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A HW/SW Design Methodology for Embedded
SIMD Vector Signal Processors

J.P. Robelly, G. Cichon, H.Seidel, and G. Fettweis

Abstract— SIMD processors have made their way from su-
percomputers architectures through embedded real-time signal
processing. This trend has been driven by signal processing
applications with heavy number-crunching requirements like for
example base-band processing on mobile devices.

Depending on the data dependencies of algorithms and imple-
mentation constraints like real-time, power consumption and die
size, the necessary SIMD parallelism can be put into a piece of
silicon for a certain application. This poses two challenges: On
the one hand, the DSP core design has to be streamlined in such
a way that changes on the architecture can be prototyped very
fast. On the other hand, the algorithm design and its development
have to be done independent of the level of SIMD parallelism
available on the DSP in order to enable software reusability.

In this paper we report our HW/SW methodology in order to
design DSP cores and algorithms that exploit SIMD parallelism.
On the hardware development side and taking as a starting point
a novel hardware architectural template called STA1, we explain
how with our approach we automatically generate simulation
and hardware models of DSP cores with a scalable level of SIMD
parallelism. On the software development side and based on an
algebraic model that captures the SIMD computational model,
we explain how algorithms can be designed independent of the
available SIMD parallelism. We also report how this algebraic
model can be easily expressed in Matlab syntax. This enables the
automatic code generation from Matlab programs for our family
of DSP cores.

Index Terms— SIMD, DSP, Design Methodology, Automatic
Code Generation.

I. I NTRODUCTION

SIMD vector signal processors offer the potential to in-
crease the data transfer rates between memory and com-

putational resources, since data vectors residing on memory
are accessed and processed in parallel fashion. This enables
the achievement of speed up gains in the implementation of
DSP algorithms into these processor architectures. In the light
of the advancement of VLSI technology, we have experienced
in the last time how the SIMD computational model, whose
origin goes back to the old times of supercomputers, has made
its way through the implementation of embedded real-time
signal processing. Supercomputing has become feasible for
embedded applications.

This renewed attention on SIMD processors has been driven
by low-power and low-size applications with ever increasing
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1Synchronous Transfer Architecture

algorithm complexity, where a programmable device is favored
over the fixed wired solution. This is the case of wireless
communications, where programmable devices not only allow
for the flexible implementation of constantly changing stan-
dards but enable the realization of the software defined radio
paradigm. Moreover, it turns out that the time-invariant nature
of the wireless communications channel leads to a frame based
signal processing. Channel variations are tracked and a snap-
shot channel estimation is used for the detection process. The
detection process is then carried out over a frame that is
considered to have been transmitted through a channel which is
assumed to remain constant over the buffer length. This frame
based nature of signal processing for mobile applications is
a natural fit to the memory based processing approach of the
SIMD computational model [1].

The tight area and power constraints of mobile devices have
been also a driving force for the SIMD computational model:
A piece of silicon can be filled up with processing elements
like adders and multipliers in order to deliver the required
computational power and the control overhead remains con-
stant regardless of the level of SIMD parallelism available on
the processor. This contrasts with other approaches in which
reconfigurability or programmability is guaranteed at expenses
of a considerable overhead.

However, the amount of SIMD parallelism that has to be
implemented in a processor does not only depends on power
and area constraints, but it also depends on the characteristics
of the algorithms. Data dependencies of an algorithm can
cause that the achievable speed up factor is upper bounded.

This has as a consequence that power, area and real-time
constraints together with the data dependencies characteristics
of the algorithms have to be taken into account in order
to determine the required level of SIMD parallelism. This
imposes new challenges to the HW/SW design methodology.
On the one hand, the hardware development process and
the DSP architecture have to support the implementation of
processor cores with a scalable level of SIMD parallelism.
On the other hand, the algorithms have to be designed and
implemented in such a way that they can be easily scaled
to different levels of SIMD parallelism in order to enable
software reusability.

In this paper we present our methodology for dealing with
these challenges. The paper has two parts: one concerned with
hardware design and one with software design. In Section II,
the STA microarchitecture and its framework for the genera-
tion of DSP cores will be addressed. The compiler friendliness
of the STA architecture is the starting point of section III. In
this section we present an algebraic approach that offers the
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Fig. 1. STA Architectural Template

required abstraction for designing algorithms independent of
the level of SIMD parallelism available. In this section we also
explain how this algebraic framework has been used in order
to enable the automatic generation from programs written in
Matlab syntax for the family of our processor cores. Finally,
in section IV our conclusions.

