
134 Int. J. Embedded Systems, Vol. 1, Nos. 1/2, 2005

Copyright © 2005 Inderscience Enterprises Ltd.

TLSim and EVC: a term-level symbolic simulator and
an efficient decision procedure for the logic of
equality with uninterpreted functions and memories

Miroslav N. Velev*
Consultant, USA
E-mail: mvelev@ieee.org
*Corresponding author

Randal E. Bryant
School of Computer Science,
Carnegie Mellon University,
Pittsburgh, PA 15213, USA
E-mail: Randy.Bryant@cs.cmu.edu

Abstract: We present a tool flow for high-level design and formal verification of embedded
processors. The tool flow consists of the term-level symbolic simulator TLSim, the decision
procedure EVC (Equality Validity Checker) for the logic of Equality with Uninterpreted
Functions and Memories (EUFM), and any SAT solver. TLSim accepts high-level models of a
pipelined implementation processor and its non-pipelined specification, as well as a command
file indicating how to simulate them symbolically, and produces an EUFM formula for the
correctness of the implementation. EVC exploits the property of Positive Equality and other
optimisations in order to translate the EUFM formula to an equivalent Boolean formula that can
be solved with any SAT procedure. An earlier version of our tool flow was used to formally
verify a model of the M•CORE processor at Motorola, and detected bugs.

Keywords: design automation; hardware design languages; logic; microprocessors; simulation;
symbolic manipulation.

Reference to this paper should be made as follows: Velev, M.N. and Bryant, R.E. (2005)
‘TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure for the
logic of equality with uninterpreted functions and memories’, Int. J. Embedded Systems,
Vol. 1, Nos. 1/2, pp.134–149.

Biographical notes: Miroslav N. Velev received BS and MS in Electrical Engineering and BS in
Economics from Yale University, New Haven, CT in 1994, and PhD in Electrical and Computer
Engineering from Carnegie Mellon University, Pittsburgh, PA in 2004. In 2002 and 2003, he was
an Instructor at the School of Electrical and Computer Engineering at the Georgia Institute of
Technology in Atlanta, Georgia. He has over 45 refereed publications. He is Member of the
editorial boards of the Journal of Universal Computer Science (JUCS), and the Journal on
Satisfiability, Boolean Modeling and Computation (JSAT). He has served on the technical
program committees of over 70 conferences, including AAAI, ASP-DAC, CADE, CASES,
CHARME, DATE, ICCD, ISCAS, ISQED, MEMOCODE, RTAS, and SAT. He was an invited
speaker at the International SoC Design Conference (ISOCC’05), Seoul, Korea, October 2005.
He is the recipient of the Franz Tuteur Memorial Prize for the Most Outstanding Senior Project in
Electrical Engineering, Yale University, May 1994, and of the 2005 EDAA Outstanding
Dissertation Award for the Topic New Directions in Logic and System Design.

Randal E. Bryant is Dean of the Carnegie Mellon University School of Computer Science.
He has been on the faculty at Carnegie Mellon since 1984, starting as an Assistant Professor and
progressing to his current rank of University Professor. His research focuses on methods for
formally verifying digital hardware, and more recently some forms of software. He has received
widespread recognition for his work. He is a Fellow of the IEEE and the ACM, as well as a
Member of the National Academy of Engineering. His awards include the 1997 ACM Kanellakis
Theory and Practice Award, as well as the 1989 IEEE W.R.G. Baker Prize for the best paper
appearing in any IEEE publication during the preceding year. He received his BS in Applied
Mathematics from the University of Michigan in 1973, and his PhD from MIT in 1981.

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 135

1 Introduction

In the near future, there will be trillions of
microprocessors––hundreds per person. Many of the
designs will be custom tailored and highly optimised for
specific applications. Most will function autonomously,
without the direct supervision of humans and many will be
used in safety-critical applications (Tennenhouse, 2000).
Thus, it is crucial that processors be designed without
errors.

The time to market for new designs will decrease, while
their complexity will increase. Extensive binary simulation
is already impossible. What is unique about the
microprocessor industry is that bugs may require the recall
and replacement of all units sold––Intel had to replace
5 million Pentium chips (Grove, 1999) when the
floating-point division error was discovered in 1994. This is
unlike most other industries, where it is possible to replace
or even fix only the defective component, as opposed to the
entire product, hence, the high cost of microprocessor
bugs––$475 million in the case of the Intel Pentium in
1994 (Grove, 1999), and $2.1 billion in the case of a buggy
Toshiba floppy microcontroller in 1999 (Pasztor and
Landers, 1999).

Every time the design of computer systems was shifted
to a higher level of abstraction, productivity increased, as
also observed by Jones (2002). Albin (2001) similarly
advocates the adoption of higher levels of abstraction.
Keutzer et al. (2000) even argue that design at higher levels
of abstraction results in implementations of higher quality.
The logic of Equality with Uninterpreted Functions and
Memories (EUFM) (Burch and Dill, 1994)––see
Section 2––allows us to abstract functional units and
memories, while completely modelling the control of a
processor. In our earlier work on applying EUFM to formal
verification of pipelined and superscalar processors, we
imposed some simple restrictions (Velev and Bryant, 1999a;
1999b) on the modeling style for defining processors,
resulting in correctness formulas where most of the
terms (abstracted word-level values) appear only in
positive equations (equality comparisons). Such term
variables can be treated as distinct constants (Velev and
Bryant, 1999a; 1999b), thus significantly simplifying the
EUFM correctness formulas, pruning the solution space and
resulting in orders of magnitude speedup of the formal
verification; we call this property Positive Equality.
These restrictions, together with techniques to model
multicycle functional units, exceptions and branch
prediction (Velev and Bryant, 2000), allowed our tool flow
(see Section 3) to be used to formally verify a model of the
M•CORE processor at Motorola (Lahiri et al., 2001), and
detected three bugs, as well as corner cases that were not
fully implemented. The tool flow was also used in two
editions of an advanced computer architecture course
(Velev, 2005a, 2003b), where undergraduate and graduate
students without prior knowledge of formal methods
designed and formally verified single-issue pipelined DLX
processors (Hennessy and Patterson, 2002), as well as

extensions with exceptions and branch prediction, and
dual-issue superscalar implementations.

Our tool flow consists of:
• the term-level symbolic simulator, TLSim, used to

symbolically simulate the high-level implementation
and specification processors, defined in our high-level
hardware description language AbsHDL, and
produce an EUFM formula for correctness of the
implementation with respect to the specification;

• the decision procedure EVC that exploits Positive
Equality and other optimisations to translate the EUFM
correctness formula into a satisfiability-equivalent
Boolean formula; and

• any efficient SAT solver, used to prove that the
Boolean correctness formula produced by EVC is a
tautology, i.e., the original EUFM formula is valid.

Recent dramatic improvements in SAT solvers
(Moskewicz et al., 2001; Goldberg and Novikov, 2002;
Ryan, 2003)––see Le Berre and Simon (2005), and Velev
and Bryant (2003) for comparative studies, and Biere and
Kunz (2002), Kautz and Selman (2003), and Zhang and
Malik (2002) for surveys––significantly sped up the solving
of Boolean formulas generated by our tool flow. However,
as found in Velev and Bryant (2003), the new efficient
SAT solvers would not have scaled for solving the Boolean
formulas if not for the property of Positive Equality that
results in at least five orders of magnitude speedup when
formally verifying dual-issue superscalar processors with
realistic features. Efficient translations from propositional
logic to CNF (Velev, 2004a, 2004c, 2004d), exploiting the
special structure of EUFM formulas produced with the
modeling restrictions, resulted in additional speedup of two
orders of magnitude (see Section 6.3).

The contributions made with this paper are the
high-level hardware description language AbsHDL,
the term-level symbolic simulator TLSim, and the decision
procedure EVC. The rest of the paper is organised as
follows. Section 2 presents the background of this work.
Section 3 outlines our tool flow. Section 4 defines the
high-level hardware description language AbsHDL.
Section 5 describes the term-level symbolic simulator
TLSim. Section 6 presents the implementation of the
decision procedure EVC. Section 7 summarises
experimental results. Section 8 discusses related work, and
Section 9 concludes the paper.

2 Background

The formal verification is done by correspondence
checking––comparison of a pipelined implementation
against a non-pipelined specification, using flushing (Burch
and Dill, 1994; Burch, 1996) to automatically compute an
abstraction function that maps an implementation state to an
equivalent specification state. The safety property
(see Figure 1) is expressed as a formula in the logic of
EUFM, and checks whether one step of the implementation

136 M.N. Velev and R.E. Bryant

corresponds to between 0 and k steps of the specification,
where k is the issue width of the implementation. FImpl is the
transition function of the implementation, and FSpec is the
transition function of the specification. We will refer to the
sequence of first applying the abstraction function and then
exercising the specification as the specification side of the
commutative diagram in Figure 1, and to the sequence of
first exercising the implementation for one step and then
applying the abstraction function as the implementation side
of the commutative diagram.

Figure 1 The safety correctness property for an implementation
processor with issue width k: one step of the
implementation should correspond to between 0 and k
steps of the specification, when the implementation
starts from arbitrary initial state QImpl that is possibly
restricted by invariant constraints

The safety property is the inductive step of a proof by
induction, since the initial implementation state, QImpl, is
completely arbitrary. If the implementation is correct for all
transitions that can be made for one step from an arbitrary
initial state, then the implementation will be correct for one
step from the next implementation state, Q′Impl, since that
state will be a special case of an arbitrary state, as used for
the initial state, and so on for any number of steps. For some
processors, e.g., where the control logic is optimised by
using unreachable states as don’t-care conditions, we might
have to impose a set of invariant constraints for the initial
implementation state to exclude unreachable states. Then,
we need to prove that those constraints will be satisfied in
the implementation state after one step, Q′Impl, so that the
correctness will hold by induction for that state, and so on
for all subsequent states. The reader is referred to Aagaard
et al. (2002; 2003) for a discussion of correctness criteria.

To illustrate the safety property in Figure 1, let the
implementation and specification have three architectural
state elements––program counter (PC), register file, and
data memory. Let Spec,

iPC Spec,
iRegFile and Spec

iDMem be the
state of the PC, register file, and data memory,
respectively, in specification state Spec

iQ (i = 0, ..., k) along

the specification side of the diagram. Let *
Spec,PC

*
Spec,RegFile and *

SpecDMem be the state of the PC, register
file, and data memory, respectively, in specification state

*
Spec,Q reached after the implementation side of the diagram.

