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1 Introduction 

In the near future, there will be trillions of  
microprocessors––hundreds per person. Many of the  
designs will be custom tailored and highly optimised for 
specific applications. Most will function autonomously, 
without the direct supervision of humans and many will be 
used in safety-critical applications (Tennenhouse, 2000). 
Thus, it is crucial that processors be designed without 
errors. 

The time to market for new designs will decrease, while 
their complexity will increase. Extensive binary simulation 
is already impossible. What is unique about the 
microprocessor industry is that bugs may require the recall 
and replacement of all units sold––Intel had to replace 
5 million Pentium chips (Grove, 1999) when the  
floating-point division error was discovered in 1994. This is 
unlike most other industries, where it is possible to replace 
or even fix only the defective component, as opposed to the  
entire product, hence, the high cost of microprocessor  
bugs––$475 million in the case of the Intel Pentium in 
1994 (Grove, 1999), and $2.1 billion in the case of a buggy 
Toshiba floppy microcontroller in 1999 (Pasztor and 
Landers, 1999). 

Every time the design of computer systems was shifted 
to a higher level of abstraction, productivity increased, as 
also observed by Jones (2002). Albin (2001) similarly 
advocates the adoption of higher levels of abstraction. 
Keutzer et al. (2000) even argue that design at higher levels 
of abstraction results in implementations of higher quality. 
The logic of Equality with Uninterpreted Functions and 
Memories (EUFM) (Burch and Dill, 1994)––see  
Section 2––allows us to abstract functional units and 
memories, while completely modelling the control of a 
processor. In our earlier work on applying EUFM to formal 
verification of pipelined and superscalar processors, we 
imposed some simple restrictions (Velev and Bryant, 1999a; 
1999b) on the modeling style for defining processors, 
resulting in correctness formulas where most of the  
terms (abstracted word-level values) appear only in  
positive equations (equality comparisons). Such term 
variables can be treated as distinct constants (Velev and 
Bryant, 1999a; 1999b), thus significantly simplifying the 
EUFM correctness formulas, pruning the solution space and 
resulting in orders of magnitude speedup of the formal 
verification; we call this property Positive Equality.  
These restrictions, together with techniques to model 
multicycle functional units, exceptions and branch 
prediction (Velev and Bryant, 2000), allowed our tool flow 
(see Section 3) to be used to formally verify a model of the 
M•CORE processor at Motorola (Lahiri et al., 2001), and 
detected three bugs, as well as corner cases that were not 
fully implemented. The tool flow was also used in two 
editions of an advanced computer architecture course 
(Velev, 2005a, 2003b), where undergraduate and graduate 
students without prior knowledge of formal methods 
designed and formally verified single-issue pipelined DLX 
processors (Hennessy and Patterson, 2002), as well as 

extensions with exceptions and branch prediction, and  
dual-issue superscalar implementations. 

Our tool flow consists of: 
• the term-level symbolic simulator, TLSim, used to 

symbolically simulate the high-level implementation 
and specification processors, defined in our high-level 
hardware description language AbsHDL, and  
produce an EUFM formula for correctness of the 
implementation with respect to the specification; 

• the decision procedure EVC that exploits Positive 
Equality and other optimisations to translate the EUFM 
correctness formula into a satisfiability-equivalent 
Boolean formula; and 

• any efficient SAT solver, used to prove that the 
Boolean correctness formula produced by EVC is a 
tautology, i.e., the original EUFM formula is valid. 

Recent dramatic improvements in SAT solvers  
(Moskewicz et al., 2001; Goldberg and Novikov, 2002; 
Ryan, 2003)––see Le Berre and Simon (2005), and Velev 
and Bryant (2003) for comparative studies, and Biere and 
Kunz (2002), Kautz and Selman (2003), and Zhang and 
Malik (2002) for surveys––significantly sped up the solving 
of Boolean formulas generated by our tool flow. However, 
as found in Velev and Bryant (2003), the new efficient  
SAT solvers would not have scaled for solving the Boolean 
formulas if not for the property of Positive Equality that 
results in at least five orders of magnitude speedup when 
formally verifying dual-issue superscalar processors with 
realistic features. Efficient translations from propositional 
logic to CNF (Velev, 2004a, 2004c, 2004d), exploiting the 
special structure of EUFM formulas produced with the 
modeling restrictions, resulted in additional speedup of two 
orders of magnitude (see Section 6.3). 

The contributions made with this paper are the  
high-level hardware description language AbsHDL,  
the term-level symbolic simulator TLSim, and the decision 
procedure EVC. The rest of the paper is organised as 
follows. Section 2 presents the background of this work. 
Section 3 outlines our tool flow. Section 4 defines the  
high-level hardware description language AbsHDL.  
Section 5 describes the term-level symbolic simulator 
TLSim. Section 6 presents the implementation of the 
decision procedure EVC. Section 7 summarises 
experimental results. Section 8 discusses related work, and 
Section 9 concludes the paper. 

2 Background 

The formal verification is done by correspondence  
checking––comparison of a pipelined implementation 
against a non-pipelined specification, using flushing (Burch 
and Dill, 1994; Burch, 1996) to automatically compute an 
abstraction function that maps an implementation state to an 
equivalent specification state. The safety property  
(see Figure 1) is expressed as a formula in the logic of 
EUFM, and checks whether one step of the implementation 
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corresponds to between 0 and k steps of the specification, 
where k is the issue width of the implementation. FImpl is the 
transition function of the implementation, and FSpec is the 
transition function of the specification. We will refer to the 
sequence of first applying the abstraction function and then 
exercising the specification as the specification side of the 
commutative diagram in Figure 1, and to the sequence of 
first exercising the implementation for one step and then 
applying the abstraction function as the implementation side 
of the commutative diagram. 

Figure 1  The safety correctness property for an implementation 
processor with issue width k: one step of the 
implementation should correspond to between 0 and k 
steps of the specification, when the implementation 
starts from arbitrary initial state QImpl that is possibly 
restricted by invariant constraints 

 

The safety property is the inductive step of a proof by 
induction, since the initial implementation state, QImpl, is 
completely arbitrary. If the implementation is correct for all 
transitions that can be made for one step from an arbitrary 
initial state, then the implementation will be correct for one 
step from the next implementation state, Q′Impl, since that 
state will be a special case of an arbitrary state, as used for 
the initial state, and so on for any number of steps. For some 
processors, e.g., where the control logic is optimised by 
using unreachable states as don’t-care conditions, we might 
have to impose a set of invariant constraints for the initial 
implementation state to exclude unreachable states. Then, 
we need to prove that those constraints will be satisfied in 
the implementation state after one step, Q′Impl, so that the 
correctness will hold by induction for that state, and so on 
for all subsequent states. The reader is referred to Aagaard 
et al. (2002; 2003) for a discussion of correctness criteria. 