II. HW D ESIGN: SYNCHRONOUSTRANSFER

ARCHITECTURESTA

A. STA Architectural Template

Our HW design concept is based on basic blocks of the form
showed in figure 1. Such a basic block has an arbitrary number
of input and outputs ports. It is important to remark that in our
concept only the output ports of basic blocks are registers. The
input and output ports can deal with a certain data type, e.g.
bool, 16-bit integer, vectors of 16-bit integer, etc. Each basic
block implements some functionality. In our HW concept, a
system is build up upon these basic blocks. Thus, ports of
the same data type are connected with each other through
an interconnection network formed by multiplexers. This is
sketched in figure 2. Both the functionality of basic blocks and
the input multiplexers are explicitly controlled by processor
instructions. At each cycle the instruction configures the
multiplexing network and the functionality of the basic blocks.
In this context, our multiplexing network resembles the bypass
network frequently used in superscalar microprocessors [2].
Thus, the whole system forms a synchronous network, which
at each clock cycle consumes and produces some data. The
produced data will in turn be consumed by other basic blocks
in the next cycle. Due to the synchronous transference of
data between basic blocks we have named the architecture
STA [3]. In our concept, basic blocks can be highly optimized
data paths or memory blocks. Memory blocks can be either
registers files or memories. There is a register file for each
data type available in the processor.
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Fig. 2. STA Interconnection Network

The STA architecture supports data and instruction level
parallelism. In fact, SIMD data parallelism is supported by
letting the input, output ports and the data paths to deal with
vectors data types. Instruction level parallelism is supported,
since at each cycle a wide instruction controls each basic block
and the multiplexing network inVLIW fashion. This poses
two problems. On the one hand, for large STA systems the
multiplexing interconnection network becomes a critical part
of the design. On the other hand, a wide instruction memory
is needed. The complexity of the interconnection network can
be alleviated by reducing the number of connections between
ports. An obvious strategy for this is to determine those
connections which allow for reusing program variables that
present a high data locality. This is a viable approach, since
applications are known at the design time of the processor
and thus, a customization of the multiplexing interconnection
network can be carried out in order to fulfill die size and
power consumption requirements. For those connections which
are not frequently reused, a connection with the register file
suffices. To alleviate instruction memory footprint we are
applying code compression techniques similar to [4].

B. Formal Description of STA Cores

In order to formalize and manipulate the necessary in-
formation that captures an STA design, we have devel-
oped a dynamically-typed object-oriented class library called
RNA [5]. By means of RNA we can create a machine de-
scription file that contains information regarding data types,
input and output ports of processor basic blocks, connections
between ports and behavioral of each basic block. For example
a 16-bits and a 40-bits integer data type can be declared in
RNA as follows:

int_t:(type-int true 16 name="int_t")
accu_t:(type-int true 40 name="accu_t"),

whereint t andaccu t are labels for the data types 16-bits
integer and 40-bits integer respectively. Such labels can be
instantiated at other stages in the machine description file, for
example a data type vector of 8 elements, where each element
is a 16-bit integer can be declared in RNA as follows:
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Fig. 3. Simple STA Core: MAC and a Register File Unit

vct_16:(type-vector int_t
(dimension-known s:8) name="vct_16")

Likewise, we can declare a data type vector of 8 elements
where each element is a 40-bit integer:

vct_40:(type-vector accu_t
(dimension-known s:8) name="vct_40")

It is important to point out that in these declarations the
number of vector elements can be parameterized and thus,
we can describe STA cores with different levels of SIMD
parallelism. We use the labels related to data types in order
to describe the input and output ports of basic blocks. For
example, in order to declare aMAC unit in RNA we write

mac:(md-fu "mac" in_ports out_ports),

where in ports declares three input portsa,b,c

in_ports:[
(md-input "a" vct_16 vect_inputs)
(md-input "b" vct_16 vect_inputs)
(md-input "c" vct_40 [
(md-connection mac "accu")])]

andout ports declares two output portsx,accu

out_ports:[(md-output "x" vct_16)
(md-output "accu" vct_40)]

It is important to note that in the declaration ofin ports
we find the description of which output ports of the same or
of other basic blocks are connected to the input ports. For
instance, the 40-bit output port of the unitmac is connected
to the 40-bit input port of the same unit. In order to describe
more complex connections we can make use of labels again.
For example, the labelvect inputs of the declaration
in ports can be defined as follows:

vect_inputs:[
(md-connection vect_rf "ra")
(md-connection mac "x")]

To complete our example we write the declaration of a register
file unit with four registers of typevct 16 as

rf:(md-rf "rf" 4 vct_16 wr_port rd_port),

where

rd_port:[(md-read "ra")]
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Fig. 4. STA Core Generator

and

wr_port:[(md-write "w" vect_inputs)].