Then, each disjunct equalityi (i = 0, ..., k) is defined as

equalityi ← pci ∧ rfi ∧ dmi,

where
*

Spec Spec(),i
ipc PC PC← =

*
Spec Spec(),i

irf RegFile RegFile← =

*
Spec Spec().i

idm DMem DMem← =

That is, equalityi is the conjunction of the pairwise equality
comparisons for all architectural state elements, thus
ensuring that the architectural state elements are updated in
synchrony by the same number of instructions.
In processors with more architectural state elements, an
equality comparison is conjuncted similarly for each
additional state element. Hence, for this implementation
processor, the safety property

equality0 ∨ equality1 ∨ … ∨ equalityk = true, (1)

is equivalently represented as
pc0 ∧ rf0 ∧ dm0 ∨ … ∨ pck ∧ rfk ∧ dmk = true. (1′)

For an implementation with n architectural state elements,
the safety property is

m1,0 ∧ m2,0 ∧ … ∧ mn,0 ∨ …

 ∨ m1,k ∧ m2,k ∧ … ∧ mn,k = true, (1″)

where mi,j (1 ≤ i ≤ n, 0 ≤ j ≤ k) is the condition that the state
of architectural state element i after the implementation side
of the diagram equals the state of that architectural state
element after j steps of the specification along the
specification side of the diagram.

To prove liveness––that the processor will complete at
least one new instruction after a finite number of steps,
n––we can simulate the implementation symbolically for n
steps and prove that

equality1 ∨ equality2 ∨ … equalityn×k = true, (2)

omitting equality0. Special abstractions and an indirect
method for proving liveness, resulting in orders of
magnitude speedup, are presented in Velev (2004b).
Techniques for proving liveness of pipelined processors
with multicycle functional units are presented in Velev
(2005b).

The syntax of EUFM (Burch and Dill, 1994) includes
terms and formulas––see Figure 2. Terms are used to
abstract word-level values of data, register identifiers,
memory addresses, as well as the entire states of memories.
A term can be an Uninterpreted Function (UF) applied
to a list of argument terms, a term variable, or an ITE

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 137

(for “if-then-else”) operator selecting between two argument
terms based on a controlling formula, such that
ITE(formula, term1, term2) will evaluate to term1 when
formula = true and to term2 when formula = false.
The syntax for terms can be extended to model memories by
means of functions read and write (Burch and Dill, 1994;
Velev, 2001). Formulas are used to model the control path
of a microprocessor, as well as to express the correctness
condition. A formula can be an Uninterpreted Predicate
(UP) applied to a list of argument terms, a propositional
variable, an ITE operator selecting between two argument
formulas based on a controlling formula, or an equation
(equality comparison) of two terms. Formulas can be
negated and combined with Boolean connectives. We will
refer to both terms and formulas as expressions.

Figure 2 Syntax of the logic of EUFM

UFs and UPs are used to abstract the implementation
details of functional units by replacing them with “black
boxes” that satisfy no particular properties other than that of
functional consistency, namely, that equal combinations of
values to the inputs of the UF (or UP) produce equal output
values. Then, it no longer matters whether the original
functional unit is an adder, or a multiplier, etc., as long as
the same UF (or UP) is used to abstract it in both the
implementation and the specification. Thus, we will prove a
more general problem––that the processor is correct for any
functionally consistent implementation of its functional
units––but this problem is easier to prove.

Function read takes two argument terms serving as
memory state and address, respectively, and returns a term
for the data at that address in the given memory. Function
write takes three argument terms serving as memory state,
address, and data, and returns a term for the new memory
state. Functions read and write satisfy the forwarding
property of the memory semantics: read(write(mem, waddr,
wdata), raddr) is equivalent to ITE((raddr = waddr), wdata,
read(mem, raddr)), i.e., if this rule is applied recursively, a
read operation returns the data most recently written to an
equal address, or otherwise the initial state of the memory
for that address. A hybrid memory model––where the
forwarding property of the memory semantics is satisfied
only for those pairs of one read and one write address that
also determine stalling conditions––can be applied
automatically, based on rewriting rules and conservative
approximations (Velev, 2001). Versions of read and write
that extend the syntax for formulas can be defined similarly,
such that the former returns a formula, while
the latter takes a formula as its third argument. Note that the
forwarding property introduces address equations in dual

polarities––in positive polarity when selecting the
then-expression of the ITE, but in negated polarity when
selecting the else-expression.

The property of functional consistency of UFs
and UPs can be enforced by Ackermann constraints
(Ackermann, 1954), or by nested ITEs (Velev and
Bryant, 1998c). The Ackermann scheme replaces each UF
(UP) application in the EUFM formula F with a new term
(Boolean) variable and then adds external constraints for
functional consistency. For example, the UF application
g(a1, b1) will be replaced by a new term variable c1, and
another application of the same UF, g(a2, b2), will be
replaced by a new term variable c2. Then, the
resulting EUFM formula F′ will be extended as
[(a1 = a2) ∧ (b1 = b2) ⇒ (c1 = c2)] ⇒ F′. Note that the new
formula is equivalent to (a1 = a2) ∧ (b1 = b2) ∧
¬ (c1 = c2) ∨ F′, so that the new term variables, c1 and c2,
appear in a negated equation. In the nested-ITE scheme, the
first application of a UF will still be replaced by a new
term variable c1. However, the second will be
replaced by ITE((a2 = a1) ∧ (b2 = b1), c1, c2), where c2 is a
new term variable. A third application, g(a3, b3),
will be replaced by ITE((a3 = a1) ∧ (b3 = b1), c1,
ITE((a3 = a2) ∧ (b3 = b2), c2, c3)), where c3 is a new term
variable, and so on. UPs are eliminated similarly, but using
new Boolean variables. In the general case of each scheme,
the formulas that express equality of arguments of UF (UP)
applications with k arguments will be conjunctions of k
equations, one for each pair of corresponding arguments.
To avoid creating circular dependencies when using the
nested-ITE scheme, UFs and UPs have to be eliminated
based on their topological order, i.e., all applications of a
given UF (UP) have to be eliminated from the arguments of
another application of the same UF (UP), before that
application is eliminated. Otherwise, the equations between
corresponding arguments will lead to cyclic dependency.

We can check whether an EUFM formula is valid,
i.e., always true, either by using a specialized decision
procedure such as the Stanford Validity Checker (SVC)
(Burch and Dill, 1994; Jones et al., 1995; Barrett et al.,
1996; Levitt and Olukotun, 1997), and the Integrated
Canonizer and Solver (Filliâtre et al., 2001), or by
translating an EUFM formula to a satisfiability-equivalent
Boolean formula that has to be a tautology in order for the
original EUFM formula to be valid. With our decision
procedure, the Equality Validity Checker (EVC) (Velev and
Bryant, 2001), we pursue the second approach.

The efficiency of our tool flow––consisting of TLSim,
EVC, and a SAT solver––is due to the property of Positive
Equality (Bryant et al., 2001) that EVC uses when
translating EUFM formulas to equivalent Boolean
formulas. To exploit Positive Equality, a microprocessor
designer has to follow some simple restrictions (Velev and
Bryant, 1999a; 1999b) when defining the high-level
microprocessors. First, equality comparators between data
operands––e.g., used to check whether to take a
branch-on-equal instruction, such that the resulting signal is
used in positive polarity when updating the PC with the

138 M.N. Velev and R.E. Bryant

branch target address, but in negated polarity when
squashing subsequent instructions––should be abstracted
with a new uninterpreted predicate in both the
implementation and the specification. Second, the Data
Memory should be abstracted with a conservative Finite
State Machine (FSM) model of a memory, where the
interpreted functions read and write that satisfy the
forwarding property of the memory semantics are replaced
by new uninterpreted functions, fr and fw, respectively, that
take the same arguments, but do not satisfy the forwarding
property; then we would only check whether the
implementation and the specification perform the same
sequence of memory operations with the same argument
terms, but that is sufficient for processors that do not reorder
the memory operations, as is the case in the models that are
formally verified in this paper.

As a result of the above restrictions, we get EUFM
correctness formulas where most of the terms appear only as
arguments of positive (not negated) equations, called
p-equations, or as arguments to UFs and UPs; we call such
terms p-terms. Only a few of the terms appear as arguments
of equations that are used in both positive and negated
polarity, and so are called g-equations (for general
equations); we call such terms g-terms. Furthermore, when
using the nested-ITE scheme to eliminate UF applications
that appear as p-terms, we can treat the introduced new term
variables as p-terms (Bryant et al., 2001). The resulting
structure of the EUFM correctness formulas allows us to
consider syntactically distinct p-term variables as not equal
when evaluating the validity of an EUFM formula, thus
significantly simplifying the formula, pruning the solution
space, and achieving orders of magnitude speedup.
The speedup is at least five orders of magnitude when
formally verifying dual-issue superscalar DLX processors
with realistic features—see Section 7. However, each
g-equation can be either true or false, and is encoded with
Boolean variables (Goel et al., 1998; Pnueli et al., 2002;
Velev, 2003a) by accounting for the property of
transitivity of equality (Bryant and Velev, 2002) when
translating an EUFM formula to an equivalent Boolean
formula.

3 The tool flow

Figure 3 summarises our tool flow. The term-level symbolic
simulator TLSim (see Section 5) accepts an implementation
processor and its specification, both defined in AbsHDL
(see Section 4), as well as a command file indicating how to
simulate the two processors symbolically according to the
inductive correctness criterion in Figure 1, and outputs an
EUFM correctness formula in the format of the SVC
(http://sprout.Stanford.EDU/SVC). Our decision procedure
EVC (see Section 6) takes an EUFM correctness formula
and translates it to an equivalent Boolean formula that has
to be a tautology in order for the original EUFM formula to
be valid, i.e., for the implementation processor to be
correct. A falsifying assignment for the Boolean correctness
formula indicates a condition that triggers a bug in the

implementation processor, and can be analysed to correct
that bug.

