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Abstract: How to fuse multi-channel neurophysiological signals for emotion 
recognition is emerging as a hot research topic in community of Computational 
Psychophysiology. Nevertheless, prior feature engineering based approaches 
require extracting various domain knowledge related features at a high time 
cost. Moreover, traditional fusion method cannot fully utilise correlation 
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information between different channels and frequency components. In this 
paper, we design a hybrid deep learning model, in which the ‘Convolutional 
Neural Network (CNN)’ is utilised for extracting task-related features, as well 
as mining inter-channel and inter-frequency correlation, besides, the ‘Recurrent 
Neural Network (RNN)’ is concatenated for integrating contextual information 
from the frame cube sequence. Experiments are carried out in a trial-level 
emotion recognition task, on the DEAP benchmarking dataset. Experimental 
results demonstrate that the proposed framework outperforms the classical 
methods, with regard to both of the emotional dimensions of Valence and 
Arousal. 

Keywords: affective computing; CNN; time series data analysis; EEG; 
emotion recognition; LSTM; multi-channel data fusion; multi-modal data 
fusion; physiological signal; RNN. 
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1 Introduction 

Emotion, which is sometimes also referred to as affect or mood, is the internal experience 
(e.g., joy, grief, scare, anger, sympathy, disappointment, etc.) caused by various external 
events. It plays important roles in various aspects for human beings, such as interpersonal 
communication, planning, creativity, reasoning, behaviour, etc. Increasingly, emotion is 
being regarded as an important part of intelligence, as the process of judgment, reasoning 
and decision making cannot avoid the influence of inner emotions (Blanchette and 
Richards, 1994). Therefore, lots of researchers in Artificial Intelligence (AI) believe that 
the machine cannot acquire a true intelligence without cognition of emotion (Minsky, 
1988). In this context, a new research branch in AI called Affective Computing (AC) 
emerged. The goal of AC is to empower computer systems with the ability to recognise, 
comprehend, express and respond appropriately to human’s emotions, and ultimately 
providing us with enhanced experience in various scenarios of Human Computer 
Interaction (HCI) (Picard, 1999), such as computer games (Liu et al., 2009), information 
retrieval (Lopatovska and Arapakis, 2011), safety driving assist system (Hernandez et al., 
2014), e-learning (Shen et al., 2009), etc. 

Besides the practical applications in HCI, emotion recognition and monitoring are 
also promising in the field of auxiliary diagnosis of various mood disorders. It is 
estimated by the World Health Organization (WHO) that major depression will be the 
second leading cause of disability in the world by 2020, trailing only ischemic heart 
disease (World Health Organization, 2001). There is an urgent need to develop effective 
techniques to assist the psychiatrists in diagnosing and precaution of emotional disorders, 
e.g., depression, post-traumatic stress disorder, anxiety, etc. Traditionally, the patients’ 
mental status is clinically assessed by psychiatrists based on the DSM checklist 
(American Psychiatric Association, 2013) or through patients’ self-reporting information. 
Nevertheless, the diagnosis accuracy may be affected by the proficiency of the 
psychiatrists and the cooperation of the patients. Therefore, a reliable computer aided 
emotion monitoring method will contribute largely to mental illness prevention and 
diagnosis. 

Broadly speaking, emotion recognition is a pattern recognition task based on 
monitoring and analysing human’s various physical manifestations. In general, explicit 
physical activities (e.g., facial expressions, body gestures and voice) are subconsciously 
manifested. They are the main ways to communicate our emotional information and 
personal feelings to other people. However, in some situations we may consciously 
conceal, pretend, even exaggerate those emotional manifestations. In this regard, those 
explicit manifestations based recognition approaches maybe not stable and robust in 
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performance. According to various psychophysiological studies, even though there are 
still debates on whether the emotion fluctuations prior to neurophysiological changes or 
oppositely neurophysiological changes result in various emotions, there definitely exists 
emotion-specific patterns that we cannot consciously control (Ekman and Davidson, 
1994; Krumhansl, 1997; Louis and Laurel, 2001). More specifically, the generation of 
emotion reflects a synergy of the Central Nervous System (CNS) and the Automatic 
Nervous System (ANS). It suggests that we can explore emotion computational method 
based on neurophysiological measurements directly or indirectly related to CNS (e.g., 
EEG, fMRI, etc.) or ANS (e.g., blood volume, ECG, galvanic skin response, respiration, 
temperature, etc.). 

In computational psychophysiology, limited by the development of acquisition 
apparatuses and computational methods, early researches mainly focused on single-
channel neurophysiological signal based emotion recognition. With the recent advances 
in sensor technology and machine learning methods, synchronised monitoring, recording 
and analysing of multi-channel neurophysiological signal is becoming possible. 
Nevertheless, there still exist a number of challenges in multi-channel neurophysiological 
signal based emotion recognition and monitoring, summarised as follows: 

 First, numerous efforts have been devoted to finding and designing the various 
emotion-related features from the weak and noisy multi-channel signals, such as 
differential entropy (Duan et al., 2013), asymmetric spatial pattern (Huang et al., 
2012), nonlinear dynamic characteristics (Stam, 2006). However, the design of those 
features needs more in-depth study from the perspective of emotion related 
psychophysiological research. The computation of those features sometimes can be 
time consuming, especially when extracting features for a relatively long time series 
based on theory of chaos and non-linear dynamics, e.g., Laypunov exponent, and the 
effectiveness of those features are largely affected by the parameter settings, e.g., the 
length of the computing window, the number of embedding dimensions, the length 
of delay time, etc. (Kim et al., 1999). Meanwhile, various feature selection and 
reduction methods are needed and studied for finding critical emotion-related 
neurophysiological information and better recognition performance (Li et al., 2016; 
Zheng et al., 2016). 

