences is 

formally defined as follows: Given a set S = {s1, s2, …, sn} of n sequences, and sets P
+
 = {Pi | Pi is the pattern set for 

Si, 1 ≤ i ≤ n}, for any j and k (j ≠ k) between 1 and n, combine the sets Pj and Pk recursively into new set P such that 

it matches Pj ∪ Pk with high fitness. 

For a set of sequences S = {s1, s2, …, sn}, and a set of patterns PS = {P1, P2, …, Pq}, a sequence sj is covered by 

PS if it is in L(Pi) for at least one Pi ∈ PS. The sensitivity of PS is defined as the number of sequences in S covered 

by PS, over |S|. The specificity of PS is defined as the number of sequences in S covered by PS, over the size of 

languages |∑{L(Pi)|Pi ∈ PS}|. 

Sensitivity =
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Note that there is  limitation on the length of the language, which is application dependent. In reality, there are 

much fewer sequences compared to the size of languages, since not all combinations of symbols in the language 

have real biological meaning. Moreover, since the size of language is large, we have used the log ratio of the 

specificity in the paper. 

LS = –log10(Specificity) (3) 

The closer the LS value is to 0, the better the specificity of the algorithm. 

 

3.2. Relationship 
As aforementioned, given a set of sequences, LCS, SCS and patterns are three different aspects of a profile of these 

sequences, and they are all used in biological sequence comparisons and analyses. Therefore, they could be highly 

correlated, and there could be a transformation function among them. 

We now give some lemmas about their relationships as depicted in Figure 1. 



 

Figure 1. Patterns, LCS and SCS are three different 

aspects for the profile of a set of sequences. 
 

Lemma 1. For a set S of sequences, patterns without wildcard (*) are subsequences of the SCS (SSCS) of S. 

Proof. Suppose there exists a pattern Pj without wild card which is not a subsequence of SSCS. Since Pj is a 

subsequence of some sequence Si ∈ S, Si is also not a subsequence of SSCS. However, by definition, Si should be a 

subsequence of SSCS. This leads to a contradiction, and thus every pattern Pj must be a subsequence of SSCS. ■ 

Based on the same lemma, a pattern (without wildcard) can be regarded as a subsequence of SCS which is 

composed of some common substrings of SCS padded with wildcards. 

Therefore, given a heuristic algorithm that gives results close to exact SCS, work on deriving patterns of a set of 

sequences from the heuristic result of SCS is promising. 

Lemma 2. For a set S of sequences, all of the patterns without wildcard (*) are common subsequences, and they 

are no longer than the exact LCS (SLCS) of S. Common subsequences can be seen as the patterns without wildcard. ■ 

This lemma is obvious. Actually, a pattern (without wildcard) is a common subsequence. The longer the 

heuristic LCS results that can be generated, the more specific a pattern will be. 

Based on this lemma, it is possible that patterns be derived from the heuristic result of LCS. 

Lemma 3. Any heuristic SCS and LCS, and at least one pattern contain one or more substrings in common. ■ 

This lemma can be easily derived from Lemma 1 and Lemma 2. This lemma indicates that SCS, LCS and 

patterns are related since they have common components. Another factor tied with their relationship is the orders of 

these substrings in LCS, SCS and patterns. 

Lemma 4. If there exist heuristic SCS, LCS that contain a set of substrings ss1…ssn in sequencial order, then 

there is at least one pattern that also contains these substrings in sequencial order. ■ 

This lemma is apparent. It can be directly derived from Lemma 2 and Lemma 3.  

From the algorithmic aspect, it is also interesting to note that the abovementioned heuristic algorithms for LCS 

and SCS based on character-by-character approach have inexplicitly considered patterns. In each of the search range 

specified in a character-by-character approach, the common character that is searched for is actually the patterns in 

the range. Thus, designing algorithms for pattern discovery from heuristic results of LCS and SCS follows naturally. 

The heuristic algorithms for the LCS and SCS problems in the literature are generally sequence-driven (SD) 

algorithms. Since the precise comparison of multiple sequences (such as multiple sequence alignment) is NP-hard, it 

is known that the SD approach is impossible to guarantee optimality of the results without greatly decreasing 

efficiency.  