Figure 3 Our tool flow

4 The hardware description language AbsHDL

The syntax of AbsHDL will be illustrated with the
three-stage pipelined processor, pipe3, shown in Figure 4.
That processor has a combined instruction fetch and decode
stage (IFD), an execute stage (EX), and a write-back stage
(WB). It can execute only ALU instructions with a single
data operand. Read-after-write hazards (Hennessy and
Patterson, 2002) are avoided with one level of forwarding.
The AbsHDL definition of pipe3 is shown in Figure 5.
We will use the extension .abs for files in AbsHDL.

Figure 4 Block diagram of the three-stage pipelined processor
pipe3

An AbsHDL processor description begins with
declaration of signals (see Figure 5). Bit-level signals are
declared with the keyword bit, and word-level signals with
the keyword term. Signals that are primary inputs, e.g.,
phase clocks, are additionally declared with the keyword
input. The language has constructs for basic logic
gates—and, or, not, mux—such that and and or gates can
have multiple inputs. Equality comparators are gates of

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 139

type =, e.g., RegsEqual = (= IFD_EX_SrcReg

EX_WB_DestReg) in the EX stage, where the = before the
left parenthesis designates an assignment, and the one after
that the type of the gate. Gates that are not of the above
types are uninterpreted functions if the output is a
word-level signal––e.g., sequentialPC = (PCAdder

PC) and Result = (ALU IFD_EX_Op EX_Data1) in
Figure 5––but uninterpreted predicates if the output is a
bit-level signal. Uninterpreted functions and uninterpreted
predicates are used to abstract the implementations of
combinational functional units. In the two examples above,
PCAdder and ALU are uninterpreted functions that abstract,
respectively, the adder for incrementing the PC and the
ALU in pipe3. We can use an uninterpreted predicate to
abstract a functional unit that decides whether to take a
conditional branch, or to abstract a functional unit that
indicates whether an ALU exception is raised. We can
implement a Finite State Machine to model the behaviour of
a multicycle functional unit (Velev and Bryant, 2000).

Figure 5 AbsHDL description of the three-stage pipelined
processor pipe3

AbsHDL has constructs for latches and memories,
defined with the keywords latch and memory,
respectively. Both can have input and/or output ports,
defined with the keywords inport and outport,
respectively. Input ports of latches have an enable signal,
which has to be high for a write operation to take place at
that port, and a list (enclosed in parentheses) of input data
signals that provide the values to be written to the latch.
Similarly, output ports of latches have an enable signal,
which has to be high for a read operation to take place at
that port and a list of output data signals that will get the

values stored in the latch. An output data signal can get
values only from input data signals that appear in the same
position in the list of data signals for an input port in the
same latch. Memories are defined similarly, except that
ports additionally have an address input that is listed right
after the enable input––see memory RegFile in Figure 5.

The correct instruction semantics are defined by the
Instruction Set Architecture (ISA), and are modeled with a
non-pipelined specification processor built from the same
uninterpreted functions, uninterpreted predicates and
architectural state elements (the PC and the Register File in
pipe3) as the pipelined implementation. Since the
specification is non-pipelined, it lacks pipeline latches
(IFD_EX and EX_WB in pipe3) and mechanisms to avoid
hazards (the forwarding logic in pipe3), and executes one
instruction at a time.

When defining pipelined processors and their
specifications, we assume that they do not execute
self-modifying code, which allows us to model the
Instruction Memory as a read-only memory, separate from a
Data Memory in the case of processors with load and store
instructions. In Figure 5, the Instruction Memory has one
read port that takes the PC as address and produces the four
fields of an instruction in the given ISA: RegWrite, a bit
indicating whether the instruction will update the Register
File; DestReg, destination register identifier; Op, opcode to
be used by the ALU; and SrcReg, source register identifier.
Alternatively, a read-only instruction memory can be
modelled with a collection of uninterpreted functions and
uninterpreted predicates, each taking as input the instruction
address and mapping it to a field from the instruction
encoding. In the case when some of the above fields do not
have a counterpart in the instruction encoding, but are
produced by decoding logic, both models can be viewed
as encapsulating the original read-only instruction memory
and the decoding logic. To model decoding logic that is
separate from the instruction memory, we can use
uninterpreted functions and uninterpreted predicates, each
mapping a field from the original instruction encoding to a
control signal.

AbsHDL does not model delays of logic gates,
memories and latches. It is assumed that the clock cycle will
be long enough to satisfy all timing requirements.

Signal Flush in Figures 4 and 5, when asserted to 1, is
used to disable fetching of instructions and to feed the
pipeline with bubbles, allowing partially executed
instructions to complete. Then, simulating the pipeline for a
sufficient number of clock cycles—as determined by the
pipeline depth and possible stalling conditions—will map
all partially executed instructions to the architectural state
elements (the PC and the Register File in pipe3). The
contents of the architectural state elements, with no pending
updates in the pipeline, can be directly compared with
the contents of the architectural state elements of the
specification. In the case of pipe3, which has two pipeline
latches and no stalling logic, setting signal Flush to 1 and
simulating the processor for two cycles will complete any
instructions that are originally in the pipeline. This

140 M.N. Velev and R.E. Bryant

mechanism for automatically mapping the state of an
implementation processor to its architectural state elements
was proposed by Burch and Dill (1994), and Burch (1996).
Note that most processors have a similar signal indicating
whether the Instruction Cache provided a valid instruction
in the current clock cycle, so that we can achieve the above
effect by forcing that signal to the value indicating an
invalid instruction. Adding signal Flush—to allow
completion of partially executed instructions in a
pipelined or superscalar processor without fetching new
instructions—can be viewed as design for formal
verification. Signal Flush, when set to 1, should invalidate
all control bits that indicate updates of architectural state
elements.

The phase clocks in an AbsHDL processor description
are used to ensure the proper flow of signals in the pipeline
stages, as well as to determine the order of memory port
operations. In Figure 5, we assume that the phase clocks
become high in the order of their numbers. Thus, in
Figure 5, the pipeline latches and the PC are read on phi1,
then the Register File is written on phi2 and read on phi3
(so that the Register File behaves as a write-before-read
memory and provides internal forwarding of the result
written in the current clock cycle), and finally the pipeline
latches and the PC are written on phi4, which concludes a
clock cycle.

We defined our own HDL, instead of using an existing
commercial HDL, in order to have complete freedom in
experimenting with modelling at a high level of abstraction,
without having to worry about compatibility with a
commercial HDL. A description in AbsHDL can be
translated easily into any existing bit-level HDL. This is left
for our future work.

5 The term-level symbolic simulator TLSim

To account for an arbitrary initial implementation state and
for all possible transitions from it, the tool flow employs
term-level symbolic simulation. (The reader is referred to
Blank et al. (2001) for a discussion of symbolic simulation
methods.) The term-level symbolic simulator TLSim
accepts an implementation processor and its specification,
both described in AbsHDL, as well as a command file
indicating how to simulate the two processors symbolically
and when to compare their architectural state elements, and
produces an EUFM formula for correctness of the
implementation with respect to the given specification.
The command file for term-level symbolic simulation of
pipe3 and its specification isa.abs with TLSim, according
to the inductive correctness criterion in Figure 1, is shown
in Figure 6. As discussed in Section 4, it takes two cycles to
flush pipe3 after setting signal Flush to 1.

Figure 6 Command file for symbolic simulation of pipe3 and its specification with TLSim

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 141

The term-level symbolic simulator TLSim automatically
introduces new symbolic variables for the initial state of
term-level or bit-level signals produced by memories and
latches. TLSim propagates those variables through the
processor logic, building symbolic expressions for
the values of logic gates, uninterpreted functions,
uninterpreted predicates, memories and latches. The
symbolic expressions are defined in the script language of
the SVC (http://sprout.Stanford.EDU/SVC), so that the
EUFM correctness formulas produced by TLSim can be
checked for validity with any EUFM decision procedure
that accepts the SVC input format.

Some processors may require that their initial
implementation state, QImpl, in the commutative diagram in
Figure 1 be restricted by invariant constraints, to exclude
unreachable states that lead to false negatives. Then, the
verification engineer should check whether the invariant
constraints are satisfied in the next implementation state,
Q′Impl. In our tool flow, the condition for each invariant
constraint has to be defined as the output of an extra circuit
added to the AbsHDL description of the implementation
processor. (That extra circuit will be removed when an
automatic tool translates the implementation into a
synthesisable bit-level description.) The TLSim command
constraint, followed by the name of a signal, allows us
to use the value of that signal at the particular time step
when the command appears in the simulation sequence as a
constraint for checking the validity of the EUFM
correctness formula. To check the invariance of a constraint
in the next implementation state, the verification engineer
needs to use the command check_valid, followed by the
name of the constraint signal.

6 The decision procedure EVC

6.1 Steps for translation from EUFM
to propositional logic

We proceed through a series of transformations, starting
from an EUFM correctness formula and ending with a
Boolean correctness formula that has to be a tautology in
order for the original EUFM formula to be valid. At each
step we apply various optimisations and simplifications.
The major steps are as follows:
1 Replace equations of the form m1 = m2, where m1 and

m2 are terms for two states of a memory, with the
equation read(m1, a) = read(m2, a), where a is a new
term variable that is unique for that memory. As
defined earlier, such equations can appear only as
p-equations in an EUFM correctness formula checking
if the two sides of the commutative diagram have
updated the initial state of a memory in exactly the
same way. Since the new term variable a represents an
arbitrary address, if the two sides of the commutative
diagram have modified that address identically, then
they have modified all addresses identically. The same
new term variable has to be used when replacing all
equations between states of a given memory.

2 Eliminate all reads from updated memory states by
accounting for the forwarding property of the memory
semantics (see Section 2). In EVC, this step is
performed dynamically, while parsing the expressions
of an EUFM correctness formula. The result is that a
read is replaced by a nested-ITE expression, having as
a leaf a read from the initial state of that memory.

3 For every memory, replace each read from the initial
state of the memory (the initial state is abstracted by a
term variable that is unique for each memory) with an
application of a new UF that is unique for this memory
and maps an address term (argument of a replaced
read) to a term for the initial state of that address in the
given memory.

4 Classify the equations as p-equations and g-equations.
Classify the terms as p-terms and g-terms.

5 Eliminate all UFs by using the nested-ITE scheme
(see Section 2); classify as p-terms all new term
variables introduced when eliminating a UF that was
classified as a p-term. Eliminate all UPs by using
either the nested-ITE or the Ackermann scheme.