 Second, capturing the correlation between multi-channel neurophysiological signal is 
crucial, but typically done through feature-level fusion based approaches (Chen  
et al., 2015) or decision fusion based strategies (Hussain et al., 2011). However, the 
processes of feature extraction and correlation modeling in these methods are 
handled separately. Recent Deep Learning (DL) based shared representation learning 
approaches (Jirayucharoensak et al., 2014; Li et al., 2015), although promising, still 
largely rely on hand-engineered features, which may under-utilise the ability of DL, 
in which the task-related features and shared representation can be learned 
automatically. 

 Third, traditional machine learning based methods are not good at modelling the 
transition and evolution of emotional states, which is important for psychiatrists to 
monitor, review and assess a patient’s past condition. In addition, the traditional off-
line machine learning methods are not suitable for incremental learning scenarios, 
where multi-channel neurophysiological signals may be continuously acquired 
online rather than be provided in advance. 
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 Fourth, most existing works have concentrated on segment-level emotion 
recognition tasks, where the emotion prediction is conducted for signal segments  
of 1 second long or a little longer. It cannot meet the need of long-term emotion 
monitoring, as the acquired signals may last for hours or days. 

To address the issues mentioned above, we propose a pre-processing method that 
encapsulates the multi-channel neurophysiological signals into grid-like frame cubes. 
Each frame cube represents the wavelet spectral energy information of the multi-channel 
signals within a specific time window. Further, we propose a hybrid deep learning 
structure that integrates the Convolutional Neural Network (CNN) and Recurrent Neural 
Network (RNN) for processing the acquired frame cube sequences and conducting 
emotion recognition tasks in one single framework. Specifically, the CNN is used for 
learning task-related features and mining inter correlation of multiple-channel 
neurophysiological signals from the frame cube, through designed convolutional filters. 
The characteristics of deep learning in automatic feature extraction and feature selection 
reduce the difficulties in computing domain-specific features as well as help us to bypass 
the traditional feature selection phase. We can also determine the critical emotion-related 
neurophysiological variables and components through analysing the trained 
convolutional filters. The RNN is used for modelling the evolution, transition and long 
term dependencies of the signals for final emotion prediction. The adoption of RNN is 
based on two facts: (1) the emotional experience is a reaction to external events  
and evolves continuously with respect to the change of stimuli, and (2) the 
neurophysiological signals contain rich contextual and semantic information that is 
suitable for the RNN to model. In the experiment, we validated the effectiveness of our 
method on the multi-channel EEG data in DEAP dataset, which is a widely used 
benchmark for emotion recognition, and also shown that our method has a potential for 
real-time prediction and monitoring. 

The rest of this paper is organised as follows. A detailed description of the proposed 
pre-processing method and the hybrid DL structure is presented in Section 2. Section 3 
describes the experimental settings and reports the experimental results, as well as 
analyses the critical variables in emotion recognition, finally, we conclude this work in 
Section 4. 

2 The proposed deep fusion framework 

2.1 Overview of the framework 

Our proposed methodology addresses two research problems. The first one is how to pre-
process and represent the multi-channel signals before adopting some modelling 
methods. The second one is how to model and recognise emotions based on the pre-
processed data. Correspondingly, we propose a 3D frame cube based representation 
method and a hybrid deep learning framework based on CNN and RNN, respectively. 
The brief process of our framework in dealing with multi-channel neurophysiological 
signal based emotion recognition is illustrated in Figure 1. 
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Figure 1 The overview of our framework designed for multi-channel neurophysiological data 
based emotion recognition (see online version for colours) 

 

2.2 Data pre-processing and frame cube construction method 

In this work, we construct three-dimensional data structure which is called ‘frame cube’ 
by us, denoted as Mn, each represents the wavelet energy distribution in dimensions of 
‘channel’, ‘scale’ (a terminology in signal processing, each scale represents a specific 
coarseness of the signal) and the current time window. The advantage of the frame cube 
structure is that it encapsulates and integrates information of all channels’ signal into a 
direct-viewing form. Therefore, these multi-channel signals can be further processed as a 
whole, and the inner relationship of the multiple channels can be mined, especially 
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suitable for the multi-channel EEG signal based data mining tasks, where each channel’s 
signal is the mixture of electrical activity arising from various cerebral regions 
distributed in the brain. Furthermore, the sequence of frame cubes < Μ1, M2,..., Mn > 
reflects the dynamic activity changing in different cortical areas during an emotional 
experience. 

Before constructing the frame cubes, we firstly need to conduct ‘Continuous Wavelet 
Transform (CWT)’ for each-channel signal, and we then need further transform the 
output from CWT into scalograms, as detailed below. 

2.2.1 Wavelet based sparse representation 

The representation and approximation of a signal is the key issue in signal processing and 
related pattern recognition tasks. The ‘Sparse Representation (SR)’ plays important roles 
in fields including signal processing, machine learning, computer vision, etc. It helps 
learn a compact structure and get high-level implicit semantic information from raw 
signals (Rubinstein et al., 2010). ‘Wavelet Transform (WT)’ is typically regarded as a 
kind of SR. It is excellent in denoting local transitory characteristics in both frequency 
and time domain. Therefore, it is quite suitable to be applied to process non-stationary 
neurophysiological signals, such as EEG (Subasi, 2005). Compared with the wavelet 
transform, traditional ‘Windowed Fourier Transform’ based time-frequency analysis 
(e.g., the ‘Short Time Fourier Transform (STFT)’) is only suitable for processing 
stationary signal and it is incapable of getting a high joint frequency-time resolution 
according to the ‘Heisenberg’s Uncertainty Principle’. Therefore, even though STFT is a 
good solution in some cases, in this work we choose to adopt wavelet transform. 