However, current heuristic algorithms for the comparison of multiple sequences, such as computation of the 

LCS and SCS of a set of many sequences are becoming more efficient and accurate [11, 12]. Therefore, it is possible 

to devise effective pattern discovery algorithms based on these recent developments. The PALS algorithms that we 

have proposed adopted both the SD and PD approaches. They comprise two algorithms: the first one, PALS-LCS, is 

based on the heuristic result of LCS of the sequences, and the second one, PALS-SCS, is based on the heuristic 

result of SCS of the sequences. 

 

4. The PALS algorithms 
 

Lemma 2 

Lemma 3, 4 

Sequences 

profile 

LCS SCS 

Sequences set S 

 

Patterns 

Lemma 1 



Based on the analysis of the relations of LCS, SCS and patterns, we have proposed a set of algorithms, the PALS 

(PAtterns by Lcs and Scs) algorithms and PALS* algorithms. The PALS algorithms proposed by us are based on the 

SD approach; while the PALS* algorithms improve upon the PALS algorithms by incorporating PD approaches. 

 

4.1. PALS-LCS: Algorithm based on LCS 
Using the relationship between patterns and LCS, we propose an algorithm to find patterns based on heuristic result 

of LCS of the given sequences. 

Given a set S of sequences, the heuristic result of the LCS of the sequences, denoted as LCSA(S), is the longest 

common subsequence of all the sequences in set S given by heuristic algorithm A. In this study, we have adopted the 

post-processing algorithm of [11] (Deposition and Extension algorithm) to derive LCSA(S). The process for this post-

processing is to first generate a common subsequence (template) for a set of sequences by the deposition method 

similar to those used in oligos synthesis, and then extend this common subsequence to get the heuristic result of LCS. 

We refer readers to [11] for details. In the following part, the heuristic SCS algorithm will refer to this algorithm. 

 After LCSDepExtn(S) is derived, we map (align) this LCSDepExtn(S) back onto every sequence in the set S to derive 

different patterns. For example, suppose S = {ACGT, CGGT, CGTC} and LCSDepExtn(S) = CGT, then mapping CGT 

to AGCT result in *CG*T. Thus the patterns are {*CG*T, CG*T, CG*T*}. We then generate the longest common 

substring of these patterns as the final pattern. Continuing the example, the pattern of sequences in S is the longest 

common substring of {*CG*T, CG*T, CG*T*}, which is CG*T. Finally, a ‘*’ is prepended and appended to this 

result to obtain the final pattern *CG*T** (refer to Section 5.1 for more details). Figure 3 lists the algorithm and 

Figure 3 illustrates the example. 

 
PALS-LCS(S) 

// input: sequences set S 

// output: R, the pattern for all sequences 

//         in S 

begin 

  L � LCSDepExtn(S); 

  P � Patternizeα(S,L); 

  R � LCSubstring(P); 

  return R; 

end; 

 

Patternizeαααα(L) 

// input: LCS for sequences set, L 

          sequences set S 

// output: generated patterns from L 

Begin 

  for i � 1 to |S| 

P � {P, map L to Si}; 

  return P; 

end; 

 

LCSubstring(P) 

// input: patterns set P 

// output: the longest common substring of 

//         patterns in P 

begin 

  s � find longest common substring of P; 

 

  // ensure first and last char is * 

  if s[1] != ‘*’ then s � ‘*’ ∪ s; 

  if s[length(s)] != ‘*’ then s � s ∪ ‘*’; 
 

  return s; 

end; 
Figure 3. PALS-LCS: An algorithm to find patterns based on LCS. 
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Figure 2. An example of the PALS-LCS algorithm. 



 

Note that since there maybe multiple substrings for a set of patterns, the number of patterns by PALS-LCS can be 

one or more. 

 

Suppose the inputs are n sequences with the length of at most k, and the alphabet set ∑. The time for obtaining LCS 

by heuristics is O(kn|∑|), for devising patterns is O(kn), and for substrings generation is O(kn). Therefore, the total 

time complexity of PALS-LCS is O(kn|∑|). The space complexity is O(kn|∑|). 

 

4.2. PALS*-LCS: Algorithm based on LCS with fewer wildcards 
How to generate patterns with as few wildcards as possible is a very important issue for high quality pattern 

discovery, since fewer wildcards translates to reduced size of languages and more specific pattern. 