This example of RNA describes a simple STA system with
the organization presented in figure 3. In the same way as
we have described this simple example, we can describe more
complex systems comprising memories, address generators,
program counters, ICU (Data Interconnection Network), etc.
However, by means of RNA we can not only describe data
types, basic blocks and connections between ports, but we are
also able to describe the behavior of processor instructions.
For example, the declaration

(md-op "mac_op" (md-opcode mac 0x1)
(md-tmpl "+" [(md-tmpl "*" [
(md-match "a" 0 vct_16)
(md-match "b" 0 vct_16)])
(md-match "c" 0 vct_40)
][
(md-match "accu" 1 vect_40)
])
behaviour="$accu=$a*$b+$c;"
)

is the instruction template for a vector MAC operation. The
instruction has three vector inputs. Two inputs are vectors with
16-bit elements and one input is a vector with 40-bit elements.
The input operands are fed to the portsa,b,c at the time 0
and the resultaccu is produced one cycle later. In the case
of pipelined data paths, this parameter can be replaced by the
latency of the unit. The behavior section describes in a C-like
syntax how the result has to be computed.

C. Interim Discussion

Contrary to other processor description approaches
like [6],[7][8], the purpose of RNA is not to become a
new genericADL (Architecture Description Language). Our
starting point is the STA architectural template and the origin
of RNA was motivated by the necessity of describing STA
systems in an structural rather than at a behavioral way.
In fact, the intention of RNA is to capture the necessary
information of our scalable STA cores in order to enable the
automatic manipulation of the machine description file.

D. Automatic Core Generation

The description of an STA concept in a machine description
enables the automatic manipulation of this information in
order to generate different hardware and simulation models
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of the processor. In figure 4 we can observe the processing
stages we are applying to the machine description file. At
first, an instruction set architecture layout is created. For this
purpose, the binary encoding for instructions and multiplexer
control are determined. The binary encoding establishes the
bit width of the corresponding fields in the instruction word.
Then, different processor models are generated. For processor
simulation purposes a model in the ADL languageLISA [8]
is generated. RTL models of the processor are also generated.
Since the declaration of the instruction template has a C-like
behavior section, a complete SystemC model can be gener-
ated. The VHDL model contains the complete multiplexing
interconnection network and stubs for the basic blocks. These
stubs can be filled with optimized data paths.

As discussed in [3], an slice-based point of view of the
design is important to obtain good quality results in the
hardware synthesis. Thus, for the generation of the hardware
models those basic blocks are recognized, which can be split
into slices. From the hardware point of view, it is more efficient
to encapsulate the logic in slices. Thus, only one slice has to
be carefully placed and routed and then it can be replied to
achieve the required level of parallelism. The RNA framework
makes possible to support this kind of features that are specific
to our architectural template. This approach enables us to take
special measures that have a great impact on the quality of the
generated hardware and which otherwise could not be possible
with a more general hardware generation approach.

E. STA Synthesis Results

In [9] we have presented an STA DSP for the imple-
mentation of an OFDM communications system. Versions of
this processor with different levels of SIMD parallelism were
synthesized, placed and routed. The synthesis were carried out

Area Estimation for Scalable SIMD DSP Cores
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Fig. 6. Area vs. Level of Parallelism

with a 130 nm standard-cell library by UMC using Synopsys
Design Compiler. For place and route and back annotation we
used Cadence SoC Encounter. For the implementation of the
arithmetical data paths we used DesignWare components from
Synopsys. For Memories we used SRAM macros from UMC.
In figure 5, we can observe the layout for a processor with
4 data paths, a data memory with 4096 words of 16 bit each
slice and a program memory with 3072 words of 64 bits. In
figure 6, we can observe the estimation of area inmm2 for
different numbers of data paths. This values were estimated
using the same amount of memory as indicated above.