6 Replace each equation that has the same term variable
as both arguments with the constant true. Replace each
p-equation between different term variables with the
constant false, by the property of Positive Equality.
Encode each g-equation with Boolean variables, by
using one of the methods (Goel et al., 1998;
Pnueli et al., 2002; Velev, 2003a).

7 Check if the resulting Boolean correctness formula is a
tautology (or the CNF of the negated Boolean formula
is unsatisfiable), which implies that the original EUFM
formula is valid. Otherwise, a falsifying assignment for
the Boolean correctness formula (a satisfying
assignment for the CNF of the negated Boolean
formula) is a condition that triggers a bug in the
implementation processor.

6.2 Hashing of expressions

EVC uses a hashing scheme to ensure that there will
be no duplicate gates and thus to increase the efficiency of
SAT-checking the Boolean correctness formula. During all
stages of translation from EUFM to propositional logic, the
correctness formula is represented as a shared Directed
Acyclic Graph, where each node is assigned an index and is
identified by a unique key. The key is formed as the type of
the node (AND, OR, NOT, ITE, equation, read, write,
uninterpreted-function, uninterpreted-predicate), followed
by the list of indices of the input nodes. For nodes
of type ITE, read, write, uninterpreted-function, and
uninterpreted-predicate, the order of listing the input
indices is the same as the order of their nodes in the input
list for the node that is being hashed. For nodes of type
equation, the input indices are sorted in ascending order; if
the two input indices are the same, then the equation node is
replaced with the constant true. For nodes of type AND and

142 M.N. Velev and R.E. Bryant

OR, the input indices are also sorted in ascending order, and
duplicate input indices are removed. Furthermore, an AND
(OR) node having inputs that are complements of each other
(one is the negation of the other) is replaced with false
(true). An AND node that has another AND node as input is
replaced with a single AND node that has all the inputs of
the two nodes, except for the eliminated node; similarly for
an OR node that has another OR node as input. That is, the
final Boolean formula has neither AND gates that directly
drive other AND gates nor OR gates that directly drive other
OR gates. Table 1 presents optimizations used when hashing
expressions.

Table 1 Optimizations used when hashing expressions

Expression that is being
hashed

Retuned pointer to
expression

NOT(NOT(c)) c
ITE(NOT(c), a, b) ITE(c, b, a)
ITE(c, a, a) a
ITE(true, a, b) a
ITE(false, a, b) b
ITE(c, ITE(c, a, b), d) ITE(c, a, d)
ITE(c, a, ITE(c, b, d)) ITE(c, a, d)
ITE(a, true, c) OR(a, c)
ITE(a, false, c) AND(NOT(a), c)
ITE(a, b, true) OR(NOT(a), b)
ITE(a, b, false) AND(a, b)
ITE(a, b, a) AND(a, b)
ITE(a, a, c) OR(a, c)

In Table 1, a chain of two NOTs is replaced with the
input to the chain. An expression ITE(NOT(c), a, b), where
the controlling formula is the negation of another formula c,
is replaced with the equivalent expression ITE(c, b, a),
controlled by the negation of the original controlling
formula, i.e., by c and having the original then-input and
else-input swapped. An expression ITE(c, a, a), where the
then-input and the else-input are the same expression a, is
replaced with expression a, since it will be selected always.
If the controlling formula of an ITE is the constant
true (false), then the ITE is replaced with its then-input
(else-input). A chain of two ITEs that have the same
controlling formula is replaced with one ITE after
accounting for the truth value that has to be assigned to the
controlling formula of the upper ITE to select the lower ITE,
and then simplifying the lower ITE. That is, in
ITE(c, ITE(c, a, b), d), the lower ITE will be selected when
the upper ITE’s controlling formula c is true, so that the
lower ITE will be equivalent to ITE(true, a, b) if selected
and thus can be simplified to a; hence, the original chain of
two ITEs can be replaced with ITE(c, a, d). Similarly,
ITE(c, a, ITE(c, b, d)) can be replaced with ITE(c, a, d),
since formula c will be false when the lower ITE is selected.

The rest of the optimisations are based on the definition of
an ITE(c, a, b) as c ∧ a ∨ ¬c ∧ b and simplifications.

In EVC, the final Boolean correctness formula consists
of AND, OR, NOT, and ITE gates. EVC can evaluate that
formula by using Binary Decision Diagrams (Bryant, 1986,
1992; Bryant and Meinel, 2001) via a built-in interface to
the CUDD package (Somenzi, 1999, 2001), or by using
Boolean Expression Diagrams (Hulgaard et al., 1999;
Williams, 2000)—a non-canonical representation of
Boolean functions that can be converted to Binary Decision
Diagrams. Alternatively, the Boolean correctness
formula can be saved to a file and then checked for being a
tautology with a SAT solver. The supported formats are
CNF (Johnson and Trick, 1993), ISCAS (Brglez and
Fujiwara, 1985), ISCAS-CGRASP (Marques-Silva and
e Silva, 1999), and Prover––a SAT solver based on
Stålmarck’s method (Stålmarck, 1989; Sheeran and
Stålmarck, 2000). However, our comparison of SAT
procedures (Velev and Bryant, 2003) determined that the
most efficient way to evaluate the Boolean correctness
formulas produced by EVC is with an efficient SAT solver.
Chaff (Moskewicz et al., 2001) was the break-through
SAT solver. Later it was surpassed by BerkMin
(Goldberg and Novikov, 2002), siege (Ryan, 2003), and
other tools—see Le Berre and Simon (2005) for the results
from the most recent SAT solver competition.

6.3 Efficient translation to CNF

After the g-equations are encoded with Boolean variables,
we have a purely Boolean formula that has to be a tautology
for the original EUFM formula to be valid. We can check
whether a Boolean formula is a tautology by negating it and
proving that the resulting formula is unsatisfiable (i.e., there
is no assignment to the Boolean variables that makes the
formula true) by using any Boolean Satisfiability (SAT)
solver. The most common input format of SAT solvers is
Conjunctive Normal Form (CNF) (Johnson and Trick,
1993), where a Boolean formula is represented as a
conjunction of clauses, and every clause is a disjunction of
literals—CNF variables or their negations. In conventional
translation of Boolean formulas to CNF (Tseitin, 1968), a
new CNF variable is introduced for the output of every logic
connective, and a set of CNF clauses is used to correlate that
variable with the variables for the inputs of the connective,
given the function of the connective—see Table 2.
Then, the CNF for a Boolean formula is the conjunction
of the clauses for all gates, conjuncted with the 1-literal
clause expressing the condition that the CNF variable for
the output of the formula should be true. Tseitin (1968)
was among the first to use such CNF translation,
which was later optimised by Plaisted and Greenbaum
(1985), and used for testing of digital circuits by Larrabee
(1992).

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 143

Table 2 Conventional translation of basic logic gates to CNF

Logic gate Equivalent constraints CNF clauses

¬i1 ⇒ ¬o (i1 ∨ ¬o) ∧

¬i2 ⇒ ¬o (i2 ∨ ¬o) ∧

... ...

¬in ⇒ ¬o (in ∨ ¬o) ∧

o ← AND(i1, i2, ..., in)

i1 ∧ i2 ∧ ... ∧ in ⇒ o (¬i1 ∨ ¬i2 ∨ ... ∨ ¬in ∨ o)

i1 ⇒ o (¬i1 ∨ o) ∧

i2 ⇒ o (¬i2 ∨ o) ∧

... ...

in ⇒ o (¬in ∨ o) ∧

o ← OR(i1, i2, ..., in)

¬i1 ∧ ¬i2 ∧ ... ∧ ¬in ⇒ ¬o (i1 ∨ i2 ∨ ... ∨ in ∨ ¬o)

i ∧ t ⇒ o (¬i ∨ ¬t ∨ o) ∧

i ∧ ¬t ⇒ ¬o (¬i ∨ t ∨ ¬o) ∧

¬i ∧ e ⇒ o (i ∨ ¬e ∨ o) ∧

o ← ITE(i, t, e)

¬i ∧ ¬e ⇒ ¬o (i ∨ e ∨ ¬o)

i ⇒ ¬o (¬i ∨ ¬o) ∧ o ← NOT(i)

¬i ⇒ o (i ∨ o)

CNF-based SAT solvers face two main hurdles to
further improvements. First, the operation-intensive
Boolean Constraint Propagation––reflecting a CNF
variable’s assignment on all the clauses containing that
variable or its negation––takes up to 90% of the
SAT-solving time (Moskewicz et al., 2001) and generates
many non-sequential memory accesses that are prone to
L2-cache misses. Furthermore, Boolean Constraint
Propagation requires data-dependent branches that are hard
to predict and so frequently incur the branch misprediction
penalty––at least 19 cycles, and up to 125 instructions in the
Intel Pentium 4 (Hennessy and Patterson, 2002).
Second, many L2-cache misses occur for big formulas
(Zhang and Malik, 2003), resulting in expensive accesses to
main memory; the L2-cache miss penalty is up to hundreds
of cycles currently and is increasing (Hennessy and
Patterson, 2002).

To reduce the above two hurdles when translating to
CNF, we can preserve the ITE-tree structure of
equation arguments, instead of replacing each equation with
a disjunction of conjunctions of formulas, as done in
Bryant et al. (2001), Velev and Bryant (1999b), Velev and
Bryant (2001). For example, the equation
ITE(c1, a1, a2) = ITE(c2, b1, b2) will be replaced with
ITE(c1, ITE(c2, a1 = b1, a1 = b2), ITE(c2, a2 = b1, a2 = b2)), as
done in Velev (2004d). This results in Boolean correctness
formulas with ITE-trees, where each ITE inside a tree has
fanout count of 1, i.e., drives only one gate that is another
ITE inside the same tree.

An ITE-tree can be translated into CNF with a unified
set of clauses (Velev, 2004d), without intermediate
variables for outputs of ITEs inside the tree––see the paths
from inputs a2 and a3 to the output o in Figure 7.
Furthermore, ITE-trees can be merged with one level of
their AND/OR leaves, where each leaf has a fanout
count 1––see the paths from G1 and G2 to o in Figure 7. We
can similarly merge ITE-trees with two levels of their

leaves. And we can also merge other gate groups
(Velev, 2004c), e.g., AND-ITE, OR-ITE, AND-OR,
ITE- OR, OR-AND, and ITE- AND, but this results in only
small additional improvements if ITE-trees are merged
(Velev, 2004d).