The PALS*-LCS algorithm is the improved PALS-LCS algorithm with two post-processing steps:  

(a) firstly, PALS*-LCS tries to remove redundant wildcards in patterns while keeping the patterns property 

intact. Given any pattern generated by PALS-LCS, PALS*-LCS performs the following post-processing sub-steps: 

(i) if by removing a wildcard in this pattern, the remaining pattern is still the pattern for the sequences, then 

this wildcard is removed (note that this removal happens with a small chance); 

(ii) if by reversing the neighboring wildcard and alphabet, the number of wildcards can be reduced (for 

example (*ai*) to (ai**) to (ai*)), then these wildcards are reduced. 

(b) secondly, PALS*-LCS applies a PD (pattern driving) approach to iteratively reduce the wildcards and 

increase the number of alphabets in the patterns, while still ensuring that these patterns appear in a minimum number 

of sequences. Then the pattern with the best specificity is selected. 

We use an example with S = {ACGT, CGGT, CTGC}, the PALS-LCS algorithm returns the pattern *C*G*. If 

we allow one of the sequences to mismatch with the pattern, then this pattern can be improved to *CGT*, which has 

higher specificity. 

It is easy to see that the time complexity of the PALS*-LCS algorithm is O(k
2
n|∑|), and the space complexity is 

O(kn|∑|). 

 

4.3. PALS-SCS: Algorithm based on SCS 
The algorithm based on the heuristic result of the SCS of the sequences is similar to that based on LCS.  

Given a set S of sequences, the heuristic result of the SCS of the sequences, denoted as SCSA(S), is the shortest 

common supersequence of all the sequences in set S given by heuristic algorithm A. In this study, we have adopted 

the post-processing algorithm of [12] (Deposition and Reduction algorithm) to derive SCSA(S). This algorithm first 

generates a template pool – a small set of SCS templates (or templates, in short). Each template is a common 

supersequence of the SCS instance S. The reduction process shortens these templates by attempting to remove some 

characters while preserving the common supersequence property. We refer readers to [12] for details. In the 

following part, the heuristic SCS algorithm will refer to this algorithm. 

After SCSDepRedn(S) is derived, we map every sequence in the set S onto this SCSDepRedn(S) to derive different 

patterns. For example, suppose S = {ACGT, CGGT, CGTC}, and SCSDepRedn(S) = ACGGTC, then the patterns are 

{*ACG*T**, **CGGT**, **CG*T*}. We then generate the LCS of these patterns as the final pattern by using the 

heuristic algorithm for the LCS problem. For the same example, the pattern of sequences in S is the LCS of 

{*ACG*T**, **CGGT**, **CG*T*}, which is *CG*T*. Figure 4 lists the algorithm and Figure 5 illustrates the 

example. 

Note that by using the heuristic algorithm for the LCS problem to get the final results, the patterns that we have 

obtained are maximal patterns. 

Suppose the inputs are n sequences with the length of at most k, and the alphabet set ∑. The time complexity to 

post-process SCS is O(kn|∑|+ k
2
n), to devise patterns is O(kn), and to generate subsequences is O(kn|∑|). Therefore, 

the total time complexity of PALS-SCS is O(kn|∑|+ k
2
n). The space complexity of the algorithm is O(kn|∑|). 

 



PALS-SCS(S) 

// input: sequences set S 

// output: R, the pattern for all sequences 

//         in S 

begin 

  L � SCSDepRedn(S); 

  P � Patternizeβ(L); 

  R � LCSDepExtn(P); 

  return R; 

end; 

 

Patternizeββββ(L) 

// input: SCS set L 

// output: generated patterns of L 

begin 

  k � find SCS of L; 

  for i � 1 to |L| 

P � P ∪ {map Li to k}; 
  return P; 

end; 

Figure 4. PALS-SCS: An algorithm to find patterns based on SCS. 

 

Figure 5. An example of the PALS-SCS algorithm. 

 

4.4. PALS*-SCS: Algorithm based on SCS with fewer wildcards 
The PALS*-SCS algorithm is the improved PALS-SCS algorithm with post-processing. The post-processing is the 

same as in PALS*-LCS. However, note that in step (a)(i), the chance of wildcard removal is much higher than that 

for PALS*-LCS. This is easy to see just by comparing the pattern generation process between PALS-SCS and 

PALS-LCS. Again, the time complexity of the PALS*-SCS algorithm is O(k
2
n|∑|), and space complexity is 

O(kn|∑|). 