According to the synthesis results the DSP core with 16
data paths achieves a clock rate of 250 MHz and its power
consumption is 300mW. The power estimation were done us-
ing Synopsys power compiler and wired-load models extracted
from the placed and routed processor.

F. STA: A Compiler Friendly Architecture

Contrary to the sliced perspective for the hardware gen-
eration, from a compiler point of view the STA architecture
resembles a synchronous network of basic blocks, which either
execute some operation (data paths) or store a state (memories
and register file). Moreover, the connection between basic
block takes place at ports that deal with the same data types.
The multiplexing interconnection network determines whether
there is a direct connection between modules or whether
data can be communicated to other basic blocks through
the register file. At each clock cycle both the multiplexing
interconnection network and the basic block are configured
by the instruction. These characteristics of STA offer a high
degree of freedom for the compiler, which can apply standard
compiler techniques [10] [11] in order to find a solution for
the routability of data in the processor. In the next section,
we will present our approach for generating code for scalable
versions of our DSP architecture.



6 INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, VOL. 1, NO. 11, JANUARY 2005

C Code

Frontend

Matlab Source
Code

RNA
Intermediate

Representation

Kronecker
Center Part

Sequential
Instruction List

insn

Backend

To C

Processor
Object Code

Fig. 7. Compiler Architecture

III. SW DESIGN: A M ATLAB COMPILER

For the processor software generation, we aim to convert
Matlab source code into object code for scalable versions of
our STA DSP cores. This means that the source code has
to be parameterized in such a way that the compiler can
generate object code for different levels of SIMD parallelism.
In figure 7, we can observe the architecture of our compiler.
The Matlab source code is converted into an intermediate
representation by the compiler frontend. It is important to
mention that the intermediate representation of our programs
is expressed using the same syntax we used for the machine
description files, namely RNA. For the compiler, RNA offers
a framework in which annotated graphs can be described.

The Kronecker center part of our compiler plays an im-
portant role on the scalable code generation as we will
explain further. The function of the center part is to recognize
algebraic structures which are embedded in the matlab code
and that describe the SIMD parallelism in order to generate
vector instructions for this structures. These special algebraic
structures captures the SIMD computational model and they
can be recognized and translated into vector operations by
the compiler center part. Moreover, this algebraic structures
can be fully parameterized and thus, they are independent of
the level of parallelism: Algebra is used in order to achieve an
abstraction of the algorithms regarding the level of parallelism
available on the processor.

The Kronecker center part generates a sequential list of
SIMD-vector instructions. In fact, these RISC-like instructions
contains the whole information related to the SIMD paral-
lelism of the algorithm. The purpose of the compiler backend
is to exploit the instruction level parallelism present on the
sequential instruction list generated by the compiler center
part. For details related to the compiler backend the reader
is referred to [12].

In the next sections we concentrate only on the Kronecker
center part.

A. Kronecker Compiler: Mathematical Background

Davio [13] in his classical paper developed an algebraic
framework, where he established the connection between the
Kronecker product of matrices and stride permutations. In
his paper he proved the importantcommutation theoremof
Kronecker products

A⊗B = P (mn,m)(B ⊗A)P (mn,n), (1)

whereP (L, s) is a matrix that represents the permutation of
L elements with strides andA⊗B is a matrix known as the

Kronecker product of themA×nA matrix A and themB×nB

matrix B that is defined as follows:

A⊗B =




a0,0B . . . a0,mA−1B
a1,0B . . . a1,mA−1B

... . . .
...

anA−1,0B . . . anA−1,mA−1B


 (2)

This remarkable result enabled researchers to formulate
different fast algorithms for signal transformations like discrete
fourier transforms, walsh-hadamard transforms, discrete co-
sine, sine transform, etc. using the same algebraic framework.
Tolimieri [14] uses Kronecker products in order to formulate
FFT algorithms for different parallel architectures. Tolimiere
makes also the observation that different models of parallel
computation can be described by means of Kronecker prod-
ucts. This has originated a lot of research in order to automati-
cally generate code of signal transformations like FFT, Cosine
and Sine transform for different parallel architectures [15][16].
Although there has been a lot of research on the generation
of signal transformations, there has been scarce research on
extending these ideas in order to support a wider range of
digital signal processing algorithms.