To illustrate the safety property in Figure 1, let the 
implementation and specification have three architectural 
state elements––program counter (PC), register file, and  
data memory. Let Spec,

iPC Spec,
iRegFile  and Spec

iDMem  be the 
state of the PC, register file, and data memory,  
respectively, in specification state Spec

iQ  (i = 0, ..., k) along  
 
 

the specification side of the diagram. Let *
Spec,PC  

*
Spec,RegFile  and *

SpecDMem  be the state of the PC, register 
file, and data memory, respectively, in specification state 

*
Spec,Q  reached after the implementation side of the diagram. 

Then, each disjunct equalityi (i = 0, ..., k) is defined as 

equalityi ← pci ∧ rfi ∧ dmi, 

where 
*

Spec Spec( ),i
ipc PC PC← =  

*
Spec Spec( ),i

irf RegFile RegFile← =  

*
Spec Spec( ).i

idm DMem DMem← =  

That is, equalityi is the conjunction of the pairwise equality 
comparisons for all architectural state elements, thus 
ensuring that the architectural state elements are updated in 
synchrony by the same number of instructions.  
In processors with more architectural state elements, an 
equality comparison is conjuncted similarly for each 
additional state element. Hence, for this implementation 
processor, the safety property 

equality0 ∨ equality1 ∨ … ∨ equalityk = true, (1) 

is equivalently represented as 
pc0 ∧ rf0 ∧ dm0 ∨ … ∨ pck ∧ rfk ∧ dmk = true. (1′) 

For an implementation with n architectural state elements, 
the safety property is 

m1,0 ∧ m2,0 ∧ … ∧ mn,0 ∨ … 

 ∨ m1,k ∧ m2,k ∧ … ∧ mn,k = true, (1″) 

where mi,j (1 ≤ i ≤ n, 0 ≤ j ≤ k) is the condition that the state 
of architectural state element i after the implementation side 
of the diagram equals the state of that architectural state 
element after j steps of the specification along the 
specification side of the diagram. 

To prove liveness––that the processor will complete at 
least one new instruction after a finite number of steps,  
n––we can simulate the implementation symbolically for n 
steps and prove that 

equality1 ∨ equality2 ∨ … equalityn×k = true, (2) 

omitting equality0. Special abstractions and an indirect 
method for proving liveness, resulting in orders of 
magnitude speedup, are presented in Velev (2004b). 
Techniques for proving liveness of pipelined processors 
with multicycle functional units are presented in Velev 
(2005b). 

The syntax of EUFM (Burch and Dill, 1994) includes 
terms and formulas––see Figure 2. Terms are used to 
abstract word-level values of data, register identifiers, 
memory addresses, as well as the entire states of memories. 
A term can be an Uninterpreted Function (UF) applied  
to a list of argument terms, a term variable, or an ITE  
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(for “if-then-else”) operator selecting between two argument 
terms based on a controlling formula, such that 
ITE(formula, term1, term2) will evaluate to term1 when 
formula = true and to term2 when formula = false.  
The syntax for terms can be extended to model memories by 
means of functions read and write (Burch and Dill, 1994; 
Velev, 2001). Formulas are used to model the control path 
of a microprocessor, as well as to express the correctness 
condition. A formula can be an Uninterpreted Predicate 
(UP) applied to a list of argument terms, a propositional 
variable, an ITE operator selecting between two argument 
formulas based on a controlling formula, or an equation 
(equality comparison) of two terms. Formulas can be 
negated and combined with Boolean connectives. We will 
refer to both terms and formulas as expressions. 

Figure 2  Syntax of the logic of EUFM 

 

UFs and UPs are used to abstract the implementation 
details of functional units by replacing them with “black 
boxes” that satisfy no particular properties other than that of 
functional consistency, namely, that equal combinations of 
values to the inputs of the UF (or UP) produce equal output 
values. Then, it no longer matters whether the original 
functional unit is an adder, or a multiplier, etc., as long as 
the same UF (or UP) is used to abstract it in both the 
implementation and the specification. Thus, we will prove a 
more general problem––that the processor is correct for any 
functionally consistent implementation of its functional 
units––but this problem is easier to prove. 

Function read takes two argument terms serving as 
memory state and address, respectively, and returns a term 
for the data at that address in the given memory. Function 
write takes three argument terms serving as memory state, 
address, and data, and returns a term for the new memory 
state. Functions read and write satisfy the forwarding 
property of the memory semantics: read(write(mem, waddr, 
wdata), raddr) is equivalent to ITE((raddr = waddr), wdata, 
read(mem, raddr)), i.e., if this rule is applied recursively, a 
read operation returns the data most recently written to an 
equal address, or otherwise the initial state of the memory 
for that address. A hybrid memory model––where the 
forwarding property of the memory semantics is satisfied 
only for those pairs of one read and one write address that 
also determine stalling conditions––can be applied 
automatically, based on rewriting rules and conservative 
approximations (Velev, 2001). Versions of read and write 
that extend the syntax for formulas can be defined similarly, 
such that the former returns a formula, while  
the latter takes a formula as its third argument. Note that the 
forwarding property introduces address equations in dual 

polarities––in positive polarity when selecting the  
then-expression of the ITE, but in negated polarity when 
selecting the else-expression. 

The property of functional consistency of UFs  
and UPs can be enforced by Ackermann constraints 
(Ackermann, 1954), or by nested ITEs (Velev and  
Bryant, 1998c). The Ackermann scheme replaces each UF 
(UP) application in the EUFM formula F with a new term 
(Boolean) variable and then adds external constraints for 
functional consistency. For example, the UF application 
g(a1, b1) will be replaced by a new term variable c1, and 
another application of the same UF, g(a2, b2), will be 
replaced by a new term variable c2. Then, the  
resulting EUFM formula F′ will be extended as 
[(a1 = a2) ∧ (b1 = b2) ⇒ (c1 = c2)] ⇒ F′. Note that the new 
formula is equivalent to (a1 = a2) ∧ (b1 = b2) ∧  
¬ (c1 = c2) ∨ F′, so that the new term variables, c1 and c2, 
appear in a negated equation. In the nested-ITE scheme, the 
first application of a UF will still be replaced by a new  
term variable c1. However, the second will be  
replaced by ITE((a2 = a1) ∧ (b2 = b1), c1, c2), where c2 is a  
new term variable. A third application, g(a3, b3),  
will be replaced by ITE((a3 = a1) ∧ (b3 = b1), c1, 
ITE((a3 = a2) ∧ (b3 = b2), c2, c3)), where c3 is a new term 
variable, and so on. UPs are eliminated similarly, but using 
new Boolean variables. In the general case of each scheme, 
the formulas that express equality of arguments of UF (UP) 
applications with k arguments will be conjunctions of k 
equations, one for each pair of corresponding arguments.  
To avoid creating circular dependencies when using the 
nested-ITE scheme, UFs and UPs have to be eliminated 
based on their topological order, i.e., all applications of a 
given UF (UP) have to be eliminated from the arguments of 
another application of the same UF (UP), before that 
application is eliminated. Otherwise, the equations between 
corresponding arguments will lead to cyclic dependency. 