It is easy to see that the sensitivity of both PALS-LCS and PALS-SCS is 100%, since the patterns generated 

cover all of the sequences in the dataset. On the other hand, by integrating more PD approaches into the algorithms 

PALS*-LCS and PALS*-SCS, we can achieve higher specificity at the cost of lower sensitivity. 

 

4.5. Transformation between LCS and SCS though patterns 
The PALS approach also provides us with a solution for transforming between the heuristic results of SCS and LCS: 

the heuristic results of SCS and LCS can be transformed though patterns. 

The transformation is straightforward: to transform heuristic result of SCS to that of LCS, the pattern is 

generated based on heuristics SCS algorithm. Then the sequences in the dataset are aligned, under the guidance of 

patterns. This alignment results in the heuristic LCS. Theoretically, the transformation from heuristic results of LCS 

to SCS is a little bit more complicated, since the LCS only contains the common characters for a set of sequences, 

while SCS contains every character  for each of these sequences (and in the same order as in these sequences). 

However, the transformation from heuristic results of LCS to SCS is similar to that from heuristic SCS to that of 

LCS in practice: After pattern generation based on heuristics LCS algorithm, all of the sequences in the dataset can 

also be aligned under the guidance of patterns, and this alignment results in the heuristic SCS. 

 

4.6. Refinement of the heuristic results of SCS, LCS and patterns 
Based on approach proposed in the previous section, we think that the iterative refinement of heuristic SCS, LCS 

and patterns may result in better SCS, LCS and patterns. The iterative refinement is performed as this: For heuristic 

results of LCS and SCS, we iteratively transform one to another, if either (a) the length of LCS or SCS is improved, 

or (b) specificity or sensitivity is improved in the whole transformation process. This process is terminated when 

there is no improvement in the process. 
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Take a slightly different example with S = {ACGT, CGGT, CTGC}. The heuristic SCS, SCSDepRedn(S) = 

ACTGGTC, and the pattern is *C*G*, which result in a heuristic LCS of CG. On the other hand, the heuristic LCS 

directly generated from sequences is G. Therefore, the heuristic LCS from heuristic SCS is better. 

Another refinement of the results is to generate more than one heuristic result of LCS and SCS. This is 

beneficial for generation of good patterns, and the heuristic results of LCS and SCS can also benefit from 

transformation. For example, in the above example, if multiple heuristic LCS are generated (CT, CG, G), then CG is 

already one of them. This makes the patterns from LCS, *C*T* or *C*G*, better patterns than *G*. 

 

5. Experiments 
 

In experiments, we have focused on using PALS and PALS* algorithms for pattern discovery. Scrutinizing the 

PALS and PALS* algorithms, it is apparent that two questions arise and need to be answered: firstly, how many of 

the sequences in the set are covered by the patterns derived; and secondly, what proportion of the known patterns is 

covered by the patterns derived. To answer these questions on sensitivity and specificity, we performed experiments 

on simulated and real sequences. We have also analyzed the refinement of heuristic results. 

 

5.1. Experiment settings and datasets 
 To prove the effectiveness of our algorithms on general datasets, we have obtained simulated and real DNA 

sequences for experiments. Analysis on protein sequences was also performed, with similar results. The simulated 

DNA sequences contain random sequences generated by our in-house random DNA generator. For each value of the 

number of sequences N = {10, 100, 1000}, and sequences length K = {100, 1000}, we generated 10 random datasets 

of DNA sequences. Then each algorithm is run on these 10 instances to get the average results. The real datasets 

used include DNA sequences obtained from the DBTBS database [13] with known consensus patterns. Another 

dataset that we used is a subset of protein sequences retrieved from the IPI Human database [14].  

Our algorithm is implemented in C++ and Perl. To derive a list of the longest common substrings for given 

patterns, we used the Perl Tree::Suffix module. The experiments were performed on a Linux machine with 3.0GHz 

CPU and 1GB RAM. For pattern discovery, the PALS algorithms are compared with the TEIRESIAS [1], Pratt [6] 

and MMG [7] algorithms. Default values were used for all the other algorithms.  