In order to characterize the SIMD computational model
let A be an m × m matrix, x a Nm × 1 vector, IN the
N × N identity matrix and consider the following important
expression:

y = (A⊗ IN )x (3)

=




a0,0IN . . . a0,m−1IN

a1,0IN . . . a1,m−1IN

... . . .
...

am−1,0IN . . . am−1,m−1IN







x0

x1
...

xm−1


 ,

where using Matlab syntax we define the vector ofN elements
xi = x

(
iN : (iN + N − 1)

)
for i = 0, 1, . . . , m − 1.

Equation (3) is known as a Kronecker vector factor [14], since
it expresses the computation ofm vectorsy

i
of size N × 1

as vector operations that deal with vectors of sizeN . This is
better illustrated if we rewrite equation (3) as follows:

y
i
=

m−1∑
q=0

(ai,q ⊗ IN )xq, (4)

for i = 0, 1, 2, . . . , m − 1 and using Matlab syntax again
y

i
= y

(
iN : (iN + N − 1)

)
. Equations (3) and (4) captures

the SIMD computation model. Further we assume for the level
of SIMD parallelism

N = 2n for n = 1, 2, 3, . . .

B. Application Example 1

In this section we show by means of a simple example how
the algebraic notation presented in section III-A can be used
in order to describe the SIMD computation of an algorithm.

Let x andy be input and output vectors defined as

x = [x(k) x(k + 1) x(k + 2) x(k + 3)]T ,

y = [y(k) y(k + 1) y(k + 2) y(k + 3)]T ,
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and a vector of coefficients defined as

h = [h0 h1 h2 h3]T .

We consider the following computation

y = Hx, (5)

where the transformation matrix is formed taking the coeffi-
cients of the vectorh and has a Toeplitz structure as follows:

H =




h0 0 0 0
h1 h0 0 0
h2 h1 h0 0
h3 h2 h1 h0




Assuming that two results can be computed in parallel, we can
write for the computation of (5) the following equations

y
0

=
[

h0 0
0 h0

] [
x(k)

x(k + 1)

]
+

[
h1 0
0 h1

] [
0

x(k)

]

+
[

h2 0
0 h2

] [
0
0

]
+

[
h3 0
0 h3

] [
0
0

]
,

y
1

=
[

h0 0
0 h0

] [
x(k + 2)
x(k + 3)

]
+

[
h1 0
0 h1

] [
x(k + 1)
x(k + 2)

]

+
[

h2 0
0 h2

] [
x(k)

x(k + 1)

]
+

[
h3 0
0 h3

] [
0

x(k)

]
,

where

y
0

= [y(k) y(k + 1)]T

y
1

= [y(k + 2) y(k + 3)]T

Using the notation introduced in section III-A, we can write
for the computation of equation (5) the following

y
i
=

3∑
q=0

(hq ⊗ I2) ·
[
(Z2)(q) mod 2xi−b q

2 c+

(ZT
2 )(2−q) mod 2xi−1−b q

2 c
]
,

where0 ≤ i < 2, b·c is the floor operator,Z2 is a 2× 2 shift
matrix defined as

ZN =
[

0 0
1 0

]
,

and the vectorxj is defined as

xj =
[
x
(
k + 2j

)
x
(
k + 2j + 1

)]T
for 0 ≤ j < 2,

xj = [0 0]T otherwise.

The equations we developed above can be generalized for
an arbitrary level of SIMD parallelismN and for a vector of
coefficients:

h = [h0 h1 . . . hp−1],

wherep/N is a positive integer greater that one. For the input
and output vectors we can write

x = [x(k) x(k + 1) . . . x(k + L− 1)]T ,

y = [y(k) y(k + 1) . . . y(k + L− 1)]T .

Further, we assume that the number of input samples to be
processedL is also a multiple of N, thus the following holds:

L

N
= J for J = 1, 2, 3, . . .