We can check whether an EUFM formula is valid,  
i.e., always true, either by using a specialized decision  
procedure such as the Stanford Validity Checker (SVC) 
(Burch and Dill, 1994; Jones et al., 1995; Barrett et al., 
1996; Levitt and Olukotun, 1997), and the Integrated 
Canonizer and Solver (Filliâtre et al., 2001), or by 
translating an EUFM formula to a satisfiability-equivalent 
Boolean formula that has to be a tautology in order for the 
original EUFM formula to be valid. With our decision 
procedure, the Equality Validity Checker (EVC) (Velev and 
Bryant, 2001), we pursue the second approach. 

The efficiency of our tool flow––consisting of TLSim, 
EVC, and a SAT solver––is due to the property of Positive 
Equality (Bryant et al., 2001) that EVC uses when 
translating EUFM formulas to equivalent Boolean  
formulas. To exploit Positive Equality, a microprocessor 
designer has to follow some simple restrictions (Velev and 
Bryant, 1999a; 1999b) when defining the high-level 
microprocessors. First, equality comparators between data 
operands––e.g., used to check whether to take a  
branch-on-equal instruction, such that the resulting signal is 
used in positive polarity when updating the PC with the 
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branch target address, but in negated polarity when 
squashing subsequent instructions––should be abstracted 
with a new uninterpreted predicate in both the 
implementation and the specification. Second, the Data 
Memory should be abstracted with a conservative Finite 
State Machine (FSM) model of a memory, where the 
interpreted functions read and write that satisfy the 
forwarding property of the memory semantics are replaced 
by new uninterpreted functions, fr and fw, respectively, that 
take the same arguments, but do not satisfy the forwarding 
property; then we would only check whether the 
implementation and the specification perform the same 
sequence of memory operations with the same argument 
terms, but that is sufficient for processors that do not reorder 
the memory operations, as is the case in the models that are 
formally verified in this paper. 

As a result of the above restrictions, we get EUFM 
correctness formulas where most of the terms appear only as 
arguments of positive (not negated) equations, called  
p-equations, or as arguments to UFs and UPs; we call such 
terms p-terms. Only a few of the terms appear as arguments 
of equations that are used in both positive and negated 
polarity, and so are called g-equations (for general 
equations); we call such terms g-terms. Furthermore, when 
using the nested-ITE scheme to eliminate UF applications 
that appear as p-terms, we can treat the introduced new term 
variables as p-terms (Bryant et al., 2001). The resulting 
structure of the EUFM correctness formulas allows us to 
consider syntactically distinct p-term variables as not equal 
when evaluating the validity of an EUFM formula, thus 
significantly simplifying the formula, pruning the solution 
space, and achieving orders of magnitude speedup.  
The speedup is at least five orders of magnitude when 
formally verifying dual-issue superscalar DLX processors 
with realistic features—see Section 7. However, each  
g-equation can be either true or false, and is encoded with 
Boolean variables (Goel et al., 1998; Pnueli et al., 2002; 
Velev, 2003a) by accounting for the property of  
transitivity of equality (Bryant and Velev, 2002) when 
translating an EUFM formula to an equivalent Boolean 
formula. 

3 The tool flow 

Figure 3 summarises our tool flow. The term-level symbolic 
simulator TLSim (see Section 5) accepts an implementation 
processor and its specification, both defined in AbsHDL 
(see Section 4), as well as a command file indicating how to 
simulate the two processors symbolically according to the 
inductive correctness criterion in Figure 1, and outputs an 
EUFM correctness formula in the format of the SVC 
(http://sprout.Stanford.EDU/SVC). Our decision procedure 
EVC (see Section 6) takes an EUFM correctness formula 
and translates it to an equivalent Boolean formula that has  
to be a tautology in order for the original EUFM formula to 
be valid, i.e., for the implementation processor to be  
correct. A falsifying assignment for the Boolean correctness 
formula indicates a condition that triggers a bug in the 

implementation processor, and can be analysed to correct 
that bug. 

Figure 3 Our tool flow 

 

4 The hardware description language AbsHDL 

The syntax of AbsHDL will be illustrated with the  
three-stage pipelined processor, pipe3, shown in Figure 4. 
That processor has a combined instruction fetch and decode 
stage (IFD), an execute stage (EX), and a write-back stage 
(WB). It can execute only ALU instructions with a single 
data operand. Read-after-write hazards (Hennessy and 
Patterson, 2002) are avoided with one level of forwarding. 
The AbsHDL definition of pipe3 is shown in Figure 5.  
We will use the extension .abs for files in AbsHDL. 

Figure 4 Block diagram of the three-stage pipelined processor 
pipe3 

 

An AbsHDL processor description begins with 
declaration of signals (see Figure 5). Bit-level signals are 
declared with the keyword bit, and word-level signals with 
the keyword term. Signals that are primary inputs, e.g., 
phase clocks, are additionally declared with the keyword 
input. The language has constructs for basic logic  
gates—and, or, not, mux—such that and and or gates can 
have multiple inputs. Equality comparators are gates of  
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type =, e.g., RegsEqual = (= IFD_EX_SrcReg 

EX_WB_DestReg) in the EX stage, where the = before the 
left parenthesis designates an assignment, and the one after 
that the type of the gate. Gates that are not of the above 
types are uninterpreted functions if the output is a  
word-level signal––e.g., sequentialPC = (PCAdder 

PC) and Result = (ALU IFD_EX_Op EX_Data1) in  
Figure 5––but uninterpreted predicates if the output is a  
bit-level signal. Uninterpreted functions and uninterpreted 
predicates are used to abstract the implementations of 
combinational functional units. In the two examples above, 
PCAdder and ALU are uninterpreted functions that abstract, 
respectively, the adder for incrementing the PC and the 
ALU in pipe3. We can use an uninterpreted predicate to 
abstract a functional unit that decides whether to take a 
conditional branch, or to abstract a functional unit that 
indicates whether an ALU exception is raised. We can 
implement a Finite State Machine to model the behaviour of 
a multicycle functional unit (Velev and Bryant, 2000). 