Since each of these algorithms has a different definition of wildcards, it is difficult to calculate the exact size of 

language, Here we assume that for a specific dataset, the corresponding language have a same average length, 

regardless of the algortihm used. Specificly, for PALS algorithms, as well as the MMG algorithm, it is assumed that 

the average length of sequences being analyzed is l, average length of patterns without wildcard is p, and average 

number of wildcards is q. Then for every pattern, each wildcard ‘*’ found between two alphabets in the pattern can 

represent substring of length (l-p)/q, and the language size is |∑|
(l-p)

. For example, when *AC*T* and *AC* 

represent the same number of DNA sequences of average length of 7, then the language represented by *AC*T* is 

4
(7-3)

=64, and the language represented by *AC* is 4
(7-2)

=128. The former is more specific than the latter on this set 

of sequences. Since the average length of sequences is known in advance, this calculation can accurately estimate 

the size of languages. We also assume (for TEIRESIAS) that each wildcard ‘.’ represents |∑| characters. The Pratt 

 

Table 1. Analysis of specificity and sensitivity of the patterns, as well as running time by PALS and PALS* 

algorithms. “LS” represent log(specificity), and “No. of Pattern” represent the average number of patterns 

from the repective algortihms. 

 PALS PALS* 

Base 

Methods 

No. 

of 

Seqs 

Length of 

Seqs 

No. of 

Pattern 

No. of 

Covered 

Seqs 

LS Sensitivity 

(%) 

Time 

(secs) 

LS Sensitivity 

(%) 

Time 

(secs) 

LCS 10 100 2.7 10 2.30  100 0.8 2.30  100 12 
10 1000 4.0 10 3.32  100 80.5 3.30  100 132 

100 100 1.6 100 3.65  100 4.4 3.65  100 15 

100 1000 3.9 100 4.66  100 548.3 4.65  100 957 
1000 100 2.6 1000 7.44  100 46.0 7.41  100 81 

1000 1000 4.1 1000 7.84 100 6040.1 7.80 100 14134 

SCS 10 100 1 10 2.38  100 529 2.30  100 800 
10 1000 1 10 3.07  100 7910 3.30  100 12000 

100 100 1 100 3.81  100 941 3.65  100 2280 

100 1000 1 100 4.64  100 12481 4.65  100 22200 
1000 100 1 1000 5.50  100 1239 5.44  100 2160 

1000 1000 1 1000 5.81 100 15866 5.40 100 34500 



algorithm has similar scheme so that the language size can also be easily computed by multiplication arithmetic. As 

we have previously mentioned, LS is used instead of Specificity. 

 

5.2. Results of PALS and PALS* algorithms 
We had first analyzed the specificity and sensitivity of the patterns derived by PALS algorithms on simulated 

sequences. For PALS-LCS, since we have obtained a set of longest common substrings, the number of patterns is 

always larger than 1 whereas for PALS-SCS, there is only one heuristic pattern result. The total running time is also 

examined. For simplicity, we only show the results of PALS* with sensitivity=1. More analysis on different 

sensitivities for PALS* algorithms will be shown later. 

Results in  

Table 1 show that the sensitivities of the patterns derived by PALS algorithms are high. The sensitivities of both 

algorithms achieve 100% for different datasets. However, the specificities are low. This is probably due to the 

definition of the size of the languages (which includes much more sequences than is in the biological sense). The 

specificity of PALS-SCS is comparable to that of PALS-LCS for small dataset (N ≤ 100), but is higher than PALS-

LCS for large datasets (N ≥ 1000). This is because the SCS of a set of sequences contains more common 

information about sequences set than the LCS of those sequences. 

For the running time of PALS-LCS, we can see from the results that even for large sequence sets with many 

(1000) long (100) sequences, the processing time is less than 1 minute. For larger datasets with more than 100 

sequences with length 1000, the time needed is a few minutes. The running time of PALS-SCS is much slower than 

PALS-LCS for the same datasets. This is due to the fact that the time complexity of PALS-SCS is greater than 

PALS-LCS, especially for long sequences. 

Generally, PALS* algorithms perform better than PALS algorithms ( 

Table 1). This is likely due to the post-processing in PALS* algorithms. More specifically, PALS*-LCS 

improve very little from PALS-LCS, while the difference between PALS*-SCS and PALS-SCS is large. Because of 

post-processing, the PALS* algorithms are slower. 