Compared with traditional SR methods, such as ‘Sparse Coding’. The dictionary of 
wavelet analysis is not acquired through learning, but is predetermined by a mother 
wavelet .  After scaling s and translation u of the mother wavelet a group of wavelet 

basis functions ,s u  can be acquired, as Formula 1. 

,

1
( ) : , , 0.s u

t u
t u s

ss
      

 
   (1) 

The raw channel signal is decomposed according to these basis functions. Therefore, the 
effect of representation is largely affected by what kind of mother wavelet is selected. 
You have to deliberately choose from various kinds of wavelet families, such as Haar 
wavelet, Daubechies wavelet, Symlet wavelet, Coif Wavelet, Bior Wavelet, etc. (Gandhi 
et al., 2011). In this work we simply choose the Db-4 wavelet to do CWT for each 
channel signal, which is formulated as Formula 2, where ƒ(t) is the original EEG signal. 

,( , ) : ( ) ( ) .s uW f s u f t t dt



    (2) 

After the CWT, each one-dimensional channel signal is transformed into a wavelet 
coefficients based time-scale representation, as shown in Figure 2. The notion of scale is 
introduced as an alternative of frequency. Each scale corresponds to a scaled version of 
the mother wavelet, where the low scale is generally corresponding to high-frequency 
component of the signal and the high scale is corresponding to low-frequency 
component. The conversion relationship between specific frequency and scale is 
determined based on the sampling period and central frequency of the wavelet. The 
number of scales we specify is determined according to the properties of the raw signal, 
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such as the sampling rate and the cut-off frequency. For example, if the sampling rate is 
128Hz, then we can obtain at most 64 frequency components from the raw signal 
(according to the ‘Nyquist’s Sampling Theorem’). Each element in the time-scale 
representation is the calculated wavelet coefficient corresponding to a specific scale of 
mother wavelet. The wavelet coefficients can also be used to reconstruct the original 
signal, so the wavelet coefficients here can be regarded as the signal’s alternative 
representation. 

Figure 2 The time-scale representation of the wavelet coefficients obtained after CWT for a 
channel signal. The larger the absolute value of the wavelet coefficient, the greater the 
proportion of the corresponding component in this channel signal (see online version 
for colours) 

 

In this work, after the CWT we further transform each channel signal’s wavelet coefficients 
based time-scale representation into an energy based time-scale representation, namely 
‘scalogram’ (Bolos and Benitez, 2014), which can be obtained through Formula 3: 

 
1

22( ) : | ( , ) | .S s Wf s u du



    (3) 

As shown in Figure 3, it represents the distribution of the spectral energy in a signal, the 
hotter the pixel’s colour the more concentration of energy in specific frequency range. 
The advantage of scalogram includes two aspects: First, the scalogram reflects detailed 
change of spectral in both time and scale, and the spectral energy oscillations have been 
recognised as an indicator of various cognitive processes (Ward, 2003). Second, each 
element of the scalogram is the percentage of energy that the corresponding signal 
component carries, and the sum of all the elements is equal to 1. Therefore, the numerical 
range is naturally suitable for processing by ‘Artificial Neural Networks (ANN)’. 
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Figure 3 We further transform one channel signal into a scalogram based on the obtained 
wavelet coefficients, and the multi-channel scalograms are encapsulated into multi-
time-step frame cubes through sliding window (see online version for colours) 

 

We further construct frame cube sequence from the multi-channel scalograms. The 
reason for dividing the scalogram into multiple frames is the time window will be large if 
we represent the trial as only one single frame, especially when the signal’s sampling rate 
is high. The processing of such a large-size input through CNN will lead to high 
computational cost. The cost in processing such a single large frame cube can be 
decreased by distributing the computing into smaller subparts, namely the frame cube 
sequence. The construction method for frame cube sequence is detailed in the following 
subsection. 

2.2.2 Frame cube construction 

The frame cubes are constructed after each channel signal’s scalogram has been obtained. 
Each frame cube is a cube-like C × S × L structure, as in Figure 4, which represents the 
spectral energy distribution in the С channels and the S selected scales within a L-length 
time window. The procedure of constructing a frame cube can be summarised into three 
main operations: 

• Firstly, we should determine the length L of the time window that a frame cube 
represents. For example, if we set the time window as 1 second long with no overlap 
between adjacent windows, then we can get 60 frame cubes for a 60 second long 
trial. 

• Secondly, we extract frames by sliding the time window from start point 
simultaneously on each of those scalograms, each with a size of S × L. 
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• Thirdly, we stack the extracted frame of each channel signal in current time step t to 
construct a frame cube. Then we can get a frame cube with a size of C × S × L, 
which represents the energy distribution within current time step t. 

• Finally, we slide to the next time step t + 1 through sliding right with a length L, and 
repeat the operations from 1 to 3 until all of the frame cubes of one trial have been 
constructed. 

Figure 4 The illustration of the proposed frame cube structure for information representation and 
mining (see online version for colours) 

 

2.2.3  Scale selection 

In order to reduce the computing burden, sometimes we also can adopt ‘Energy to 
Shannon Entropy Ratio (EER)’ to select some of the most representative scales. The 
optimal scales are selected when its spectral energy is high meanwhile its Shannon 
entropy is low. The criteria is presented as Formula 4: 

.