Figure 5 AbsHDL description of the three-stage pipelined 
processor pipe3 

 

AbsHDL has constructs for latches and memories, 
defined with the keywords latch and memory, 
respectively. Both can have input and/or output ports, 
defined with the keywords inport and outport, 
respectively. Input ports of latches have an enable signal, 
which has to be high for a write operation to take place at 
that port, and a list (enclosed in parentheses) of input data 
signals that provide the values to be written to the latch. 
Similarly, output ports of latches have an enable signal, 
which has to be high for a read operation to take place at 
that port and a list of output data signals that will get the 

values stored in the latch. An output data signal can get 
values only from input data signals that appear in the same 
position in the list of data signals for an input port in the 
same latch. Memories are defined similarly, except that 
ports additionally have an address input that is listed right 
after the enable input––see memory RegFile in Figure 5. 

The correct instruction semantics are defined by the 
Instruction Set Architecture (ISA), and are modeled with a 
non-pipelined specification processor built from the same 
uninterpreted functions, uninterpreted predicates and 
architectural state elements (the PC and the Register File in 
pipe3) as the pipelined implementation. Since the 
specification is non-pipelined, it lacks pipeline latches 
(IFD_EX and EX_WB in pipe3) and mechanisms to avoid 
hazards (the forwarding logic in pipe3), and executes one 
instruction at a time. 

When defining pipelined processors and their 
specifications, we assume that they do not execute  
self-modifying code, which allows us to model the 
Instruction Memory as a read-only memory, separate from a 
Data Memory in the case of processors with load and store 
instructions. In Figure 5, the Instruction Memory has one 
read port that takes the PC as address and produces the four 
fields of an instruction in the given ISA: RegWrite, a bit 
indicating whether the instruction will update the Register 
File; DestReg, destination register identifier; Op, opcode to 
be used by the ALU; and SrcReg, source register identifier. 
Alternatively, a read-only instruction memory can be 
modelled with a collection of uninterpreted functions and 
uninterpreted predicates, each taking as input the instruction 
address and mapping it to a field from the instruction 
encoding. In the case when some of the above fields do not 
have a counterpart in the instruction encoding, but are 
produced by decoding logic, both models can be viewed  
as encapsulating the original read-only instruction memory 
and the decoding logic. To model decoding logic that is 
separate from the instruction memory, we can use 
uninterpreted functions and uninterpreted predicates, each 
mapping a field from the original instruction encoding to a 
control signal. 

AbsHDL does not model delays of logic gates, 
memories and latches. It is assumed that the clock cycle will 
be long enough to satisfy all timing requirements. 

Signal Flush in Figures 4 and 5, when asserted to 1, is 
used to disable fetching of instructions and to feed the 
pipeline with bubbles, allowing partially executed 
instructions to complete. Then, simulating the pipeline for a 
sufficient number of clock cycles—as determined by the 
pipeline depth and possible stalling conditions—will map 
all partially executed instructions to the architectural state 
elements (the PC and the Register File in pipe3). The 
contents of the architectural state elements, with no pending 
updates in the pipeline, can be directly compared with  
the contents of the architectural state elements of the 
specification. In the case of pipe3, which has two pipeline 
latches and no stalling logic, setting signal Flush to 1 and 
simulating the processor for two cycles will complete any 
instructions that are originally in the pipeline. This 
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mechanism for automatically mapping the state of an 
implementation processor to its architectural state elements 
was proposed by Burch and Dill (1994), and Burch (1996). 
Note that most processors have a similar signal indicating 
whether the Instruction Cache provided a valid instruction 
in the current clock cycle, so that we can achieve the above 
effect by forcing that signal to the value indicating an 
invalid instruction. Adding signal Flush—to allow 
completion of partially executed instructions in a  
pipelined or superscalar processor without fetching new 
instructions—can be viewed as design for formal 
verification. Signal Flush, when set to 1, should invalidate 
all control bits that indicate updates of architectural state 
elements. 

The phase clocks in an AbsHDL processor description 
are used to ensure the proper flow of signals in the pipeline 
stages, as well as to determine the order of memory port 
operations. In Figure 5, we assume that the phase clocks 
become high in the order of their numbers. Thus, in  
Figure 5, the pipeline latches and the PC are read on phi1, 
then the Register File is written on phi2 and read on phi3 
(so that the Register File behaves as a write-before-read 
memory and provides internal forwarding of the result 
written in the current clock cycle), and finally the pipeline 
latches and the PC are written on phi4, which concludes a 
clock cycle. 

We defined our own HDL, instead of using an existing 
commercial HDL, in order to have complete freedom in 
experimenting with modelling at a high level of abstraction,  
without having to worry about compatibility with a 
commercial HDL. A description in AbsHDL can be 
translated easily into any existing bit-level HDL. This is left 
for our future work. 

5 The term-level symbolic simulator TLSim 

To account for an arbitrary initial implementation state and 
for all possible transitions from it, the tool flow employs 
term-level symbolic simulation. (The reader is referred to 
Blank et al. (2001) for a discussion of symbolic simulation 
methods.) The term-level symbolic simulator TLSim 
accepts an implementation processor and its specification, 
both described in AbsHDL, as well as a command file 
indicating how to simulate the two processors symbolically 
and when to compare their architectural state elements, and 
produces an EUFM formula for correctness of the 
implementation with respect to the given specification.  
The command file for term-level symbolic simulation of 
pipe3 and its specification isa.abs with TLSim, according 
to the inductive correctness criterion in Figure 1, is shown 
in Figure 6. As discussed in Section 4, it takes two cycles to 
flush pipe3 after setting signal Flush to 1. 

Figure 6 Command file for symbolic simulation of pipe3 and its specification with TLSim 
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The term-level symbolic simulator TLSim automatically 
introduces new symbolic variables for the initial state of 
term-level or bit-level signals produced by memories and 
latches. TLSim propagates those variables through the 
processor logic, building symbolic expressions for  
the values of logic gates, uninterpreted functions, 
uninterpreted predicates, memories and latches. The 
symbolic expressions are defined in the script language of 
the SVC (http://sprout.Stanford.EDU/SVC), so that the 
EUFM correctness formulas produced by TLSim can be 
checked for validity with any EUFM decision procedure 
that accepts the SVC input format. 

Some processors may require that their initial 
implementation state, QImpl, in the commutative diagram in 
Figure 1 be restricted by invariant constraints, to exclude 
unreachable states that lead to false negatives. Then, the 
verification engineer should check whether the invariant 
constraints are satisfied in the next implementation state, 
Q′Impl. In our tool flow, the condition for each invariant 
constraint has to be defined as the output of an extra circuit 
added to the AbsHDL description of the implementation 
processor. (That extra circuit will be removed when an 
automatic tool translates the implementation into a 
synthesisable bit-level description.) The TLSim command 
constraint, followed by the name of a signal, allows us 
to use the value of that signal at the particular time step 
when the command appears in the simulation sequence as a 
constraint for checking the validity of the EUFM 
correctness formula. To check the invariance of a constraint 
in the next implementation state, the verification engineer 
needs to use the command check_valid, followed by the 
name of the constraint signal. 