Next, we generated patterns for several sets of real sequences with PALS and PALS*, and compared them with 

their respective known consensus patterns. Again, we only show the results of PALS* with sensitivity=1. Results in  

Table 3 and Table 4 show that the patterns by PALS-LCS and the patterns by PALS-SCS have certain similarity 

with the known consensus patterns for the same dataset. For example, the known consensus pattern for SigD is 

*TAAA*GCCGATAT*, and the pattern by PALS-SCS is *TAAA*T*T*CA*A*A*AA*. A significant fragment, 

“TAAA” is found by PALS-SCS. For the patterns generated by PALS-SCS, we also observed that many of them are 

supersequences of the corresponding known consensus patterns. For the patterns generated by PALS-LCS, there is 

100% sensitivity for every dataset, and the specificity values are not very low. 

Most of the results of PALS* algorithms are the same as those of PALS on these real sequences. On SigD 

dataset, the pattern by PALS*-SCS is *TAAA*A*A*AA*A*A*A*AA*. Since it is assumed that the length of the 

language that the patterns represent is a fixed value, this pattern is more specific than the result of PALS-SCS. 

Further, we analyzed the results of the PALS* algorithms with larger specificity and smaller sensitivity. The 

results are shown in Table 2. It is obvious that by reducing the sensitivity of the results, both PALS*-LCS and 

PALS*-SCS algorithms can effectively increase the specificity of the results, with the cost of slight decrease of 

sensitivity. On the other hand, in order not to increase the computational time greatly, the specificities of heuristic 

results are also not drastically improved. 

 

Table 2. Analysis of specificity and sensitivity of the patterns by PALS* algorithms with different sensitivities. 

 MIN(sensitivity) 

Base Methods 
No. 

of Seqs 
Length of Seqs 

1 0.9 0.8 

LS Sen 

(%) 

LS Sen 

(%) 

LS Sen 

(%) 

LCS 10 100 2.30  100 2.20 90 2.20 80 

 10 1000 3.30  100 3.10 90 3.00 80 

 100 100 3.65  100 3.60 91 3.60 80 

 100 1000 4.65  100 4.55 90.5 4.45 81.5 

 1000 100 7.41  100 7.35 92 7.23 81 

 1000 1000 7.80 100 7.66 91 7.36 81.5 

SCS 10 100 2.30  100 2.30 90 2.30 80 

 10 1000 3.30  100 3.30 90 3.10 80 

 100 100 3.65  100 3.60 91 3.60 81 

 100 1000 4.65  100 4.50 92 4.40 81 



 1000 100 5.44  100 5.31 90 5.25 80.5 

 1000 1000 5.40 100 5.33 90 5.28 80 

 

5.3. Comparison with other algorithms 
Next, we compared PALS and PALS* algorithms to well-known algorithms: MMG [7], TEIRESIAS  [1] and Pratt 

[6]. As the “gold standard”, we used the results from the “regular pattern of fixed form with range specifiers” [7], 

which have the best reported performance. Since PALS-LCS and PALS*-LCS perform better than PALS-SCS and 

PALS*-SCS respectively, we only used PALS-LCS and PALS*-LCS for comparison. We show the results of 

PALS*-LCS with sensitivity=1 for simplicity. 

Results in Table 5 show that PALS algorithms have comparable sensitivity with the TEIRESIAS, and better 

sensitivity than the MMG algorithm. PALS-LCS always outputs results with 100% sensitivity; these are the same 

for the TEIRESIAS algorithm, but the MMG algorithm output results with less sensitivity. Though PALS-LCS has 

low specificity, and are less accurate than the MMG algorithm, they are more accurate than the TEIRESIAS 

algorithm. This is because TEIRESIAS algorithm produces all the patterns that appear in at least a minimum number 

of sequences, so the language size is very large. PALS*-LCS algorithm’s output is very close to that of PALS-

LCS’s. The Pratt algorithm perform better than MMG and TEIRESIAS algorithms both in specificity and sensitivity. 

The Pratt algorithm also performs better than the PALS*-LCS algorithm. 