In order to formulate the scalable computation of equation (5),
we partition the input and output vectors in sub-vectors of size
N . Thus, for the input vectors we can write

xj = [x(k + Nj) x(k + Nj + 1) . . . x(k + Nj + N − 1)]T ,

for 0 ≤ j < J . Otherwise,xj is a vector with N zero elements.
For the output vectors, we can write

y
i
= [y(k + Nj) y(k + Nj + 1) . . . y(k + Nj + N − 1)]T ,

for 0 ≤ i < J . Finally the computation of (5) for an arbitrary
level of SIMD parallelism can be expressed by means of the
following expression:

y
i
=

p−1∑
q=0

(hq ⊗ IN ) ·
[
(ZN )(q) mod Nxi−b q

N c+

(ZT
N )(N−q) mod Nxi−1−b q

N c
] (6)

In this equationIN and ZN are theN × N identity and
shift matrix respectively. Thus, equation (6) describes an
algorithm for the implementation of the core computations
of an FIR filter with an scalable level of SIMD parallelism.
This algorithm can be extended by any suitable partitioning
technique like for exampleoverlapping savein order to obtain
the time-continuous computation of the filter.

C. Application Example 2

In [17], we presented a block formulation of pure recursive
filters using Kronecker vector factors. The block formulation
was derived using a lifting-isomorphism [18] with a raising
factor N applied to the state-space equations of the serial
formulation of the recursive filter. Our starting point for the
derivation of the raised algorithm is the serial formulation of
a recursive filter of orderp, namely

y(k) = u(k) +
p∑

i=1

aiy(k − i).

The state-space representation of this algorithm is given by

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k),

where the state vectorx(k) = [x1(k) x2(k) . . . xp(k)]T con-
tains past computed samples. Thus,

xi(k) = y(k − i) for i = 1, 2, . . . , p

For the system matrices we have

A =




a1 a2 . . . ap

1 0 . . . 0
...

. . .
. . .

...
0 . . . 1 0


 ,

B = [1 0 . . . 0]T ,
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C = [a1 a2 . . . ap]
T

,

D = 1

We define the input and output vectors of the raised algo-
rithm as follows:

u(k) = [u(Nk) u(Nk + 1) . . . u(Nk + N − 1)]T

y(k) = [y(Nk) y(Nk + 1) . . . y(Nk + N − 1)]T ,

whereN is the raising factor. Thus, and according to [17],
we can write for the Kronecker vector formulation of the
algorithm the following

y(k) =
p∑

i=1

(
y(Nk − i)⊗ IN

)
ci+

(D ⊗ IN ) u(k) +
N−1∑
q=1

(
CAq−1B ⊗ IN

)
Zq

Nu(k),

(7)

whereci are vectors formed by the columns of a raised system
matrix

C [R] =




C
CA

...
CAN−1


 ,

andZN is theN ×N shift matrix.
The importance of equation (7) resides on the matter that

it expresses the computation of the algorithm in terms of
Kronecker vector factors. The algorithm deals with input
vectors of sizeN and produces output vectors of sizeN
and thus, it is independent of the available level of SIMD
parallelism.

D. Automatic Code Synthesis

The automatic code synthesis is based on the matter that
algorithms expressed as in equations (6) and (7) uses certain
algebraic structures, which have a direct interpretation in
processor instructions. For example, let us take the following
expression of equation (7)

(
y(Nk − i)⊗ IN

)

This expression means that the scalary(Nk − i) has to
be broadcasted to all the data paths of the parallel DSP
architecture. Thus, this algebraic structure will be translated
into a broadcast data transfer instruction. Let us take a new
example (

y(Nk − i)⊗ IN

)
ci

This expression contains two actions that have to be carried out
by the processor: 1.- broadcast ofy(NK− i), 2.- component-
wise vector multiplication. As we can see from this example,
the algorithm is expressed in such a way that enables scala-
bility, since all the components involved in the equation have

as a parameter the number of data paths of the processorN .
Finally, we consider the expression

p∑

i=1

(
y(Nk − i)⊗ IN

)
ci,

wherep vector MAC operations are described. In the example
above, we have presented a simple data transfer, namely
broadcasting. However, we have extended the number of
elementary algebraic structures in order to support a wider
range of algorithms. This was the case of theN × N shift
matrix ZN , which resembles theZurich-Zip data transfer.
More complex transfers that are supported by our processor
like stride permutationsP (L, s) are also part of our algebraic
repertoire.

In the algorithm of equation (6), we find the operationb q
N c.

This can be easily implemented in a processor as a right shift
by n positions, whereN = 2n holds. Moreover, this operation
determines that a new vector of input samplesxi−b q

N c is
loaded from memory only when the indexq becomes a
multiple of N . This makes clear the advantageous property
of FIR filters implemented into SIMD processors by which
the number of expensive memory accesses are decreased with
an increasing level of SIMD parallelism.