The benefits from merging ITE-trees with their leaves
include fewer variables and clauses and thus reduced
solution space, smaller CNF file sizes, and fewer L2-cache
misses; reduced Boolean Constraint Propagation, due to the
eliminated intermediate variables for outputs of ITEs inside
a tree; automatic use of signal unobservability––all clauses
for a path in an ITE-tree become satisfied when an
ITE-controlling signal selects another path; and guiding the
SAT-solver branching and learning––each path in an
ITE-tree is due to a different symbolic-execution trace, so
that we point the SAT solver toward processing one
symbolic-execution trace at a time and make it easier for the
SAT solver to prune infeasible paths. If Ackermann
constraints are used to eliminate the UFs and UPs, as in
Barrett et al. (2002), Goel et al. (1999), Pnueli et al. (2002),
Tveretina and Zantema (2003), and Zantema and
Groote (2003), the resulting Boolean formulas will have
fewer or no ITE-tees and so will benefit less from this
optimisation. The speedup from merging ITE-trees is up to
two orders of magnitude, when formally verifying complex
processors (Velev, 2004d).

Figure 7 Merging an ITE-tree with one level of its AND/OR
leaves that have a fanout count of 1. Each ITE-tree is
represented as the conjunction of all clauses for paths
from leaves to the tree output

7 Summary of results

Experiments were conducted on a Dell OptiPlex GX260
having a 3.06-GHz Intel Pentium 4 processor with a
512-KB on-chip L2-cache, 2 GB of physical memory, and
running Red Hat Linux 9.0. Our tool flow, consisting of
TLSim and EVC, was combined with the SAT solvers

144 M.N. Velev and R.E. Bryant

siege_v4 (Ryan, 2003), and BerkMin621 (Goldberg and
Novikov, 2003). The eij encoding (Goel et al., 1999) was
used for g-equations, since it was found to outperform the
encodings from Pnueli et al. (2002), and Velev (2003a).
The Boolean correctness formulas were translated to CNF
using the method described in Section 6.3.

The experiments were to formally verify safety of the
benchmarks: 1dlx_c, a single-issue five-stage pipelined
DLX (Hennessy and Patterson, 2002), modelled as
described in Velev and Bryant (1999b); 2dlx_ca, a
dual-issue superscalar DLX, with one complete and
one ALU pipeline (Velev and Bryant, 1999b);
2dlx_cc_mc_ex_bp, a dual-issue superscalar DLX, with
two complete pipelines, exceptions, branch prediction and
multicycle functional units (Velev and Bryant, 2000);
ooo_engine6, an out-of-order processor with a completely
implemented six-entry reorder buffer, completely
implemented and instantiated six reservation stations,
register renaming, and ALU instructions––this processor
was modelled and formally verified as described in Velev
(2004a), and is based on the description of the PowerPC 750
(IBM Corporation, 1999), an embedded processor that is
compatible with the PowerPC ISA and has six reorder
buffer entries and six reservation stations—in contrast to
other out-of-order models (Hosabettu et al., 1999; Jhala and
McMillan, 2002; Lahiri and Bryant, 2003), ooo_engine6
has a completely implemented reorder buffer, and
completely implemented and instantiated reservation
stations; and 9vliw_bp_mc_ex_9stages_iq5, a nine-
stage, nine-wide VLIW processor that imitates the Intel
Itanium (Intel Corporation, 1999; Sharangpani and Arora,
2000) in features such as predicated execution, register
remapping, advanced loads, branch prediction, and
multicycle functional units, exceptions, and a five-entry
instruction queue (a simpler version of this processor with
fewer pipeline stages and no instruction queue was formally
verified in Velev (2000), and Velev and Bryant (2003)). The
abstraction function was computed by controlled flushing
(Burch, 1996), where the user provides a stalling schedule
to override the processor stall signals, thus eliminating the
ambiguity of the instruction flow during flushing and
producing a simpler EUFM correctness formula.

The benchmark 1dlx_c was formally verified
in a total of 0.06 seconds; 2dlx_ca in 0.2 seconds;
2dlx_cc_mc_ex_bp in 0.9 seconds; ooo_engine6 in four
hours; and 9vliw_bp_mc_ex_9stages_iq5 in eight hours
and nine minutes. The SAT solver siege_v4 was used for
the first four benchmarks, since it was faster than
BerkMin621 on their CNF formulas, while BerkMin621 had
advantage for the last benchmark and was used for it.

Without Positive Equality—using the eij encoding for all
equations, including p-equations between p-terms—the
formal verification of 2dlx_cc_mc_ex_bp did not
complete in 90,000 seconds. Hence, Positive Equality
results in at least five orders of magnitude speedup
for realistic dual-issue superscalar processors. Furthermore,
the speedup is increasing with the complexity of the
implementation.

8 Related work

Before the use of Positive Equality and other optimisations
to translate EUFM formulas to SAT, the most widely used
method for formal verification of pipelined processors was
theorem proving. However, the formal verification of a
five-stage pipelined DLX or ARM––comparable to 1dlx_c
from Section 7––required extensive manual work by experts
and often long CPU times (Börger and Mazzanti, 1997;
Cyrluk, 1996; Fox, 2002; Hosabettu et al., 1998; Huggins
and Van Campenhout, 1998; Jacobi and Kröning, 2000;
Kröning and Paul, 2001; Müller and Paul, 2000; Tahar and
Kumar, 1998; Windley, 1995). Even three-stage pipelines,
executing only ALU instructions, took significant manual
intervention to formally verify with theorem proving
(Manolios, 2000; Sawada, 2000), or with assume-guarantee
reasoning (Henzinger et al., 1998; Henzinger et al., 2000).
Symbolic Trajectory Evaluation (Intel Corporation, 2000;
Jain et al., 1996; Nelson et al., 1997; Seger and
Bryant, 1995) also required extensive manual work to
prove the correctness of just a register-immediate OR
instruction in a bit-level five-stage ARM processor
(Patankar et al., 1999). Other researchers had to limit the
data values to four bits, the register file to one register, and
the ISA to 16 instructions, to symbolically verify a bit-level
pipelined processor (Bhagwati and Devadas, 1994). Various
symbolic tools required long CPU time when
formally verifying a pipelined DLX (Hinrichsen et al., 1999;
Ritter et al., 1999), or ran out of memory (Isles et al., 1998).
Custom-tailored, manually defined rewriting rules were
used to formally verify a five-stage DLX (Levitt and
Olukotun, 1997), and similar four-stage processors
(Harman, 2001; Lis, 2000; Matthews and
Launchbury, 1999), but would require modifications to
work on designs described in a different coding style and
significant extensions to scale for dual-issue
superscalar processors. Other researchers proved only few
properties of a pipelined DLX (Ivanov, 2002; Ramesh and
Bhaduri, 1999), or did not present completeness argument
(Mishra and Dutt, 2002)––that the properties proved will
ensure correctness under all possible scenarios.

Historically, the inductive correctness criterion in
Figure 1 dates back to Milner (1971), and Hoare (1972),
who used it to formally verify programs by manually
defining an abstraction function to map the state of an
implementation program to the state of a specification
program. Srivas and Bickford (1990) were first to formally
verify a pipelined processor by using a theorem-proving
approach and also manually defined abstraction function.
Burch and Dill (1994) proposed flushing as a way to
automatically compute an abstraction function and were
first to formally verify a pipelined DLX. However, they had
to manually provide a case-splitting expression for the
conditions when the processor will fetch and complete a
new instruction. Burch (1996) applied the same method to a
dual-issue superscalar DLX, but had to manually define 28
case-splitting expressions and to decompose the safety
correctness criterion. That decomposition was subtle enough

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 145

to warrant publication of its correctness proof as a separate
paper (Windley and Burch, 1996). Hosabettu et al. (1998)
used theorem proving to formally verify a single-issue
pipelined DLX and a dual-issue superscalar DLX, but
reported one month of manual work for each.

Our tool flow was used to formally verify a model of the
Intel XScale processor with a scoreboard, specialized
execution pipelined, and imprecise exceptions (Srinivasan
and Velev, 2003). The tool flow was applied to formally
verify a version of the M•CORE processor at Motorola, and
detected two bugs in the forwarding logic, one bug in the
issue logic, and corner cases that were not fully
implemented (Lahiri et al., 2001). The tool flow was also
used in two editions of an advanced computer architecture
course (Velev, 2005a; 2003b), where undergraduate and
graduate students without prior knowledge of formal
methods designed and formally verified single-issue
pipelined DLX processors, as well as extensions with
exceptions and branch prediction, and dual-issue superscalar
implementations.

Our tool flow owes much of its efficiency to the
tremendous improvements in the speed of SAT solvers
(Moskewicz et al., 2001; Goldberg and Novikov, 2002;
Ryan, 2003); however, as determined in Section 7, even the
most efficient SAT solvers would not scale for CNF
formulas from complex processors, if the property of
Positive Equality is not used. For comparative studies of
SAT solvers, the reader is referred to Le Berre and Simon
(2005), and Velev and Bryant (2003), and for surveys of
recent advances in SAT to Biere and Kunz (2002),
Kautz and Selman (2003), and Zhang and Malik (2002).

In the decision procedure EVC, the translation to CNF
is done in a single step, by including all constraints for
transitivity of equality and for functional consistency of
uninterpreted functions and uninterpreted predicates, i.e.,
the translation is eager, as is also the case in Bryant
et al. (2002), Lahiri and Bryant (2003), Pnueli et al. (2002),
and Seshia et al. (2003). In lazy translation to SAT
(Audemard et al., 2002; Barrett et al., 2002; de Moura
et al., 2002)––constraints are added incrementally to
prevent recurrence of false counterexamples––this
significantly degrades the performance when deciding
complex EUFM formulas (Seshia et al., 2003). Heuristics
that sped up SVC (Jones et al., 1995; Barrett et al., 1996;
http://sprout.Stanford.EDU/SVC), an EUFM decision
procedure based on Burch and Dill’s work (1994), are
presented in Jones et al. (1995), and Levitt and
Olukotun (1997), but did not scale for big formulas or for
formulas with different structure (Barrett et al., 2002).
Recent decision procedures (Bryant et al., 2002;
Seshia et al., 2003)––extending EUFM with counter
arithmetic, lambda expressions, and inequalities––exploit
most of the optimizations in EVC, including Positive
Equality.