( )
( )

( )sh

Energy s
r s

Entrophy s
   (4) 

The energy of the scale ‘s’ can be calculated through the sum of the energy that the ‘n’ 
wavelet coefficient of this scale carries, as Formula 5: 

2

1

( ) | ( ) |
n

i
i

Energy s C s


    (5) 

The Shannon entropy describe the uncertainty of the energy distribution in scale ‘s’. The 
lower the entropy the more information the specific scale contains, as Formula 6:  

1

( ) log
n

i i
i

Eneropy s P P


   (6) 
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where the Pi is the probability distribution of the energy of the coefficient Ci in scale ‘s’ 

and 
1

1,
n

ii
P


  as Formula 7: 

2| ( ) |

( )
i

i

C s
P

Energy s
   (7) 

The EER for all channel signals can be calculated according to the method mentioned 
above. After averaging the results we got the average EER for each scale, as shown in 
Figure 5. For example, in this case we can select components in scale from 7 to 38 whose 
ratio is relatively high to construct the frame cubes.  

Figure 5 The average Energy-Entropy Ratio is calculated for all channel signal, and the scales 
with higher EE ratio can be selected for constructing the frame cubes (see online 
version for colours) 

 

2.3 The convolutional recurrent neural network 

Besides the pre-processing method mentioned above, we also propose a hybrid  
deep learning model, which is called the ‘Convolutional Recurrent Neural Networks  
(C-RNN)’ by us, to conduct emotion recognition tasks. As shown in Figure 6, the model 
is a composition of two kinds of deep learning structures. It combines the powerful 
ability of the CNN in processing data with grid-like topology and the RNN in processing 
sequential data. The CNN unit works for mining inter-channel and inter-frequency 
correlation and extracting features from the frame cubes. The ‘Long Short-term Memory 
(LSTM)’ unit, which is a refined RNN structure, models the contextual information for 
sequences that have arbitrary length. This hybrid model is quite suitable for processing 
two or three-dimensional sequential data. 

The function of the C-RNN in this paper can be formulated as: 

1, , , , ,t nM M M l    the l represents the predicted emotion label of the sequence. 

The difference between our model and the traditional ‘many-to-one (M2O)’ model rests 
with how the predicted label generated. The label of traditional M2O model is determined 
by its last step’s output, while the label of our model is determined by each step’s output. 
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More specifically, the LSTM based RNN in this model is used for learning contextual 
information from the feature sequence that extracted through the front CNN, and 
generating decision information in each time step. The decision merge layer (decision 
average layer) of the C-RNN is used for recording those decision output, which is the 
basis for the final decision of the entire trial. Then, the final l is obtained by averaging  
the value in the softmax nodes of the decision layer in each time step. Then, the node 
with the maximum average probability determines which class of this trial belongs to, 

which can be formulated as: 
1

1
.

n

ii
l argmax

n 

   
 
 y  This strategy complies with our 

assumption that the participants’ emotional rating is based on their entire experience in a  
trial. We should notice that the weights of the time distributed CNN are tied across time 
in this model, so it can also be regarded as only a single CNN exists in this time-series 
model. 

Figure 6 The unfolded time chain form of the C-RNN model in emotion recognition. Each time 
step, a frame cube is fed into the model, the CNN is responsible for extracting inter-
channel correlation features through deliberately designed convolutional filters and the 
extracted information is further fed into the LSTM unit for context learning. Finally  
the decision layer give the recognition results based on the sequences of the entire trial 
(see online version for colours) 

 

In summary, the convolutional filter size is deliberately designed for mining the 
correlation among different channels as well as scales (frequencies). The LSTM based 
RNN in this model is used for learning contextual information from the feature sequence 
that extracted through the front CNN, and the emotion recognition for the entire trial is 
decided based on the output of LSTM in each time step. The model is constructed and 
trained through some open source deep learning libraries, such as Keras (Chollet, 2015). 
In the next subsection we will give detailed introduction to the two components CNN and 
RNN of our hybrid model, respectively. 
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2.3.1 Convolutional neural networks (CNN) 

The Convolutional Neural Networks is a successful case of introducing findings in 
neuroscience to ‘Deep Learning’ researches. It has achieved great success not only in the 
field of computer vision but also in the fields of speech recognition and natural language 
processing, etc. The architecture and mechanism of CNN provides the possibility for 
neural networks in processing data with two or three-dimensional structure. The designed 
convolutional filters help for extracting multiple kinds of features automatically. 
Generally speaking, a CNN is composed of one or several stacked convolutional layers. 
Each convolutional layer typically includes three processing stages, namely convolution 
stage, detector stage and pooling stage (Lecun et al., 1998). The convolutional stage is a 
process of applying convolutional filters to original 2D data with one or multiple 
channels in depth. After this process, multiple feature maps are acquired from the input. 
The characteristics of the convolution stage includes sparse connectivity and parameter 
sharing. The mechanism of parameter sharing greatly decrease the amount of weight 
parameters in traditional full-connected neural networks, and in turn reduces the cost for 
parameter storage. The following detector stage is a non-linear transformation (e.g., 
ReLU activation function) of the obtained output from prior convolution stage. The last 
stage is another operation called pooling (e.g., Max Pooling and Average Pooling) which 
is a summary statistics of nearby results after detector stage, this stage helps the 
representation to be invariant to translation of input, and meanwhile the size of the input 
to next convolutional layer or a fully-connected layer can be reduced greatly. 

Specifically, in this work the designed convolutional filter of the CNN is used for 
learning task-related features from the frame cube through mining inter correlation of 
different channels and different scales in those neurophysiological signals. The 
characteristics of deep learning in automatic feature extraction, feature selection and 
feature fusion reduce the difficulties in computing domain-specific features, as well as 
help us to bypass the traditional feature selection phase. Besides, we can also determine 
the critical emotion-related neurophysiological variables and components through 
analysing the trained convolutional filters. 