Matlab is a very popular language among digital signal
processing designers. The matrix oriented capability of the
language allows for easily programming algorithms using the
elementary algebraic structures of equations (6) and (7). For
example, the first part of equation (7) can be written using
matlab syntax as follows:

mac=zeros(N,1)
for i=1:p,

mac=mac+kron(y(Nk-i),eye(N))*C_r(1:N,i)
end

In this examplekron() and eye() are matlab functions
that implement the Kronecker product and the identity matrix
respectively. In this example is also important to note that the
index k runs over the number of input vectors that have to be
processed by the algorithm. In figure 8, we offer a closer view
to the architecture of the Kronecker center part of our compiler.
In a first processing stage data types and shape of the variables
of the matlab program are determined and this information is
annotated to the intermediate representation. For our programs,
we have taken care of using variables with a unique definition.
Supporting Matlab features of variable redefinition is a difficult
problem to solve and therefore, we decided to guarantee the
unique meaning of a variable by inserting assertions functions
in the program. If at some stage of the program the variable
has changed its original definition, the Matlab program will
be interrupted with the respective assertion message.

After the data type information has been embedded into
the program intermediate representation, the pattern matching
stage begins to search for the algebraic structures. Finally,
when the structures has been recognized SIMD high level
sequential instructions are generated. The meaning of high
level instructions in this context is that the sort of code that is
generated at this stage is machine independent and resembles
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Fig. 9. Speedup Factor vs. Level of Parallelism for a 32-taps FIR Filter

an ideal SIMD processor. Further stages of the compiler will
process this sequential instruction list in order to generate
machine dependent details and exploit instruction level par-
allelism. In fact, the linear instruction list can be regarded
as a low level intermediate representation, which contains
the whole information regarding the SIMD parallelism and
which can be processed in further stages for different target
architectures. We have also implemented a conversion program
that translates the sequential instruction list into C code as can
be observed in figure 7.

E. Code Generation Results

Using equation (6), we have implemented an FIR filter in
Matlab and processor code was automatically generated for
different levels of parallelism. In figure 9, we can observe
the resulting speedup factors for a 32-taps FIR filter. The
speedup is defined as the relation between the time that is

Speedup for a 32-Tap Pure IIR Filter 
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Fig. 10. Speedup Factor vs. Level of Parallelism for a 32-taps pure IIR Filter

required to compute a certain number of input samples with a
processor architecture with one data path and the time required
to compute the same number of input samples on the parallel
processor.

Likewise, using equation (7) we have implemented a pure
IIR filter in Matlab and processor code was automatically for
different levels of parallelism. In figure 10, we can observe
the resulting speedup factors for a 32-taps pure IIR filter.

F. Discussion

As we can observe from figures 9 and 10, the achievable
speedup factor depends not only on the available processing
power but it also depends on the data dependencies char-
acteristics of the algorithm. In fact, due to the direct data
dependencies of the pure IIR filter, the speedup factors we
obtain for this algorithm are moderate in comparison with
the speedup factors we obtain for the FIR filter. Moreover,
in [17] we showed that the achievable speedup factor for pure
recursive filters is upper bounded and once this upper bound
has been reached no more gains on the speedup factor can be
obtained even if the level of parallelism is incremented. These
results illustrate the fact that in determining the optimal level
of SIMD parallelism for a certain application not only power
and area constraints have to be taken into account, but the
characteristics of the algorithms play a paramount role. This
stresses the necessity for a HW/SW design strategy, where this
exploration can be supported.

IV. CONCLUSION

In this paper we have presented our HW/SW design method-
ology in order to support the design of scalable SIMD DSP
cores. Taking as our starting point our novel STA microar-
chitecture, we explained how using our class library RNA
we can express and manipulate STA-based processor cores
in order to generate versions of our DSPs with different levels
of parallelism. This enable us to build processor cores with
the processing power needed to fulfill the requirements of a
certain application in very short design cycles. An algebraic
framework has been presented as a tool used to achieve
the abstraction from the level of SIMD parallelism on the
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algorithm design. Moreover, the algebraic framework provides
the translation rules that enable the automatic generation from
a high level matrix oriented language like Matlab. Finally, our
results illustrated the necessity to explore not only hardware
complexity issues but to also take into account the character-
istics of the algorithm in order to establish the optimal level
or parallelism.
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