Nested ITEs were first used to eliminate uninterpreted
functions and uninterpreted predicates in Velev and
Bryant (1998c), where bit-level functional units were
abstracted with read-only instances of an Efficient
Memory Model (Velev and Bryant, 1998a; Velev and
Bryant, 1998b)—developed for use in symbolic simulation
as a behavioural abstraction of memories, and later adopted
in verification tools by Innologic Systems (Hasteer, 1999),
and Synopsys (Kölbl et al., 2002).

When abstracting functional units and memories, we
assume that their bit-level implementations are formally
verified separately. The technology for this is already
used widely in industry (Pandey and Bryant, 1999;
Chen and Bryant, 2001; Jones, 2002; Parthasarathy
et al., 2002).

Our tool flow is best suited for formal verification of
embedded processors, including out-of-order designs such
as ooo_engine6 (see Section 7). The reader is referred to
Hosabettu et al. (1999), Jhala and McMillan (2002), Lahiri
and Bryant (2003), and Sawada and Hunt (2002) for
techniques for formal verification of more complex
out-of-order models. Note that by formally verifying an
implementation processor, we prove the logical correctness
of the design. However, fabrication defects may still lead to
bugs in specific chips and can only be detected by testing
methods (Albin, 2001; Bentley, 2001).

9 Conclusions

We presented a tool flow for high-level design and
formal verification of embedded processors. The tool flow
consists of:
• the term-level symbolic simulator TLSim, which

accepts implementation and specification processors in
the high-level hardware description language AbsHDL,
as well as a simulation command file and produces an
EUFM formula for correctness of the implementation;

• the decision procedure EVC that exploits Positive
Equality and other optimisations to translate the
EUFM correctness formula to an equivalent Boolean
formula; and

• any efficient SAT procedure to prove that the Boolean
correctness formula is a tautology.

Positive Equality resulted in at least five orders of
magnitude speedup for realistic dual-issue superscalar
processors; the speedup increases with the complexity
of the implementation processor. An efficient translation
to CNF led to another two orders of magnitude
speedup. The tool flow was used at Motorola to
formally verify a model of the M•CORE processor
and detected bugs. TLSim and EVC are available from
Velev (2004e).

146 M.N. Velev and R.E. Bryant

Future work will extend EVC with the capability to
produce proofs for every formula that it reports valid,
e.g., as done in Stump (2002). We will also develop a tool
for automatic translation of a formally verified high-level
microprocessor model to a description in a synthesisable
bit-level HDL.

References
Aagaard, M.D., Cook, B., Day, N.A. and Jones, R.B. (2003) ‘A

framework for superscalar microprocessor correctness
statements’, Software Tools for Technology Transfer (STTT),
May, Vol. 4, No. 3, pp.298–312.

Aagaard, M.D., Day, N.A. and Lou, M. (2002) ‘Relating
multi-step and single-step microprocessor correctness
statements’, in Aagaard, M.D. and O’Leary, J.W. (Eds.):
Formal Methods in Computer-Aided Design (FMCAD ’02),
LNCS 2517, November, Springer-Verlag, pp.123–141.

Ackermann, W. (1954) Solvable Cases of the Decision Problem,
North-Holland, Amsterdam.

Albin, K. (2001) ‘Nuts and bolts of core and SoC
verification’, 38th Design Automation Conference (DAC ’01),
June, Las Vegas, NV, USA, pp.249–252.

Audemard, G., Bertoli, P., Cimatti, A., Korniowicz, A. and
Sebastiani, R. (2002) ‘A SAT based approach for solving
formulas over Boolean and linear mathematical propositions’,
11th International Conference on Automated Deduction
(CADE ’02), LNCS 2392, July, Springer-Verlag,
pp.195–210.

Barrett, C., Dill, D. and Stump, A. (2002) ‘Checking satisfiability
of first-order formulas by incremental translation to SAT’,
Computer-Aided Verification (CAV ’02), LNCS 2404, July,
Springer-Verlag, pp.187–201.

Barrett, C.W., Dill, D.L. and Levitt, J.R. (1996) ‘Validity checking
for combinations of theories with equality’, Srivas, M. and
Camilleri, A. (Eds.): Formal Methods in Computer-Aided
Design (FMCAD ’96), LNCS 1166, November,
Springer-Verlag, pp.187–201.

Bentley, B. (2001) ‘Validating the Intel Pentium
4 microprocessor’, 38th Design Automation Conference
(DAC ’01), June, Las Vegas, NV, USA, pp.244–248.

Bhagwati, V. and Devadas, S. (1994) ‘Automatic verification of
pipelined microprocessors’, 31st Design Automation
Conference (DAC ’94), June, San Diego, California, USA,
pp.603–608.

Biere, A. and Kunz, W. (2002) ‘SAT and ATPG: Boolean
engines for formal hardware verification’, International
Conference on Computer Aided Design (ICCAD ’02),
November, San Jose, California, USA, pp.782–785.

Blank, C., Eveking, H., Levihn, J. and Ritter, G. (2001) ‘Symbolic
simulation techniques – state-of-the-art and applications’,
IEEE International High-Level Design Validation and Test
Workshop (HLDVT ’01), December, pp.45–50.

Börger, E. and Mazzanti, S. (1997) ‘A practical method for
rigorously controllable hardware design’, in Bowen, J.,
Hinchey, M. and Till, D. (Eds.): 10th International
Conference of Z Users (ZUM ’97), LNCS 1212, April,
Springer-Verlag, pp.151–187.

Brglez, F. and Fujiwara, H. (1985) ‘A neutral netlist of
10 combinational benchmark circuits’, International
Symposium on Circuits and Systems (ISCAS ’85), June,
Kyoto, Japan, pp.785–794.

Bryant, R.E. (1986) ‘Graph-based algorithms for Boolean function
manipulation’, IEEE Transactions on Computers, August,
Vol. C-35, No. 8, pp.677–691.

Bryant, R.E. (1992) ‘Symbolic Boolean manipulation with ordered
binary-decision diagrams’, ACM Computing Surveys,
September, Vol. 24, No. 3, pp.293–318.

Bryant, R.E. and Meinel, C. (2001) ‘Ordered binary decision
diagrams’, in Hassoun, S. and Sasao, T. (Eds.): Logic
Synthesis and Verification, Kluwer Academic Publishers,
Boston/Dordrecht/London.

Bryant, R.E. and Velev, M.N. (2002) ‘Boolean satisfiability with
transitivity constraints’, ACM Transactions on Computational
Logic (TOCL), October, Vol. 3, No. 4, pp.604–627.

Bryant, R.E., German, S. and Velev, M.N. (2001) ‘Processor
verification using efficient reductions of the logic of
uninterpreted functions to propositional logic’, ACM
Transactions on Computational Logic (TOCL), January,
Vol. 2, No. 1, pp.93–134.

Bryant, R.E., Lahiri, S.K. and Seshia, S.A. (2002) ‘Modeling and
verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions’, in
Brinksma, E. and Larsen, K.G. (Eds.): Computer-Aided
Verification (CAV’02), LNCS 2404, July, Springer-Verlag,
pp.78–92.

Burch, J.R. (1996) ‘Techniques for verifying superscalar
microprocessors’, 33rd Design Automation Conference
(DAC ’96), June, Las Vegas, Nevada, USA, pp.552–557.

Burch, J.R. and Dill, D.L. (1994) ‘Automated verification of
pipelined microprocessor control’, in Dill, D.L. (Ed.):
Computer-Aided Verification (CAV ’94), LNCS 818, June,
Springer-Verlag, pp.68–80.

Chen, Y-A. and Bryant, R.E. (2001) ‘An efficient graph
representation for arithmetic circuit verification’, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), December, Vol. 20, No. 12,
pp.1442–1454.

Cyrluk, D. (1996) ‘Inverting the abstraction mapping: a
methodology for hardware verification’, in Srivas, M. and
Camilleri, A. (Eds.): Formal Methods in Computer-Aided
Design (FMCAD ’96), LNCS 1166, November,
Springer-Verlag, pp.172–186.

de Moura, L., Rueß, H. and Sorea, M. (2002) ‘Lazy theorem
proving for bounded model checking over infinite domains’,
11th International Conference on Automated Deduction
(CADE ’02), LNCS 2392, July, Springer-Verlag, pp.438–455.

Filliâtre, J.C., Owre, S., Rueß, H. and Shankar, N. (2001) ‘ICS:
integrated canonizer and solver’, in Berry, G., Comon, H. and
Finkel, A. (Eds.): Computer-Aided Verification (CAV ’01),
LNCS 2102, July, Springer-Verlag, pp.246–249.

Fox, A. (2002) Formal verification of the ARM6
micro-architecture, Technical Report UCAM-CL-TR-548,
November, Computer Laboratory, University of Cambridge.

Goel, A., Sajid, K., Zhou, H., Aziz, A. and Singhal, V. (1998)
‘BDD based procedures for a theory of equality with
uninterpreted functions’, in Hu, A.J. and Vardi, M.Y. (Eds.):
Computer-Aided Verification (CAV ’98), LNCS 1427, June
Springer-Verlag, pp.244–255.

Goldberg, E. and Novikov, Y. (2002) ‘BerkMin: a fast and
robust SAT solver’, Design, Automation, and Test in Europe
(DATE ’02), March, pp.142–149.

Goldberg, E. and Novikov, Y. (2003) Personal Communication,
June.

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 147

Grove, A.S. (1999) Only the Paranoid Survive: How to Exploit the
Crisis Points That Challenge Every Company, Currency,
New York.

Harman, N.A. (2001) ‘Verifying a simple pipelined
microprocessor using Maude’, in Cerioli, M. and Reggio, G.
(Eds.): 15th International Workshop on Recent Trends in
Algebraic Development Techniques (WADT ’01), LNCS 2267,
April, Springer-Verlag, pp.128–151.

Hasteer, G. (1999) Personal Communication, February.
Hennessy, J.L. and Patterson, D.A. (2002) Computer Architecture:

A Quantitative Approach, 3rd ed., Morgan Kaufmann
Publishers, San Francisco, CA.

Henzinger, T.A., Qadeer, S. and Rajamani, S.K. (1998) ‘You
assume, we guarantee: methodology and case studies’, in Hu,
A.J. and Vardi, M.Y. (Eds.): Computer-Aided Verification
(CAV ’98), LNCS 1427, June, Springer-Verlag, pp.440–451.