Apart from comparing the relative accuracies of these algorithms, we have also calculated the sensitivity and 

specificity of the randomly generated pseudo patterns and compared them with these algorithms. Only if such 

pseudo patterns have significantly lower specificity and sensitivity can we say that the pattern discovery algorithms 

are discriminative. The results (details not shown here) show that the pseudo patterns are far smaller than these 

algorithms compared, indicating these algorithms are discriminative. 

We have also tried to analyze the common patterns found by these algorithms. We analyzed the results of 

PALS* and the Pratt algorithm (which has better specificity and sensitivity than other algorithms) on simulated 

sequences. It is interesting to note that though their patterns are similar at one part or another, hardly any of their 

results are identical. This indicates the non-optimality of current patterns discovered by these algorithms. We think 

that a meta-algorithm that can combine the results of these algorithms might give even better patterns. 

 

5.4. Refinement of the heuristic results 
The performance of refinement approach for the heuristic results of SCS, LCS and patterns are investigated next. 

Generally, refinement can further improve the sensitivity and specificity of the patterns generated, as well as gives 

longer heuristic LCS and shorter SCS on some datasets. On average the improvement is small (by 1 or 2 characters). 

Although achieving such improvement is important, the time used is much more than the PALS algorithms. This 

indicates that the current heuristic algorithms for LCS and SCS that we used have reached a limit based on the 

character-by-character approach, and further refinements based purely on these results are not effective. 

When we used more than one heuristic result for LCS and SCS generation, it was discovered that the qualities 

of the resulting LCS, SCS and patterns are all improving (details not shown here). This is as expected, since more 

information has been gathered from these sequences. Generally, by this means, the length of LCS and SCS can be 

further improved by 1 to 2 characters, and the patterns can be more specific. 

 

Table 3. Comparison between known consensus patterns and the 

results of PALS and PALS* 

 PALS-LCS PALS*-LCS 

Datasets Known Consensus Patterns No. Patterns by LCS LS 
Sensitivity 

(%) 
No. Patterns by LCS LS 

Sensitivity 

(%) 

SigB *AGGTTT*GGGTAT* 3 10.52  100 3 10.52  100 

SigD *TAAA*GCCGATAT* 1 10.06  100 1 9.92  100 

SigE *CATAT*CATACA*, 

*ATATT*CATACA* 

2 10.69  100 2 10.16  100 

SigF *G*TA*, 
*GG*A*A*TA* 

2 9.40  100 2 9.34  100 

SigG *GHATR*, 

*GG*CATXHTA* 

1 9.14  100 1 9.14  100 

SigH *AGGTATT*GAATT* 1 10.18  100 1 10.16 100 

SigL *TGGCA*TTGCA* 2 9.07  100 2 9.07  100 

SigW *TGAACN*CGTA* 2 10.19  100 2 10.19  100 



Again, this indicates that LCS, SCS and patterns are highly related. By using multiple (albeit slightly different) 

LCSs and SCSs, which represent the same sequences profile, the orders of characters in patterns are slightly changed, 

thus making the patterns more specific. 

 

5.5. Efficiency 
For the running time of these algorithms, we observe that even for datasets with 10 sequences each of length 100, 

MMG took more than 15 minutes to process, and TEIRESIAS took about 1 minute. In fact, MMG terminates after 

900 secs, and there are no results for datasets that takes longer than that to process. The Pratt algorithm also takes 

more than 1 minute on these datasets. By comparison, PALS is much efficient than these two algorithms ( 

Table 1). However, for very large dataset (N > 1000, K > 1000), all of these algorithms (including PALS) take more 

than an hour to process except Pratt algorithm, which only needs 10 minutes. 

The programs for PALS and PALS* algorithms are available upon request. 

 

6. Conclusions and future work 
 

In this paper, we have focused on the relationships of LCS, SCS and patterns for biological sequences. The 

investigation of this problem is very important in bioinformatics, since the patterns in biological sequences usually 

indicate structural or functional relationship among sequences. The contributions of this paper include (a) the 

observation that for a set of sequences, the sequences profile is the center around which LCS, SCS and patterns are 

highly related; and (b) novel algorithms to derive patterns that are based on the observation of relationship among 

LCS, SCS and patterns for the given sequences. 