6 The decision procedure EVC 

6.1 Steps for translation from EUFM  
to propositional logic 

We proceed through a series of transformations, starting 
from an EUFM correctness formula and ending with a 
Boolean correctness formula that has to be a tautology in 
order for the original EUFM formula to be valid. At each 
step we apply various optimisations and simplifications.  
The major steps are as follows: 
1 Replace equations of the form m1 = m2, where m1 and 

m2 are terms for two states of a memory, with the 
equation read(m1, a) = read(m2, a), where a is a new 
term variable that is unique for that memory. As 
defined earlier, such equations can appear only as  
p-equations in an EUFM correctness formula checking 
if the two sides of the commutative diagram have 
updated the initial state of a memory in exactly the 
same way. Since the new term variable a represents an 
arbitrary address, if the two sides of the commutative 
diagram have modified that address identically, then 
they have modified all addresses identically. The same 
new term variable has to be used when replacing all 
equations between states of a given memory. 

2 Eliminate all reads from updated memory states by 
accounting for the forwarding property of the memory 
semantics (see Section 2). In EVC, this step is 
performed dynamically, while parsing the expressions 
of an EUFM correctness formula. The result is that a 
read is replaced by a nested-ITE expression, having as 
a leaf a read from the initial state of that memory. 

3 For every memory, replace each read from the initial 
state of the memory (the initial state is abstracted by a 
term variable that is unique for each memory) with an 
application of a new UF that is unique for this memory 
and maps an address term (argument of a replaced 
read) to a term for the initial state of that address in the 
given memory. 

4 Classify the equations as p-equations and g-equations. 
Classify the terms as p-terms and g-terms. 

5 Eliminate all UFs by using the nested-ITE scheme  
(see Section 2); classify as p-terms all new term 
variables introduced when eliminating a UF that was 
classified as a p-term. Eliminate all UPs by using  
either the nested-ITE or the Ackermann scheme. 

6 Replace each equation that has the same term variable 
as both arguments with the constant true. Replace each 
p-equation between different term variables with the 
constant false, by the property of Positive Equality. 
Encode each g-equation with Boolean variables, by 
using one of the methods (Goel et al., 1998;  
Pnueli et al., 2002; Velev, 2003a).  

7 Check if the resulting Boolean correctness formula is a 
tautology (or the CNF of the negated Boolean formula 
is unsatisfiable), which implies that the original EUFM 
formula is valid. Otherwise, a falsifying assignment for 
the Boolean correctness formula (a satisfying 
assignment for the CNF of the negated Boolean 
formula) is a condition that triggers a bug in the 
implementation processor. 

6.2 Hashing of expressions 

EVC uses a hashing scheme to ensure that there will  
be no duplicate gates and thus to increase the efficiency of 
SAT-checking the Boolean correctness formula. During all 
stages of translation from EUFM to propositional logic, the 
correctness formula is represented as a shared Directed 
Acyclic Graph, where each node is assigned an index and is 
identified by a unique key. The key is formed as the type of 
the node (AND, OR, NOT, ITE, equation, read, write, 
uninterpreted-function, uninterpreted-predicate), followed 
by the list of indices of the input nodes. For nodes  
of type ITE, read, write, uninterpreted-function, and  
uninterpreted-predicate, the order of listing the input 
indices is the same as the order of their nodes in the input 
list for the node that is being hashed. For nodes of type 
equation, the input indices are sorted in ascending order; if 
the two input indices are the same, then the equation node is 
replaced with the constant true. For nodes of type AND and 
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OR, the input indices are also sorted in ascending order, and 
duplicate input indices are removed. Furthermore, an AND 
(OR) node having inputs that are complements of each other 
(one is the negation of the other) is replaced with false 
(true). An AND node that has another AND node as input is 
replaced with a single AND node that has all the inputs of 
the two nodes, except for the eliminated node; similarly for 
an OR node that has another OR node as input. That is, the 
final Boolean formula has neither AND gates that directly 
drive other AND gates nor OR gates that directly drive other 
OR gates. Table 1 presents optimizations used when hashing 
expressions. 

Table 1 Optimizations used when hashing expressions 

Expression that is being 
hashed 

Retuned pointer to 
expression 

NOT(NOT(c)) c 
ITE(NOT(c), a, b) ITE(c, b, a) 
ITE(c, a, a) a 
ITE(true, a, b) a 
ITE(false, a, b) b 
ITE(c, ITE(c, a, b), d) ITE(c, a, d) 
ITE(c, a, ITE(c, b, d)) ITE(c, a, d) 
ITE(a, true, c) OR(a, c) 
ITE(a, false, c) AND(NOT(a), c) 
ITE(a, b, true) OR(NOT(a), b) 
ITE(a, b, false) AND(a, b) 
ITE(a, b, a) AND(a, b) 
ITE(a, a, c) OR(a, c) 

In Table 1, a chain of two NOTs is replaced with the 
input to the chain. An expression ITE(NOT(c), a, b), where 
the controlling formula is the negation of another formula c, 
is replaced with the equivalent expression ITE(c, b, a), 
controlled by the negation of the original controlling 
formula, i.e., by c and having the original then-input and 
else-input swapped. An expression ITE(c, a, a), where the 
then-input and the else-input are the same expression a, is 
replaced with expression a, since it will be selected always. 
If the controlling formula of an ITE is the constant  
true (false), then the ITE is replaced with its then-input 
(else-input). A chain of two ITEs that have the same 
controlling formula is replaced with one ITE after 
accounting for the truth value that has to be assigned to the 
controlling formula of the upper ITE to select the lower ITE, 
and then simplifying the lower ITE. That is, in 
ITE(c, ITE(c, a, b), d), the lower ITE will be selected when 
the upper ITE’s controlling formula c is true, so that the 
lower ITE will be equivalent to ITE(true, a, b) if selected 
and thus can be simplified to a; hence, the original chain of 
two ITEs can be replaced with ITE(c, a, d). Similarly, 
ITE(c, a, ITE(c, b, d)) can be replaced with ITE(c, a, d), 
since formula c will be false when the lower ITE is selected.  
 
 
 
 

The rest of the optimisations are based on the definition of 
an ITE(c, a, b) as c ∧ a ∨ ¬c ∧ b and simplifications. 