Henzinger, T.A., Qadeer, S. and Rajamani, S.K. (2000)
‘Decomposing refinement proofs using assume-guarantee
reasoning’, International Conference on Computer-Aided
Design, November, San Jose, California, USA.

Hinrichsen, H., Eveking, H. and Ritter, G. (1999) ‘Formal
synthesis for pipeline design’, in Calude, C.S. and
Dinneen, M.J. (Eds.): 2nd International Conference on
Discrete Mathematics and Theoretical Computer Science
(DMTCS ’99) and the 5th Australasian Theory
Symposium (CATS ’99), Australian Computer Science
Communications, Springer-Verlag, Auckland, New Zealand,
Vol. 21, No. 3.

Hoare, C.A.R. (1972) ‘Proof of correctness of data
representations’, Acta Informatica, Vol. 1, pp.271–281.

Hosabettu, R., Srivas, M. and Gopalakrishnan, G. (1998)
‘Decomposing the proof of correctness of pipelined
microprocessors’, in Hu, A.J. and Vardi, M.Y. (Eds.):
Computer-Aided Verification (CAV ’98), LNCS 1427, June,
Springer-Verlag, pp.122–134.

Hosabettu, R., Srivas, M. and Gopalakrishnan, G. (1999) ‘Proof of
correctness of a processor with reorder buffer using the
completion functions approach’, in Halbwachs, N. and
Peled, D. (Eds.): Computer-Aided Verification (CAV ’99),
LNCS 1633, July, Springer-Verlag, pp.47–59.

Huggins, J.K. and Van Campenhout, D. (1998) ‘Specification and
verification of pipelining in the ARM2 RISC
microprocessor’, ACM Transactions on Design Automation of
Electronic Systems, October, Vol. 3, No. 4, pp.563–580.

Hulgaard, H., Williams, P.F. and Andersen, H.R. (1999)
‘Equivalence checking of combinational circuits using
Boolean expression diagrams’, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
(TCAD), Vol. 18, No. 7, July, pp.903–917.

IBM Corporation (1999) PowerPC 740™/PowerPC 750™: RISC
Microprocessor User’s Manual.

Intel Corporation (1999) IA-64 Application Developer’s
Architecture Guide, May, http://developer.intel.com/
design/ia-64/architecture.htm

Intel Corporation (2000) Partial Bibliography of STE
Related Research, http://intel.com/research/scl/library
STE_Bibliography.pdf.

Isles, A.J., Hojati, R. and Brayton, R.K. (1998) ‘Computing
reachable control states of systems modeled with
uninterpreted functions and infinite memory’, in Hu, A.J. and
Vardi, M.Y. (Eds.): Computer-Aided Verification (CAV ’98),
LNCS 1427, Springer-Verlag, June, pp.256–267.

Ivanov, L. (2002) ‘Modeling and verification of a pipelined CPU’,
Midwest Symposium on Circuits and Systems (MWSCAS ’02),
August.

Jacobi, C. and Kröning, D. (2000) ‘Proving the correctness of a
complete microprocessor’, 30. Jahrestagung der Gesellshaft
für Informatik, Springer-Verlag.

Jain, A., Nelson, K.A. and Bryant, R.E. (1996) ‘Verifying
nondeterministic implementations of deterministic systems’,
in Srivas, M. and Camilleri, A. (Eds.): Formal Methods in
Computer-Aided Design (FMCAD ’96), LNCS 1166,
November, Springer-Verlag, pp.109–125.

Jhala, R. and McMillan, K.L. (2002) ‘Microarchitecture
verification by compositional model checking’, in Berry, G.,
Comon, H. and Finkel, A. (Eds.): Computer-Aided
Verification (CAV ’01), LNCS 2404, July, Springer-Verlag,
pp.526–538.

Johnson, D.S. and Trick, M.A. (Eds.) (1993) The Second DIMACS
Implementation Challenge, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science,
http://dimacs.rutgers.edu/challenges.

Jones, R.B. (2002) Symbolic Simulation Methods for Industrial
Formal Verification, Kluwer Academic Publishers,
Boston/Dordrecht/London.

Jones, R.B., Dill, D.L. and Burch, J.R. (1995) ‘Efficient
validity checking for processor verification’, International
Conference on Computer-Aided Design (ICCAD ’95),
November, San Jose, California, USA, pp.2–6.

Kautz, H. and Selman, B. (2003) ‘Ten challenges redux: recent
progress in propositional reasoning and search’, in Rossi, F.
(Ed.): Principles and Practice of Constraint Programming
(CP ’03), LNCS 2833, September–October, Springer-Verlag.

Keutzer, K., Malik, S., Newton, A.R., Rabaey, J.M. and
Sangiovanni-Vincentelli, A. (2000) ‘System-level design:
orthogonalization of concerns and platform-based design’,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), December, Vol. 19, No. 12,
pp.1523–1543.

Kölbl, A., Kukula, J.H., Antreich, K. and Damiano, R.F. (2002)
‘Handling special constructs in symbolic simulation’, 39th
Design Automation Conference (DAC ’02), June,
New Orleans, LA, USA, pp.105–110.

Kröning, D. and Paul, W.J. (2001) ‘Automated pipeline design’,
38th Design Automation Conference (DAC ’01), June,
Las Vegas, NV, USA, pp.810–815.

Lahiri, S., Pixley, C. and Albin, K. (2001) ‘Experience with term
level modeling and verification of the M•CORE™
microprocessor core’, 6th Annual IEEE International
Workshop on High Level Design, Validation and Test
(HLDVT ’01), November, Monterey, California, USA,
pp.109–114.

Lahiri, S.K. and Bryant, R.E. (2003) ‘Deductive verification of
advanced out-of-order microprocessors’, Computer-Aided
Verification (CAV ’03), LNCS, July, Springer-Verlag,
Monterey, California, USA.

Larrabee, T. (1992) ‘Test pattern generation using Boolean
satisfiability’, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), January, Vol. 11,
No. 1, pp.4–15.

Le Berre, D. and Simon, L. (2005) ‘The SAT 2005 competition:
fourth edition’, 8th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’05), June,
http:// www.lri.fr/~simon/contest/results/.

148 M.N. Velev and R.E. Bryant

Levitt, J. and Olukotun, K. (1997) ‘Verifying correct pipeline
implementation for microprocessors’, International
Conference on Computer-Aided Design (ICCAD ’97),
November, San Jose, CA, USA, pp.162–169.

Lis, M.N. (2000) Superscalar Processors via Automatic
Microarchitecture Transformations, M.S. thesis, June,
Department of Electrical Engineering and Computer Science,
M.I.T.

Manolios, P. (2000) ‘Correctness of pipelined machines’, in Hunt
Jr., W.A., and Johnson, S.D. (Eds.): Formal Methods in
Computer-Aided Design (FMCAD ’00), LNCS 1954,
November, Springer-Verlag, pp.161–178.

Marques-Silva, J.P. and e Silva, L.G. (1999) ‘Algorithms for
satisfiability in combinational circuits based on
backtrack search and recursive learning’, 12th Symposium on
Integrated Circuits and Systems Design (SBCCI ’99),
September–October, Natal, Brazil, pp.192–195.

Matthews, J. and Launchbury, J. (1999) ‘Elementary
microarchitecture algebra’, in Halbwachs, N. and Peled, D.
(Eds.): Computer-Aided Verification (CAV ’99), LNCS 1633,
Springer-Verlag, June, pp.288–300.

Milner, R. (1971) ‘An algebraic definition of simulation between
programs’, 2nd International Joint Conference on Artificial
Intelligence, The British Computer Society, pp.481–489.

Mishra, P. and Dutt, N. (2002) ‘Modeling and verification of
pipelined embedded processors in the presence of hazards and
exceptions’, IFIP WCC 2002 Stream 7 on Distributed and
Parallel Embedded Systems (DIPES ’02), August, Montréal,
Québec, Canada, pp.81–90.

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L. and
Malik, S. (2001) ‘Chaff: engineering an efficient SAT solver’,
38th Design Automation Conference (DAC ’01), June,
Las Vegas, NV, USA, pp.530–535.

Müller, S.M. and Paul, W.J. (2000) Computer Architecture:
Complexity and Correctness, Springer-Verlag.

Nelson, K.L., Jain, A. and Bryant, R.E. (1997) ‘Formal verification
of a superscalar execution unit’, 34th Design Automation
Conference (DAC ’97), June, Anaheim, California, USA,
pp.161–166.

Pandey, M. and Bryant, R.E. (1999) ‘Exploiting symmetry when
verifying transistor-level circuits by symbolic trajectory
evaluation’, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), July, Vol. 18, No. 7,
pp.918–935.

Parthasarathy, G., Iyer, M.K., Feng, T., Wang, L-C., Cheng, K-T.,
and Abadir, M.S. (2002) ‘Combining ATPG and
symbolic simulation for efficient validation of embedded
array systems’, International Test Conference (ITC ’02),
October, Baltimore, MD, pp.203–212.

Pasztor, A. and Landers, P. (1999) ‘Toshiba to pay $2B settlement
on laptops’, ZDNet News, November, http://www.zdnet.com/
zdnn/stories/news/0,4586,2385037,00.html

Patankar, V.A., Jain, A. and Bryant, R.E. (1999) ‘Formal
verification of an ARM processor’, 12th International
Conference on VLSI Design, January, Goa, India,
pp.282–287.

Plaisted, D.A. and Greenbaum, S. (1985) ‘A structure preserving
clause form translation’, Journal of Symbolic Computation
(JSC), Vol. 2, pp.293–304.

Pnueli, A., Rodeh, Y., Strichman, O. and Siegel, M. (2002) ‘The
small model property: how small can it be?’, Journal of
Information and Computation, October, Vol. 178, No. 1,
pp.279–293.

Ramesh, S. and Bhaduri, P. (1999) ‘Validation of pipelined
processor designs using Esterel tools: a case study’, in
Halbwachs, N. and Peled, D. (Eds.): Computer-Aided
Verification (CAV ’99), LNCS 1633, July, Springer-Verlag,
pp.84–95.