2.3.2 Recurrent neural networks (RNN) 

As we know, the magnitudes of physical measurements are quite small, and generally 
their changes lag behind the evolving of emotions (Krumhansl, 1997). Hence, the RNN is 
suitable to resolve the delayed effect through accumulating the weak signal 
characteristics in each time step. After combining with the RNN unit, the hybrid model 
acquires the ability of learning a time series. The RNN is good at sequential modelling 
that traditional deep neural network (DNN) can’t do well. The difference between the 
RNN and the DNN is the weights parameters are reused at every time step, so the number 
of parameters will not increase in proportion with the length of the input sequence. The 
RNN’s ability relies on its recurrence structure, which can model contextual information 
from sequences with equal or different length. It is very important when we do not know 
which moment plays the most important role in the subject’s final evaluation of the 
specific emotion they experienced in a trial. 

The simple RNN’s practical application has been hampered by its special design for 
difficult training, the RNN must faces the mathematical challenge of ‘gradient vanish or 
explode’ in back propagation when its dependencies is too long (Bengio et al., 1994). 
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Therefore, in order to reduce the difficulties in learning a long-term dependencies, some 
rectified recurrent units, including GRU and LSTM that combine ‘gate’ mechanism in 
their structure, have been adopted to replace the usual units of the traditional RNN. The 
gate can forget the information has been used and the self-loop structure allows the 
gradient to flow for long durations. These gated RNNs have gained great success in tasks 
of handwriting recognition, speech recognition, machine translation, image caption, 
parsing, etc. (Graves, 2012). 

Figure 7 The detailed structure of the LSTM unit, its function for contextual and sequential 
learning is based on the cooperation of those three gates (see online version for colours) 

 

In this work, we adopt LSTM as the RNN unit. As shown in Figure 6, the recurrence of a 
LSTM based RNN can be presented and comprehended through unfolding it into a chain 
form, each chain represents a time step in processing the data that fed from the front 
CNN. The cell states flow along with those chains, each chain has three gate structures 
that determine what information from prior step should be forgot and what information in 
current time step should be added into the main flow. A typical LSTM unit’s structure is 
illustrated in Figure 7, and the mechanism of the gates is described as follows: 

The first one is the ‘Forget Gate’, which determines what information from the past 
should be forgot. The hidden state ht–1 from the prior LSTM cell and the current step’s 
input xt are concatenated into a new vector, after multiplication with the weight 
parameters Wƒ of the gate, each element’s value of the output vector ft is scaled between 
0 and 1 through element-wise sigmoidal operation σ. This output ft acts as a decision 
vector, it helps to determine what information in the prior cell state Ct–1 should be 
reserved through element-wise multiplication: 1 * .t tC f  The element ‘0’ causes the 

corresponding information in Ct–1 will be wiped out, while the element ‘1’ means the 
corresponding information is allowed passing through. The output ft of the gate is 
formalised as equation (8). 

  1,t f t t ff W h x b      (8) 
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The second one is the ‘Input Gate’, the fulfilment of its function needs cooperation of 
two parallel layers. The tangent layer outputs candidate information tC  for selection, 

while the sigmoidal layer acts just as the forget gate, it decides what candidate 
information will be selected by outputting a decision vector it. After the element-wise 
multiplication of the candidate information by the decision vector * ,t tC i  the final 

information that should be added to the cell state is determined. The two layers’ functions 
are formalised as equations (9) and (10), respectively. 

1( [ , ] )t t t t ii W h x b      (9) 

1tanh( [ , ) )t c t t cC W h x b     (10) 

Therefore, the cell state Ct of the current chain is a combination of the reserved historical 
information of Ct–1 and the updated information selected from ,tC  as equation (11). 

1 * *t t t t tC C f C i    (11) 

The last one is the Output Gate’. In a word, it decides outputting what hidden state ht in 
current chain through multiplication of the decision vector ot by the candidate 
information selected from Ct, as shown in equations (12) and (13), respectively. 

1( [ , ] )t o t t oo W h x b      (12) 

tanh( )*t t th C o   (13) 

3 Experiment and discussion 

In this section, we will show the effectiveness of our methods, and we also compare our 
method with several classical baseline methods. 

3.1 Experimental dataset 

Our model was validated on the target dataset DEAP (Koelstra et al., 2012), which 
includes multi-channel neurophysiological signals collected from 32 subjects. The 
subjects’ various emotions were stimulated through 40 one-minute-long music videos 
that corresponding to different emotional genres. One stimuli is presented in one trial, 
and the signals were continually recorded during those trials. The 40 stimuli are selected 
from 120 candidate music videos based on some volunteers’ ratings, which is projected 
on a two-dimensional emotional space proposed by Russell (Russell, 1980), as illustrated 
in Figure 8, where the two dimensions are Arousal (it ranges from relaxed to aroused) 
and Valence (it ranges from pleasant to unpleasant), respectively. The higher the specific 
ratings the stronger the specific emotion that the video contains. 

3.2 Label processing 

Quantifying and representing the emotional experience is the precondition for computing 
and recognising emotions. Besides the six discrete emotional states proposed by Paul 
Ekman (Ekman, 1993), which is firstly adopted in facial expression based studies. The 
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‘Valence-Arousal Plane’ based two-dimension-space representation method is currently 
being widely adopted, as there are fuzzy boundaries existing in the transition of various 
emotional experiences. The emotional dimension of ‘Valence’ is a measure of the degree 
of happiness or sadness the subjects feel, and another dimension of ‘Arousal’ reflects the 
intensity of excitement. All kinds of emotional states can be projected on the 2D plane 
with a value between 1 to 9 for ‘Valence’ and ‘Arousal’, respectively. In this study, 
according to the subjects’ personal ratings, we divide and label the trials into two classes 
for Valence and Arousal respectively (pleasant: > 5, unpleasant: ≤ 5; aroused: > 5, 
relaxed: ≤ 5). 