In EVC, the final Boolean correctness formula consists 
of AND, OR, NOT, and ITE gates. EVC can evaluate that 
formula by using Binary Decision Diagrams (Bryant, 1986, 
1992; Bryant and Meinel, 2001) via a built-in interface to 
the CUDD package (Somenzi, 1999, 2001), or by using 
Boolean Expression Diagrams (Hulgaard et al., 1999; 
Williams, 2000)—a non-canonical representation of 
Boolean functions that can be converted to Binary Decision 
Diagrams. Alternatively, the Boolean correctness  
formula can be saved to a file and then checked for being a 
tautology with a SAT solver. The supported formats are 
CNF (Johnson and Trick, 1993), ISCAS (Brglez and 
Fujiwara, 1985), ISCAS-CGRASP (Marques-Silva and  
e Silva, 1999), and Prover––a SAT solver based on 
Stålmarck’s method (Stålmarck, 1989; Sheeran and 
Stålmarck, 2000). However, our comparison of SAT 
procedures (Velev and Bryant, 2003) determined that the 
most efficient way to evaluate the Boolean correctness 
formulas produced by EVC is with an efficient SAT solver. 
Chaff (Moskewicz et al., 2001) was the break-through  
SAT solver. Later it was surpassed by BerkMin  
(Goldberg and Novikov, 2002), siege (Ryan, 2003), and 
other tools—see Le Berre and Simon (2005) for the results 
from the most recent SAT solver competition. 

6.3 Efficient translation to CNF 

After the g-equations are encoded with Boolean variables, 
we have a purely Boolean formula that has to be a tautology 
for the original EUFM formula to be valid. We can check 
whether a Boolean formula is a tautology by negating it and 
proving that the resulting formula is unsatisfiable (i.e., there 
is no assignment to the Boolean variables that makes the 
formula true) by using any Boolean Satisfiability (SAT) 
solver. The most common input format of SAT solvers is 
Conjunctive Normal Form (CNF) (Johnson and Trick, 
1993), where a Boolean formula is represented as a 
conjunction of clauses, and every clause is a disjunction of 
literals—CNF variables or their negations. In conventional 
translation of Boolean formulas to CNF (Tseitin, 1968), a 
new CNF variable is introduced for the output of every logic 
connective, and a set of CNF clauses is used to correlate that 
variable with the variables for the inputs of the connective, 
given the function of the connective—see Table 2.  
Then, the CNF for a Boolean formula is the conjunction  
of the clauses for all gates, conjuncted with the 1-literal 
clause expressing the condition that the CNF variable for 
the output of the formula should be true. Tseitin (1968)  
was among the first to use such CNF translation,  
which was later optimised by Plaisted and Greenbaum 
(1985), and used for testing of digital circuits by Larrabee 
(1992). 
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Table 2 Conventional translation of basic logic gates to CNF 

Logic gate Equivalent constraints CNF clauses 

¬i1 ⇒ ¬o (i1 ∨ ¬o) ∧  

¬i2 ⇒ ¬o (i2 ∨ ¬o) ∧  

... ... 

¬in ⇒ ¬o (in ∨ ¬o) ∧  

o ← AND(i1, i2, ..., in) 

i1 ∧ i2 ∧ ... ∧ in ⇒ o (¬i1 ∨ ¬i2 ∨ ... ∨ ¬in ∨ o) 

i1 ⇒ o (¬i1 ∨ o) ∧  

i2 ⇒ o (¬i2 ∨ o) ∧  

... ... 

in ⇒ o (¬in ∨ o) ∧  

o ← OR(i1, i2, ..., in) 

¬i1 ∧ ¬i2 ∧ ... ∧ ¬in ⇒ ¬o (i1 ∨ i2 ∨ ... ∨ in ∨ ¬o) 

i ∧ t ⇒ o (¬i ∨ ¬t ∨ o) ∧  

i ∧ ¬t ⇒ ¬o (¬i ∨ t ∨ ¬o) ∧  

¬i ∧ e ⇒ o (i ∨ ¬e ∨ o ) ∧  

o ← ITE(i, t, e) 

¬i ∧ ¬e ⇒ ¬o (i ∨ e ∨ ¬o) 

i ⇒ ¬o (¬i ∨ ¬o) ∧  o ← NOT(i) 

¬i ⇒ o (i ∨ o) 

CNF-based SAT solvers face two main hurdles to 
further improvements. First, the operation-intensive 
Boolean Constraint Propagation––reflecting a CNF 
variable’s assignment on all the clauses containing that 
variable or its negation––takes up to 90% of the  
SAT-solving time (Moskewicz et al., 2001) and generates 
many non-sequential memory accesses that are prone to  
L2-cache misses. Furthermore, Boolean Constraint 
Propagation requires data-dependent branches that are hard 
to predict and so frequently incur the branch misprediction 
penalty––at least 19 cycles, and up to 125 instructions in the 
Intel Pentium 4 (Hennessy and Patterson, 2002).  
Second, many L2-cache misses occur for big formulas 
(Zhang and Malik, 2003), resulting in expensive accesses to 
main memory; the L2-cache miss penalty is up to hundreds 
of cycles currently and is increasing (Hennessy and 
Patterson, 2002). 

To reduce the above two hurdles when translating to 
CNF, we can preserve the ITE-tree structure of  
equation arguments, instead of replacing each equation with 
a disjunction of conjunctions of formulas, as done in  
Bryant et al. (2001), Velev and Bryant (1999b), Velev and 
Bryant (2001). For example, the equation 
ITE(c1, a1, a2) = ITE(c2, b1, b2) will be replaced with 
ITE(c1, ITE(c2, a1 = b1, a1 = b2), ITE(c2, a2 = b1, a2 = b2)), as 
done in Velev (2004d). This results in Boolean correctness 
formulas with ITE-trees, where each ITE inside a tree has 
fanout count of 1, i.e., drives only one gate that is another 
ITE inside the same tree.  

An ITE-tree can be translated into CNF with a unified 
set of clauses (Velev, 2004d), without intermediate 
variables for outputs of ITEs inside the tree––see the paths 
from inputs a2 and a3 to the output o in Figure 7. 
Furthermore, ITE-trees can be merged with one level of 
their AND/OR leaves, where each leaf has a fanout  
count 1––see the paths from G1 and G2 to o in Figure 7. We 
can similarly merge ITE-trees with two levels of their 

leaves. And we can also merge other gate groups  
(Velev, 2004c), e.g., AND-ITE, OR-ITE, AND-OR,  
ITE- OR, OR-AND, and ITE- AND, but this results in only 
small additional improvements if ITE-trees are merged 
(Velev, 2004d). 

