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A HW/SW Design Methodology for Embedded
SIMD Vector Signal Processors

J.P. Robelly, G. Cichon, H.Seidel, and G. Fettweis

Abstract—SIMD processors have made their way from su- algorithm complexity, where a programmable device is favored
percomputers architectures through embedded real-time signal over the fixed wired solution. This is the case of wireless
processing. This trend has been driven by signal processing communications, where programmable devices not only allow
applications with heavy number-crunching requirements like for for the flexibl ! I tati f tantly ch - tan-
example base-band processing on mobile devices. or the Tiexible Imp emenla 'O_n of constantly ¢ angl_ng S an.

Depending on the data dependencies of algorithms and imple- dards but enable the realization of the software defined radio
mentation constraints like real-time, power consumption and die paradigm. Moreover, it turns out that the time-invariant nature
size, the necessary SIMD parallelism can be put into a piece of of the wireless communications channel leads to a frame based
silicon for a certain application. This poses two challenges: On signal processing. Channel variations are tracked and a snap-

the one hand, the DSP core design has to be streamlined in such X L .
a way that changes on the architecture can be prototyped very shot channel estimation is used for the detection process. The

fast. On the other hand, the algorithm design and its development detection process is then carried out over a frame that is
have to be done independent of the level of SIMD parallelism considered to have been transmitted through a channel which is

available on the DSP in order to enable software reusability. — assumed to remain constant over the buffer length. This frame
In this paper we report our HW/SW methodology in order 1o 5564 nature of signal processing for mobile applications is

design DSP cores and algorithms that exploit SIMD parallelism. [ fi h based . h of th
On the hardware development side and taking as a starting point & natural fit to the memory based processing approach of the

a novel hardware architectural template called STA, we explain SIMD computational model [1].
how with our approach we automatically generate simulation The tight area and power constraints of mobile devices have
and hardware models of DSP cores with a scalable level of SIMD peen also a driving force for the SIMD computational model:
parallelism. On the software development side and based on an 5 piece of silicon can be filled up with processing elements
algebralc_ model that captures the SIMD com_putatlonal model, like add d ltioli . d deli h ired
we explain how algorithms can be designed independent of the ke a e_rs and multipliers in order to deliver the re_quwe
available SIMD parallelism. We also report how this algebraic Computational power and the control overhead remains con-
model can be easily expressed in Matlab syntax. This enables thestant regardless of the level of SIMD parallelism available on
automatic code generation from Matlab programs for our family  the processor. This contrasts with other approaches in which
of DSP cores. reconfigurability or programmability is guaranteed at expenses
Index Terms—SIMD, DSP, Design Methodology, Automatic of a considerable overhead.
Code Generation. However, the amount of SIMD parallelism that has to be
implemented in a processor does not only depends on power
I. INTRODUCTION and area constraints, but it also depends on the characteristics

IMD vector signal processors offer the potential to inof the algorithms. Data dependencies of an algorithm can
crease the data transfer rates between memory and céaise that the achievable speed up factor is upper bounded.
putational resources, since data vectors residing on memonyfhis has as a consequence that power, area and real-time
are accessed and processed in parallel fashion. This enabR¥straints together with the data dependencies characteristics
the achievement of speed up gains in the implementation @f the algorithms have to be taken into account in order
DSP algorithms into these processor architectures. In the ligatdetermine the required level of SIMD parallelism. This
of the advancement of VLSI technology, we have experiencéiposes new challenges to the HW/SW design methodology.
in the last time how the SIMD computational model, whos@n the one hand, the hardware development process and
origin goes back to the old times of supercomputers, has madfie DSP architecture have to support the implementation of
its way through the implementation of embedded real-tinFocessor cores with a scalable level of SIMD parallelism.
signal processing. Supercomputing has become feasible @t the other hand, the algorithms have to be designed and
embedded applications. implemented in such a way that they can be easily scaled
This renewed attention on SIMD processors has been driviéndifferent levels of SIMD parallelism in order to enable

by low-power and low-size applications with ever increasingoftware reusability.
In this paper we present our methodology for dealing with