The algorithms proposed, PALS and PALS*, have high sensitivity and specificity, and they are effective in 

deriving patterns close to the known consensus patterns for real sequences. For PALS-SCS, the patterns generated 

are maximal patterns. The PALS* algorithms incorporate a post process that further improve the specificity. The 

sensitivities and specificities of PALS and PALS* are comparable to or higher than existing algorithms such as 

TEIRESIAS, MMG and Pratt on different sequences set. The PALS and PALS* algorithms are also quite efficient, 

Table 4. Comparison between known consensus patterns and the results of PALS and PALS*. 

Datasets 
Known Consensus 

Patterns 
Pattern by PALS-SCS Pattern by PALS*-SCS 

SigB *AGGTTT*GGGTAT* *G*A*A*GG*A*A*A* *G*A*A*GG*A*A*A* 

SigD *TAAA*GCCGATAT* *TAAA*T*T*CA*A*A*AA* *TAAA*A*A*AA*A*A*A*AA* 

SigE *CATAT*CATACA*, 

*ATATT*CATACA* 

*T*T*T*T*TA*A*A*A* *T*T*T*T*TA*A*A*A* 

SigF *G*TA*, 

*GG*A*A*TA* 

*G*T*TA*TT*T*A*AA*A*TA*A* *G*T*TA*TT*T*A*AA*A*TA*A* 

SigG *GHATR*, 
*GG*CATXHTA* 

*G*A*AA*AA*A*AA*T*T* *G*A*AA*AA*A*AA*T*T*s 

SigH *AGGTATT*GAATT* *A*A*A*AG*AAT* *A*A*A*AG*AAT* 

SigL *TGGCA*TTGCA* *CA*A*AC*TGGCA*C*TTGCA*T*T*AA*AG*G*GA*A*A* CAAACTGGCACTTGCATTAAAGGGAAA 

SigW *TGAACN*CGTA* *AA*AA*C*T*TT*T*TA* *AA*AA*C*T*TT*T*TA* 

Table 5. Comparison of different algorithms on patterns of a set of sequences. A ‘–’ indicates that the 

algorithm took too long to produce results. 

Datasets PALS-LCS PALS*-LCS MMG TEIRESIAS Pratt 

Simulated 

sequences 
Length of Seqs 

No. of 

Seqs 

Sen 

(%) 
LS 

Sen 

(%) 

Sen 

(%) 

Sen 

(%) 
LS 

Sen 

(%) 
LS 

Sen 

(%) 
LS 

Dataset 1 100 10 100 2.30  100 100 – – 100 15.95 100 11.04 

Dataset 2 1000 10 100 3.32  100 100 – – 100 – 100 17.06 

Dataset 3 100 100 100 3.65  100 100 – – 100 18.55 100 8.24 

Dataset 4 1000 100 100 4.66  100 100 – – 100 – 100 16.06 

Real sequences Known Consensus 

Patterns 

No. of 

Seqs 

          

SigD *TAAA*GCCGATAT* 33 100 10.06  100 100 97.0 2.80  100 12.81  100 5.46 

SigE 
*CATAT*CATACA*, 
*ATATT*CATACA* 

62 
100 10.69  100 100 96.8 2.53  100 16.86  100 3.38 

SigH *AGGTATT*GAATT* 48 100 10.18  100 100 91.7 2.64  100 14.05  100 2.58 

SigW *TGAACN*CGTA* 32 100 10.19  100 100 96.9 2.82  100 12.65 100 12.69 



and have small space complexities.  

Although we had investigated the relationships among LCS, SCS and patterns, we think that a deeper 

understanding of their relationships is needed. One possible method is the generation of a hidden markov model 

(HMM) for the alignment of the sequences, and analyzing the relationship between this HMM and LCS, SCS and 

patterns. We think that there may be a HMM available such that there are only match and insertion states. By using 

such HMM, the SCS can be the concatenation of all emitted symbols, the LCS can be the concatenation of all 

symbols emitted by match state, and the pattern can be the LCS thus generated with wildcards in it. 

Another direction of research is to improve the current algorithm so that the PALS algorithms can output more 

useful information about the patterns of the sequences. We are currently working on this issue. 

Combining the patterns that we have discovered with biological domain knowledge such as the functions of 

certain sequences family, it is possible that these algorithms be applied on more bioinformatics problems such as to 

classify sequences, predict their functions, and find new motifs. We will also works on these interesting problems in 

the near future. 
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