The benefits from merging ITE-trees with their leaves 
include fewer variables and clauses and thus reduced 
solution space, smaller CNF file sizes, and fewer L2-cache 
misses; reduced Boolean Constraint Propagation, due to the 
eliminated intermediate variables for outputs of ITEs inside 
a tree; automatic use of signal unobservability––all clauses 
for a path in an ITE-tree become satisfied when an  
ITE-controlling signal selects another path; and guiding the 
SAT-solver branching and learning––each path in an  
ITE-tree is due to a different symbolic-execution trace, so 
that we point the SAT solver toward processing one 
symbolic-execution trace at a time and make it easier for the 
SAT solver to prune infeasible paths. If Ackermann 
constraints are used to eliminate the UFs and UPs, as in 
Barrett et al. (2002), Goel et al. (1999), Pnueli et al. (2002), 
Tveretina and Zantema (2003), and Zantema and  
Groote (2003), the resulting Boolean formulas will have 
fewer or no ITE-tees and so will benefit less from this 
optimisation. The speedup from merging ITE-trees is up to 
two orders of magnitude, when formally verifying complex 
processors (Velev, 2004d). 

Figure 7  Merging an ITE-tree with one level of its AND/OR 
leaves that have a fanout count of 1. Each ITE-tree is 
represented as the conjunction of all clauses for paths 
from leaves to the tree output 

 

7 Summary of results 

Experiments were conducted on a Dell OptiPlex GX260 
having a 3.06-GHz Intel Pentium 4 processor with a  
512-KB on-chip L2-cache, 2 GB of physical memory, and 
running Red Hat Linux 9.0. Our tool flow, consisting of 
TLSim and EVC, was combined with the SAT solvers 
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siege_v4 (Ryan, 2003), and BerkMin621 (Goldberg and 
Novikov, 2003). The eij encoding (Goel et al., 1999) was 
used for g-equations, since it was found to outperform the 
encodings from Pnueli et al. (2002), and Velev (2003a).  
The Boolean correctness formulas were translated to CNF 
using the method described in Section 6.3. 

The experiments were to formally verify safety of the 
benchmarks: 1dlx_c, a single-issue five-stage pipelined 
DLX (Hennessy and Patterson, 2002), modelled as 
described in Velev and Bryant (1999b); 2dlx_ca, a  
dual-issue superscalar DLX, with one complete and  
one ALU pipeline (Velev and Bryant, 1999b); 
2dlx_cc_mc_ex_bp, a dual-issue superscalar DLX, with 
two complete pipelines, exceptions, branch prediction and 
multicycle functional units (Velev and Bryant, 2000); 
ooo_engine6, an out-of-order processor with a completely 
implemented six-entry reorder buffer, completely 
implemented and instantiated six reservation stations, 
register renaming, and ALU instructions––this processor 
was modelled and formally verified as described in Velev 
(2004a), and is based on the description of the PowerPC 750 
(IBM Corporation, 1999), an embedded processor that is 
compatible with the PowerPC ISA and has six reorder 
buffer entries and six reservation stations—in contrast to 
other out-of-order models (Hosabettu et al., 1999; Jhala and 
McMillan, 2002; Lahiri and Bryant, 2003), ooo_engine6 
has a completely implemented reorder buffer, and 
completely implemented and instantiated reservation 
stations; and 9vliw_bp_mc_ex_9stages_iq5, a nine-
stage, nine-wide VLIW processor that imitates the Intel 
Itanium (Intel Corporation, 1999; Sharangpani and Arora, 
2000) in features such as predicated execution, register 
remapping, advanced loads, branch prediction, and 
multicycle functional units, exceptions, and a five-entry 
instruction queue (a simpler version of this processor with 
fewer pipeline stages and no instruction queue was formally 
verified in Velev (2000), and Velev and Bryant (2003)). The 
abstraction function was computed by controlled flushing  
(Burch, 1996), where the user provides a stalling schedule 
to override the processor stall signals, thus eliminating the 
ambiguity of the instruction flow during flushing and 
producing a simpler EUFM correctness formula. 

The benchmark 1dlx_c was formally verified  
in a total of 0.06 seconds; 2dlx_ca in 0.2 seconds; 
2dlx_cc_mc_ex_bp in 0.9 seconds; ooo_engine6 in four 
hours; and 9vliw_bp_mc_ex_9stages_iq5 in eight hours 
and nine minutes. The SAT solver siege_v4 was used for 
the first four benchmarks, since it was faster than 
BerkMin621 on their CNF formulas, while BerkMin621 had 
advantage for the last benchmark and was used for it. 

Without Positive Equality—using the eij encoding for all 
equations, including p-equations between p-terms—the 
formal verification of 2dlx_cc_mc_ex_bp did not 
complete in 90,000 seconds. Hence, Positive Equality 
results in at least five orders of magnitude speedup  
for realistic dual-issue superscalar processors. Furthermore, 
the speedup is increasing with the complexity of the 
implementation. 

8 Related work  

Before the use of Positive Equality and other optimisations 
to translate EUFM formulas to SAT, the most widely used 
method for formal verification of pipelined processors was 
theorem proving. However, the formal verification of a  
five-stage pipelined DLX or ARM––comparable to 1dlx_c 
from Section 7––required extensive manual work by experts 
and often long CPU times (Börger and Mazzanti, 1997; 
Cyrluk, 1996; Fox, 2002; Hosabettu et al., 1998; Huggins 
and Van Campenhout, 1998; Jacobi and Kröning, 2000; 
Kröning and Paul, 2001; Müller and Paul, 2000; Tahar and 
Kumar, 1998; Windley, 1995). Even three-stage pipelines, 
executing only ALU instructions, took significant manual 
intervention to formally verify with theorem proving 
(Manolios, 2000; Sawada, 2000), or with assume-guarantee 
reasoning (Henzinger et al., 1998; Henzinger et al., 2000).  
Symbolic Trajectory Evaluation (Intel Corporation, 2000; 
Jain et al., 1996; Nelson et al., 1997; Seger and  
Bryant, 1995) also required extensive manual work to  
prove the correctness of just a register-immediate OR 
instruction in a bit-level five-stage ARM processor 
(Patankar et al., 1999). Other researchers had to limit the 
data values to four bits, the register file to one register, and 
the ISA to 16 instructions, to symbolically verify a bit-level 
pipelined processor (Bhagwati and Devadas, 1994). Various 
symbolic tools required long CPU time when  
formally verifying a pipelined DLX (Hinrichsen et al., 1999; 
Ritter et al., 1999), or ran out of memory (Isles et al., 1998). 
Custom-tailored, manually defined rewriting rules were 
used to formally verify a five-stage DLX (Levitt and 
Olukotun, 1997), and similar four-stage processors  
(Harman, 2001; Lis, 2000; Matthews and  
Launchbury, 1999), but would require modifications to 
work on designs described in a different coding style and 
significant extensions to scale for dual-issue  
superscalar processors. Other researchers proved only few 
properties of a pipelined DLX (Ivanov, 2002; Ramesh and  
Bhaduri, 1999), or did not present completeness argument 
(Mishra and Dutt, 2002)––that the properties proved will 
ensure correctness under all possible scenarios.  