Ritter, G., Eveking, H. and Hinrichsen, H. (1999) ‘Formal
verification of designs with complex control by symbolic
simulation’, in Pierre, L. and Kropf, T. (Eds.): Correct
Hardware Design and Verification Methods (CHARME ’99),
LNCS 1703, September, Springer-Verlag, pp.234–249.

Ryan, L. (2003) Siege SAT Solver v.4, http://www.cs.sfu.ca/
~loryan/personal/.

Sawada, J. (2000) ‘Verification of a simple pipelined machine’,
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer
Academic Publishers, Boston/Dordrecht/London, pp.137–150.

Sawada, J. and Hunt Jr., W.A. (2002) ‘Verification of FM9801:
out-of-order processor with speculative execution and
exceptions that may execute self-modifying code’, Journal on
Formal Methods in System Design (FMSD), special
issue on Microprocessor Verifications, March, Vol. 20, No. 2,
pp.187–222.

Seger, C-J.H. and Bryant, R.E. (1995) ‘Formal verification by
symbolic evaluation of partially-ordered trajectories’, Formal
Methods in System Design (FMSD), March,
Vol. 6, No. 2, pp.147–190.

Seshia, S.A., Lahiri, S.K. and Bryant, R.E. (2003) ‘A hybrid
SAT-based decision procedure for separation logic with
uninterpreted functions’, 40th Design Automation Conference
(DAC ’03), June, Anaheim, CA, USA, pp.425–430.

Sharangpani, H. and Arora, K. (2000) ‘Itanium processor
microarchitecture’, IEEE Micro, September–October,
Vol. 20, No. 5, pp.24–43.

Sheeran, M. and Stålmarck, G. (2000) ‘A tutorial on
Stålmarck’s proof procedure for propositional logic’, Formal
Methods in System Design (FMSD), January, Vol. 16, No. 1,
pp.23–58.

Somenzi, F. (1999) CUDD version 2.3.0, http://vlsi.colorado.edu/
~fabio

Somenzi, F. (2001) ‘Efficient manipulation of decision diagrams’,
International Journal on Software Tools for Technology
Transfer (STTT), Vol. 3, No. 2, pp.171–181.

Srinivasan, S.K. and Velev, M.N. (2003) ‘Formal verification
of an Intel XScale processor model with scoreboarding,
specialized execution pipelines, and imprecise data-memory
exceptions’, Formal Methods and Models for Codesign
(MEMOCODE ’03), June, Mont Saint-Michel, France,
pp.65–74.

Srivas, M. and Bickford, M. (1990) ‘Formal verification of a
pipelined microprocessor’, IEEE Software, September–
October, Vol. 7, No. 5, pp.52–64.

Stålmarck, G. (1989) A System for Determining Propositional
Logic Theorems by Applying Values and Rules to Triplets that
are Generated from a Formula, Swedish Patent No. 467 076
(approved 1992), U.S. Patent No. 5 276 897 (1994), European
Patent No. 0403 454 (1995).

Stump, A. (2002) Checking Validity of Proofs with CVC and Flea,
Ph.D. thesis, Department of Computer Science, Stanford
University, September.

Tahar, S. and Kumar, R. (1998) ‘A practical methodology for the
formal verification of RISC processors’, Formal Methods in
Systems Design (FMSD), September, Vol. 13, No. 2,
pp.159–225.

 TLSim and EVC: a term-level symbolic simulator and an efficient decision procedure 149

Tennenhouse, D. (2000) ‘Proactive computing’, Communications
of the ACM, May, Vol. 43, No. 5, pp.43–50.

Tseitin, G.S. (1968) ‘On the complexity of derivation in
propositional calculus’, in Studies in Constructive
Mathematics and Mathematical Logic, Part 2, pp.115–125,
Reprinted in Siekmann, J. and Wrightson, G. (Eds.):
Automation of Reasoning, Vol. 2, Springer-Verlag, 1983,
pp.466–483.

Tveretina, O. and Zantema, H. (2003) A Proof System and a
Decision Procedure for Equality Logic, Technical Report,
Department of Computer Science, Technical University of
Eindhoven, http://www.win.tue.nl/~hzantema/TZ.pdf.

Velev, M.N. (2000) ‘Formal verification of VLIW
microprocessors with speculative execution’, in Emerson,
E.A. and Sistla, A.P., (Eds.): Computer-Aided Verification
(CAV ’00), LNCS 1855, July, Springer-Verlag, pp.296–311.

Velev, M.N. (2001) ‘Automatic abstraction of memories in the
formal verification of superscalar microprocessors’, in
Margaria, T. and Yi, W. (Eds.): Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’01), LNCS
2031, April, Springer-Verlag, pp.252–267.

Velev, M.N. (2003a) ‘Automatic abstraction of equations in a logic
of equality’, in Mayer, M.C. and Pirri, F. (Eds.): Automated
Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX ’03), LNAI 2796, September, Springer-Verlag,
pp.196–213.

Velev, M.N. (2003b) ‘Collection of high-level microprocessor
bugs from formal verification of pipelined and superscalar
designs’, International Test Conference (ITC ’03), October,
Charlotte, NC, USA, pp.138–147.

Velev, M.N. (2004a) ‘Using automatic case splits and efficient
CNF translation to guide a SAT solver when formally
verifying out-of-order processors’, Artificial Intelligence and
Mathematics (AI&MATH ’04), January, Fort Lauderdale,
Florida, USA, pp.242–254.

Velev, M.N. (2004b) ‘Using positive equality to prove liveness for
pipelined microprocessors’, Asia and South Pacific Design
Automation Conference (ASP-DAC ’04), January, Yokohama,
Japan, pp.316–321.

Velev, M.N. (2004c) ‘Efficient translation of Boolean
formulas to CNF in formal verification of microprocessors’,
Asia and South Pacific Design Automation Conference
(ASP-DAC ’04), January, Yokohama, Japan, pp.310–315.

Velev, M.N. (2004d) ‘Exploiting signal unobservability for
efficient translation to CNF in formal verification of
microprocessors’, Design, Automation and Test in Europe
(DATE ’04), February, Paris, France, pp.266–271.

Velev, M.N. (2004e) TLSim and EVC, http://www.ece.cmu.edu/
~mvelev.

Velev, M.N. (2005a) ‘Integrating formal verification into an
advanced computer architecture course’, IEEE Transactions
on Education, May, Vol. 48, No. 2, pp.216–222.

Velev, M.N. (2005b) ‘Automatic formal verification of liveness for
pipelined processors with multicycle functional units’, in
Borrione, D. and Paul, W.J. (Eds.): 13th Advanced Research
Working Conference on Correct Hardware Design and
Verification Methods (CHARME ’05), LNCS 3725,
Springer-Verlag, October, pp.97–113.

Velev, M.N. and Bryant, R.E. (1998a) ‘Efficient modeling of
memory arrays in symbolic ternary simulation’, in Steffen, B.,
(Ed.): Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’98), LNCS 1384, March–April,
Springer-Verlag, pp.136–150.

Velev, M.N. and Bryant, R.E. (1998b) ‘Incorporating timing
constraints in the efficient memory model for symbolic
ternary simulation’, International Conference on Computer
Design (ICCD ’98), October, Austin, Texas, USA,
pp.400–406.

Velev, M.N. and Bryant, R.E. (1998c) ‘Bit-level abstraction in the
verification of pipelined microprocessors by correspondence
checking’, in Gopalakrishnan, G. and Windley, P. (Eds.):
Formal Methods in Computer-Aided Design (FMCAD ’98),
LNCS 1522, November, Springer-Verlag, pp.18–35.

Velev, M.N. and Bryant, R.E. (1999a) ‘Exploiting positive
equality and partial non-consistency in the formal verification
of pipelined microprocessors’, 36th Design Automation
Conference (DAC ’99), June, New Orleans, LA, USA,
pp.397–401.

Velev, M.N. and Bryant, R.E. (1999b) ‘Superscalar processor
verification using efficient reductions of the logic of equality
with uninterpreted functions to propositional logic’, in Pierre,
L. and Kropf, T. (Eds.): Correct Hardware Design and
Verification Methods (CHARME ’99), LNCS 1703,
September, Springer-Verlag, pp.37–53.

Velev, M.N. and Bryant, R.E. (2000) ‘Formal verification of
superscalar microprocessors with multicycle functional units,
exceptions, and branch prediction’, 37th Design Automation
Conference (DAC ’00), June, Los Angeles, CA, USA,
pp.112–117.

Velev, M.N. and Bryant, R.E. (2001) ‘EVC: a validity checker for
the logic of equality with uninterpreted functions and
memories, exploiting positive equality and conservative
transformations’, in Berry, G., Comon, H. and Finkel, A.
(Eds.): Computer-Aided Verification (CAV ’01), LNCS 2102,
July, Springer-Verlag, pp.235–240.

Velev, M.N. and Bryant, R.E. (2003) ‘Effective use of Boolean
satisfiability procedures in the formal verification of
superscalar and VLIW microprocessors’, Journal of Symbolic
Computation (JSC), February, Vol. 35, No. 2, pp.73–106.

Williams, P.F. (2000) Formal Verification Based on Boolean
Expression Diagrams, Ph.D. thesis, Department of
Information Technology, Technical University of
Denmark, Lyngby, Denmark.

Windley, P.J. (1995) ‘Verifying pipelined microprocessors’,
Conference on Hardware Description Languages
(CHDL ’95), August, Tokyo, Japan, pp.503–511.

Windley, P.J. and Burch, J.R. (1996) ‘Mechanically checking a
lemma used in an automatic verification tool’, in Srivas, M.
and Camilleri, A. (Eds.): Formal Methods in Computer-Aided
Design (FMCAD ’96), LNCS 1166, November,
Springer-Verlag, pp.362–376.

Zantema, H. and Groote, J.F. (2003) ‘Transforming equality logic
to propositional logic’, 4th International Workshop on First
Order Theorem Proving (FTP ’03), June.

Zhang, L. and Malik, S. (2002) ‘The quest for efficient Boolean
satisfiability solvers’, in Brinksma, E. and Larsen, K.G.
(Eds.): Computer-Aided Verification (CAV ’02), LNCS 2404,
July, Springer-Verlag, pp.17–36.

Zhang, L. and Malik, S. (2003) ‘Cache performance of SAT
solvers: a case study for efficient implementation of
algorithms’, 6th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’03), May, Santa
Margherita Ligure, Italy, pp.287–298.