Figure 8 The ratings on Valence-Arousal plance for 120 candidate music videos. The 40 videos 
that lie closest to the extreme corners of the four quadrants are selected as the stimuli 
materials (see online version for colours) 

 

3.3 Data processing 

For comparing our approach with the traditional feature engineering based methods, we 
need determining and extracting some hand-craft features. 

Data Normalisation: Before extracting features, we conduct data normalisation by 
scaling each channel’s signal as illustrated in Figure 9. The data of each subject are 
normalised per channel for all the trials. This procedure helps removing subject bias and 
generating more comparable features between subjects. Meanwhile, the variability of 
different channels can be preserved. 

 
 
 
 



   

 

   

   
 

   

   

 

   

    Deep fusion of multi-channel neurophysiological signal 17    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 9 The channel data normalisation paradigm adopted for baseline methods 

 

Feature Extraction: The EEG is a kind of reflection of the brain rhythms. Traditionally, 
we divide the brain rhythms into Delta rhythm (<3Hz), Theta rhythm (4Hz-7Hz), Alpha 
rhythm (8Hz-12Hz), Beta rhythm (13Hz-30Hz) and Gamma rhythm (>31Hz) according 
to different frequency components consisted in the EEG. Various neuropsychological 
studies try to correlate those different rhythms with the underling brain functions and 
cognitive processes. Therefore, in this work we filtered out the four different rhythms 
from the scaled EEG signal, and conducted feature extraction for each of the four 
extracted rhythms. The concatenation of the four vectors of rhythm features is adopted as 
the training samples for baseline methods. 

The features that we compute and extract for EEG can be summarised into three main 
categories, including time-frequency-domain features, nonlinear-dynamics features and 
brain-asymmetry features. For the time-frequency domain, we extracted 9 different 
features. We also extracted 9 different nonlinear-dynamics features, as researchers found 
the brain manifests many characteristics specifically belongs to chaotic dynamical 
systems (Stam, 2005, 2006). Brain asymmetry oriented neuropsychological studies have 
emphasised the mediator or moderator role of those rhythms in emotional information 
processing and emotional responses (Davidson, 1992; Coan and Allen, 2004; Mathersul 
et al., 2008). Hence, besides the above mentioned features, considering the asynchronous 
activity phenomenon in two hemispheres, we also extracted 14 brain-asymmetry features 
for symmetrically located electrode pairs, which we called brain-asymmetry features. The 
total kinds of handcraft features extracted for EEG is illustrated in Figure 10. 

The target four kinds of rhythm components are extracted through designed  
‘Finite Impulse Response (FIR)’ bandpass filter with ‘Hanning window’. After that, we 
calculated the above mentioned handcraft features for each of the four rhythms with a 4s 
sliding window and 2s overlap, then the average of the results calculated and obtained in 
those sliding windows is adopted as the feature. For 32-channel EEG, the overall number 
of features extracted for each rhythm is: (9 + 9) × 32 + 14 = 590, hence the dimension of 
the feature vector for one trid is 590 × 4 = 2360. The extracted handcraft features and  
the implementation of the C-RNN model can be found on the website: https://github. 
соm/muzixiang/Multichannel_Biosignal_Emotion_Recognition. 
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Figure 10 The selected three kinds of features computed for the baseline methods. The right part 
of the figure illustrates the distribution of the 14 symmetrically located electrode pairs 
(see online version for colours) 
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3.4 Experimental settings 

In the experiment, we build subject-dependent model for each subject, and we adopt the 
leave-one-trial-out strategy to validate the performance. More specifically, in each 
iteration, one trial of the subject are left and the other trials are used as training data. 
After training, the model gives a prediction on the left test trial. This process iterates until 
the subject’s last trial has been predicted. Then the performance can be measured through 
comparing the gathered predictions with the trials’ original labels. In the experiment, the 
F-score is adopted as the performance metric to evaluate and compare the different 
method. The F-score distributions of each method on all 32 subjects are illustrated in a 
box plot manner. 

Baseline Method: For comparison, we take into account several representative 
classification methods that belongs to different ‘Machine Learning’ categories. The 
selected methods including Gaussian Naive Bayes (NB) that based on Bayes’ theorem, 
Support Vector Machine (SVM) that based on statistical learning theories (c = 1.0; kernel 
= linear), Logistic Regression (LR) that based on linear function (penalty = 12; solver = 
liblinear), К Nearest Neighbour (KNN) that based on distance metric (n_neighbours = 
5), Gradient Boosting Decision Tree (GBDT) that based on ensemble learning theory 
(n_estimators = 100; criterion = friedman_mse) and Multi-layer Perceptron (MLP) that 
based on artificial neural network (hidden_layer_size = {100,10}; alpha = 0.0001; 
activation = relu; solver = Ibfgs; learning_rate = 0.001). Those methods are 
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implemented by the Scikit-learn toolkit (Pedregosa et al., 2012), and most of the 
parameters are set to their default values. 