Historically, the inductive correctness criterion in  
Figure 1 dates back to Milner (1971), and Hoare (1972), 
who used it to formally verify programs by manually 
defining an abstraction function to map the state of an 
implementation program to the state of a specification 
program. Srivas and Bickford (1990) were first to formally 
verify a pipelined processor by using a theorem-proving 
approach and also manually defined abstraction function. 
Burch and Dill (1994) proposed flushing as a way to 
automatically compute an abstraction function and were 
first to formally verify a pipelined DLX. However, they had 
to manually provide a case-splitting expression for the 
conditions when the processor will fetch and complete a 
new instruction. Burch (1996) applied the same method to a 
dual-issue superscalar DLX, but had to manually define 28 
case-splitting expressions and to decompose the safety 
correctness criterion. That decomposition was subtle enough 
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to warrant publication of its correctness proof as a separate 
paper (Windley and Burch, 1996). Hosabettu et al. (1998) 
used theorem proving to formally verify a single-issue 
pipelined DLX and a dual-issue superscalar DLX, but 
reported one month of manual work for each. 

Our tool flow was used to formally verify a model of the 
Intel XScale processor with a scoreboard, specialized 
execution pipelined, and imprecise exceptions (Srinivasan 
and Velev, 2003). The tool flow was applied to formally 
verify a version of the M•CORE processor at Motorola, and 
detected two bugs in the forwarding logic, one bug in the 
issue logic, and corner cases that were not fully 
implemented (Lahiri et al., 2001). The tool flow was also 
used in two editions of an advanced computer architecture 
course (Velev, 2005a; 2003b), where undergraduate and 
graduate students without prior knowledge of formal 
methods designed and formally verified single-issue 
pipelined DLX processors, as well as extensions with 
exceptions and branch prediction, and dual-issue superscalar 
implementations. 

Our tool flow owes much of its efficiency to the 
tremendous improvements in the speed of SAT solvers 
(Moskewicz et al., 2001; Goldberg and Novikov, 2002; 
Ryan, 2003); however, as determined in Section 7, even the 
most efficient SAT solvers would not scale for CNF 
formulas from complex processors, if the property of 
Positive Equality is not used. For comparative studies of 
SAT solvers, the reader is referred to Le Berre and Simon 
(2005), and Velev and Bryant (2003), and for surveys of 
recent advances in SAT to Biere and Kunz (2002),  
Kautz and Selman (2003), and Zhang and Malik (2002). 

In the decision procedure EVC, the translation to CNF  
is done in a single step, by including all constraints for 
transitivity of equality and for functional consistency of 
uninterpreted functions and uninterpreted predicates, i.e., 
the translation is eager, as is also the case in Bryant  
et al. (2002), Lahiri and Bryant (2003), Pnueli et al. (2002), 
and Seshia et al. (2003). In lazy translation to SAT 
(Audemard et al., 2002; Barrett et al., 2002; de Moura  
et al., 2002)––constraints are added incrementally to  
prevent recurrence of false counterexamples––this 
significantly degrades the performance when deciding 
complex EUFM formulas (Seshia et al., 2003). Heuristics 
that sped up SVC (Jones et al., 1995; Barrett et al., 1996; 
http://sprout.Stanford.EDU/SVC), an EUFM decision 
procedure based on Burch and Dill’s work (1994), are 
presented in Jones et al. (1995), and Levitt and  
Olukotun (1997), but did not scale for big formulas or for 
formulas with different structure (Barrett et al., 2002). 
Recent decision procedures (Bryant et al., 2002;  
Seshia et al., 2003)––extending EUFM with counter 
arithmetic, lambda expressions, and inequalities––exploit 
most of the optimizations in EVC, including Positive 
Equality. 
 
 
 
 

Nested ITEs were first used to eliminate uninterpreted 
functions and uninterpreted predicates in Velev and  
Bryant (1998c), where bit-level functional units were 
abstracted with read-only instances of an Efficient  
Memory Model (Velev and Bryant, 1998a; Velev and 
Bryant, 1998b)—developed for use in symbolic simulation 
as a behavioural abstraction of memories, and later adopted 
in verification tools by Innologic Systems (Hasteer, 1999), 
and Synopsys (Kölbl et al., 2002). 

When abstracting functional units and memories, we 
assume that their bit-level implementations are formally 
verified separately. The technology for this is already  
used widely in industry (Pandey and Bryant, 1999;  
Chen and Bryant, 2001; Jones, 2002; Parthasarathy  
et al., 2002). 

Our tool flow is best suited for formal verification of 
embedded processors, including out-of-order designs such 
as ooo_engine6 (see Section 7). The reader is referred to 
Hosabettu et al. (1999), Jhala and McMillan (2002), Lahiri 
and Bryant (2003), and Sawada and Hunt (2002) for 
techniques for formal verification of more complex  
out-of-order models. Note that by formally verifying an 
implementation processor, we prove the logical correctness 
of the design. However, fabrication defects may still lead to 
bugs in specific chips and can only be detected by testing 
methods (Albin, 2001; Bentley, 2001). 

9 Conclusions 

We presented a tool flow for high-level design and  
formal verification of embedded processors. The tool flow 
consists of: 
• the term-level symbolic simulator TLSim, which 

accepts implementation and specification processors in 
the high-level hardware description language AbsHDL, 
as well as a simulation command file and produces an 
EUFM formula for correctness of the implementation; 

• the decision procedure EVC that exploits Positive 
Equality and other optimisations to translate the  
EUFM correctness formula to an equivalent Boolean 
formula; and 

• any efficient SAT procedure to prove that the Boolean 
correctness formula is a tautology. 

Positive Equality resulted in at least five orders of 
magnitude speedup for realistic dual-issue superscalar 
processors; the speedup increases with the complexity  
of the implementation processor. An efficient translation  
to CNF led to another two orders of magnitude  
speedup. The tool flow was used at Motorola to  
formally verify a model of the M•CORE processor  
and detected bugs. TLSim and EVC are available from 
Velev (2004e). 
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Future work will extend EVC with the capability to 
produce proofs for every formula that it reports valid,  
e.g., as done in Stump (2002). We will also develop a tool 
for automatic translation of a formally verified high-level 
microprocessor model to a description in a synthesisable  
bit-level HDL. 
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