C-RNN Model: The structure and the detailed settings for hyper parameters of the  
C-RNN model is illustrated in Figure 11. In this work, we adopt two stacked 
convolutional layers as the basic structure of the time-distributed CNN, the size of the 
convolutional filter in the first convolutional layer is specifically set as 1 × 1 with the 
purpose of mining and fusing inter-channel correlation information in each scale and 
time point. In this stage, we set the number of the convolutional filters as 16, after 
repeated convolutional operation, we obtain 16 feature maps that contains different kinds 
of mined inter-channel correlation information, each remains the original size in 
dimension of scale and time. Following the first convolutional operation is another 
convolutional operation, where we set the number of kernel as 32 and the size as 32 × 1, 
for further fusing and correlating the inter-scale information based on the input 16 feature 
maps. After the two convolutional stages, the original frame cube has been transformed 
into 32 one-dimensional feature maps. Afterwards, a subsampling operation called 
average pooling was applied to the 32 one-dimensional feature maps, the pooling size is 
1 × 8 for aggregating the redundant information in adjacent 8 time points. After this 
pooling stage, the size of each feature map is down sampled from 1 × 128 into 1 × 16. 
Before feeding those feature maps into the LSTM unit, a operation called flatten is 
needed for transforming and concatenating the different feature maps into a single one-
dimensional vector. After the processing in LSTM unit, there are two time-distributed 
fully connected layers for processing the LSTM’s output in each time step. The second 
fully connected layer is the decision layer with softmax function, the number of its nodes 
is identical to the number of emotional classes we hope to recognise. The final decision is 
made in the decision merge operation through averaging the probability of decision 
nodes in each time step, the node with the highest average probability decides the class 
that the trial belongs to. We can adopt ‘dropout’ in full-connected layers to prevent over-
fitting (Srivastava et al., 2014). In the experiment, the length of the sliding window in 
constructing the frame cubes for the C-RNN model is set as one-second long. 

Figure 11  The settings for the C-RNN in processing multi-channel EEG frame Cubes and 
conducting emotion recognition 
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3.5 Results and discussion 

The F-score of each subject obtained through the baseline methods and the C-RNN 
model are illustrated in a box plot manner in Figure 12. Overall, as we can see, the C-
RNN model greatly outperforms the baseline methods with a highest mean F-score 
(0.7192 on Valence and 0.7742 on Arousal) and a relatively low standard deviation 
(0.1593 on Valence and 0.1257 on Arousal). The performance on Arousal is better than 
that on Valence, perhaps because the degree of Arousal is more like an indicator of 
neural activations, which can be reflected well by the wavelet energy spectral, whereas, 
compared to Arousal, the recognition of Valence is a more complicated task and cannot 
be explicitly differentiated only through analysing the fluctuation of signal energy. It is 
also possible that the experience on Valence is intrinsic fuzzy, those subjects cannot 
clearly determine and rate the degree of Valence, which introduces some noise into the 
labels. Anyway, the C-RNN model combined with spectral based frame cube 
representation achieves satisfied and reasonable results on emotion recognition, with 
respect to the dimensions of Valence and Arousal. 

Prior to this work, most studies focus on segment-level emotion recognition, whereas, 
for trial-level emotion recognition, as we know there exists only a few of relevant works. 
For example, Chen et al. (2015) extracted over a thousand of features and studied 
different feature selection method and adopted Hidden Markov Models (HMM) to 
perform trial-level emotion recognition on a subset of the total 32 participants, and 
finally obtained nearly 73.0% and 75.6% mean classification accuracy (MCA) on 
Valence and Arousal, respectively. Rozgic et al. (2013) proposed four different fusion 
strategies based on segment-level features for constructing trial-level features, and 
conducted recognition through K-PCA and RBF-SVM for the trial, the highest MCA 
reported on Valence and Arousal is 76.9% and 68.4%, respectively. Koelstra et al. (2012) 
simply extracted several trial-level features and performed recognition through Naive 
Bayes classifier, the results are not better than our proposed baselines in this work. 

Figure 12 Comparison of the recognition performance on 32 subjects between different methods 

 

Besides the effectiveness of our approach in emotion recognition, another advantage of 
our approach is it greatly reduce the time cost in preparing the data and features. As 
shown in Figure 13, which illustrates the time cost in pre-processing and preparing one 
subject’s samples (processing through a PC with i7-4770 CPU and 8 Gb Ram). The 
frame cube sequence construction (Method 2) is almost 40 times faster than the 
traditional feature engineering based pre-processing method (Method 1). Empirical 
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analysis shows that most of the time cost in feature engineering based approaches rests 
with computing and extracting various non-linear features. Considering that the time cost 
in Method 1 that presented here only refers to one kind of frequency band, if we conduct 
pre-processing for band of Theta, Alpha, Beta, Gamma in a serial way and if the signal 
length is even longer, the time cost must be higher. Most importantly, in clinical 
application, we cannot wait such long for the results, meanwhile, currently the portable 
equipment’s’ computational ability cannot support such a high burden processing. 

Figure 13 The time cost in preparing the data for one subject. The first bar represents the feature 
engineering based method, whereas the second bar represents the proposed frame cube 
based method 

 

Figure 14 The real-time prediction on Valence for several 60s long trials of one subject. The 
results are obtained through storing each time step’s decision probability. The 
probability greater than 0.5 indicates a pleasant experience, while the probability lower 
than 0.5 indicates an relatively unpleasant experience. The brain activity maps are also 
annotated for several key time points in a trial (see online version for colours) 
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As shown in Figure 14, the RNN based model not only performs well in recognising 
subjects’ emotional experience in the entire trial, but also it has the ability in real-time 
prediction for each time step. On the premise of real time prediction, if we can map the 
brain activity of each time point with its corresponding emotional states, we may find a 
common pattern in emotional cognition process. However, the DEAP dataset does not 
provide us with real-time labels for each time step, we could not validate the accuracy of 
the output predictions currently. Even so, there indeed exists an urgent need in real-time 
emotion monitoring for applications in clinical psychiatry and emotional brain-computer 
interaction (ВСІ), in which the system could log the emotional transitions in detail and 
give quick responses or warnings to unexpected emotional fluctuations. 

This model also could give us a new perspective in studying critical brain areas in 
emotional cognition process, as well as could provide us with a new feature selection 
method. Based on the trained C-RNN model, we can determine which channel and scale 
is critical in reflecting various emotional process. In other words, the designed 
convolutional filters automatically perform channel selection and scale selection in the 
training process, which is quite different with the traditional feature selection method in 
feature engineering. Specifically, the convolutional kernel in the first time-distributed 
convolutional layer is set as 1 × 1 to learn inter-channel information, meanwhile the 
importance of each channel and corresponding brain area can be reflected through 
analysing corresponding weights. The higher the absolute value of the weight denotes a 
more contribution of its information in reflecting specific emotional states. Similarly, the 
kernels in the second time-distributed convolutional layer are set as S ×  1 to learn inter-
scale information, it helps us determine which scale contributes most in the task, as 
well as helps us determine if there exists correlation between specific EEG component 
and specific emotional process. 

Deriving from the Figure 15(a), we can rank the weight value (importance) of those 
channels in ascending order, as follows: FC2, FC5, PO4, F7, F8, PZ, FP1, CP5, FC6, 
AF3, P7, FP2, OZ, T8, O2, P4, C3, CP6, CP2, FC1, CZ, P8, AF4, P3, T7, PO3, CP1, F3, 
C4, F4, FZ, O1. Based on the obtained importance of each single channel, we further sort 
them as symmetrical pairs in descending order, namely F3-F4, O1-O2, CP1-CP2, C3-C4, 
P3-P4, T7-T8, P7-P8, AF3-AF4, CP5-CP6, PO3-PO4, FC1-FC2, FP1-FP2, FC5-FC6, 
F7-F8. The top 50% critical pairs are annotated in Figure 15(c), as we can see they 
mainly distribute in brain’s parietal-temporal-occipital (PTO) region, which is in line 
with the findings in some neuropsychological works (such as Adolphs, 2002; Grecucci  
et al., 2013; Sarkheil et al., 2013). These studies provide evidence that the parietal lobe, 
temporal-parietal junction (TPJ) and occipital lobe are correlated in various emotional 
information processing. We also sum the weights of channels in left and right brain 
hemisphere respectively, and we find that the total weights of the right hemisphere is 
slightly greater than that of left hemisphere, it is also in line with the statements of some 
neuropsychological studies that the right hemisphere plays critical roles in emotional 
information processing (Adolphs, 2002). As illustrated in Figure 15(b), the scales  
with relatively higher weight roughly distribute from scale-15 to scale-32, whose 
corresponding frequency locates within the scope of Theta rhythm, roughly from 3Hz to 
8Hz. This finding does not agree with some neuroscience studies that claim emotion 
related information mainly exists in higher frequency bands, such as Beta band and 
Gamma band (Muller et al., 1999; Kortelainen et al., 2015). Nevertheless, it also should 
be noted that some other neuroscience studies support our finding, they find low-
frequency rhythm also correlates with emotional information processing (Knyazev et al., 
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2009; Uusberg et al., 2014). Hence, in next work we need further studying on more 
subjects, and determining whether it is a common phenomenon or just one exception. 

Figure 15 The mean absolute value (MAV) of the weight for each channel (a) and each scale  
(b) derived from one subject’s model. The higher the MAV the more critical the 
corresponding component in emotion recognition. The top 50% critical channel pairs 
are also analysed and annotated in the topology of the 10-20 brain system (c)  
(see online version for colours) 

 

In summary, compared to those relevant methods, the C-RNN model performs better and 
is a good choice when the physiological signal is long and the contextual physical 
information is needed. The CNN based feature learning strategy only needs simple data 
pre-processing, which is time saving and easy for non-experts to master, meanwhile, it 
provides us with a new approach in determining critical emotion-related rhythms and 
brain regions through analysing the learned kernel weights. Besides, this model is 
suitable for clinical applications that need incremental learning (the samples are 
continuously gathered and fed into the model) and real-time emotion monitoring. 
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4 Conclusions 

In this paper, we have proposed a hybrid deep learning model, C-RNN, which integrates 
CNN and RNN, for emotion recognition and monitoring based on multi-channel EEG 
signals. Specifically, the CNN component has the ability in fusing, mining and selecting 
inter-channel and inter-frequency correlation information. On the other hand, the RNN 
(i.e., LSTM) based model structure can learn long-term dependencies and contextual 
information from the constructed frame cube sequences. Practically, instead of manually 
designing task related features as in traditional approaches, we propose a novel pre-
processing method that transforms the multi-channel EEG data into a 3D frame cube 
representation, which greatly reduces the time cost in data pre-processing, compared with 
traditional feature extraction and selection paradigm. The proposed method outperforms 
classical feature engineering based machine learning methods in the trial-level emotion 
recognition task. The analysis on the trained convolutional filters can give us another 
perspective of decoding the brain’s cognitive scheme in affective information processing, 
meanwhile, benefits traditional feature engineering approaches, e.g., it will spend less 
time in data pre-processing through extracting features only from the critical channels 
and frequencies. It also has a potential in giving predictions not only for an entire trial but 
also for each time point, which is very important in real-time emotion monitoring 
scenarios. The potential in real time prediction provides a new way in mapping the brain 
activity of specific time with a specific emotional state, through which we may find a 
common pattern in emotional cognition process. There could be room in improving the 
performance of our model if we can augment the training data and reduce the influence 
of individual difference, further, a subject-independent model is needed for public usage. 
All these problems may be resolved through adopting various transfer learning strategies 
that we will investigate in future works. 
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