Manuscript received June 1, 2004; This work was supported by the Ger . ;
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SEB358. ardware design and one with software design. In Section I,
J.P. Robelly, G.Cichon, H. Seidel and G. Fettweis are witthe STA microarchitecture and its framework for the genera-
the Vodafone chair for mobile communications systems at tl ; ; ; ;
Technische Universitaet Dresden, D-01062 Dresden, Germany (e-mgﬁ%n of DSP core_s will be_ addressed.' The (_:0mp|Ier fr_lendllness
robelly,cichon,seidel fettweis @ifn.et.tu-dresden.de). of the STA architecture is the starting point of section Ill. In

1Synchronous Transfer Architecture this section we present an algebraic approach that offers the
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parallelism. In fact, SIMD data parallelism is supported by

letting the input, output ports and the data paths to deal with
Fig. 1. STA Architectural Template vectors data types. Instruction level parallelism is supported,
since at each cycle a wide instruction controls each basic block

. . - _ _ and the multiplexing network in/LIW fashion. This poses
required abstraction for designing algorithms independent t%o problems. On the one hand, for large STA systems the

the Ieyel of SIMD parallelllsm available. In this section we alsletiplexing interconnection network becomes a critical part
explain how this algebraic framework has been used in orggr e gegsign. On the other hand, a wide instruction memory
to enable the automatic generation from programs Written {0 needed. The complexity of the interconnection network can
Matlab syntax for the family of our processor cores. Finallyy 5jeviated by reducing the number of connections between
in section IV our conclusions. ports. An obvious strategy for this is to determine those
connections which allow for reusing program variables that
present a high data locality. This is a viable approach, since
applications are known at the design time of the processor
A. STA Architectural Template and thus, a customization of the multiplexing interconnection
Our HW design concept is based on basic blocks of the formetwork can be carried out in order to fulfill die size and
showed in figure 1. Such a basic block has an arbitrary numigmwer consumption requirements. For those connections which
of input and outputs ports. It is important to remark that in owre not frequently reused, a connection with the register file
concept only the output ports of basic blocks are registers. Téigffices. To alleviate instruction memory footprint we are
input and output ports can deal with a certain data type, eapplying code compression techniques similar to [4].
bool, 16-bit integer, vectors of 16-bit integer, etc. Each basic
block implements some functionality. In our HW concept, Y
system is build up upon these basic blocks. Thus, ports of
the same data type are connected with each other throughn order to formalize and manipulate the necessary in-
an interconnection network formed by multiplexers. This iformation that captures an STA design, we have devel-
sketched in figure 2. Both the functionality of basic blocks an@ped a dynamically-typed object-oriented class library called
the input multiplexers are explicitly controlled by processdrNA [5]. By means of RNA we can create a machine de-
instructions. At each cycle the instruction configures thgeription file that contains information regarding data types,
multiplexing network and the functionality of the basic blocksnput and output ports of processor basic blocks, connections
In this context, our multiplexing network resembles the bypabetween ports and behavioral of each basic block. For example
network frequently used in superscalar microprocessors [2].16-bits and a 40-bits integer data type can be declared in
Thus, the whole system forms a synchronous network, whi&NA as follows:
at each clock cycle consumes and produces some data. The, . 16 —int ¢
produced data will in turn be consumed by other basic bloc r1St_t.(t¥pe-|nt_ true name= ID..— ) "
. a?cu_t.(type-mt true 40 name="accu_t"),
in the next cycle. Due to the synchronous transference 0
data between basic blocks we have named the architectwteereint _t andaccu _t are labels for the data types 16-bits
STA [3]. In our concept, basic blocks can be highly optimizeohteger and 40-bits integer respectively. Such labels can be
data paths or memory blocks. Memory blocks can be eithiastantiated at other stages in the machine description file, for
registers files or memories. There is a register file for eaeltample a data type vector of 8 elements, where each element
data type available in the processor. is a 16-hit integer can be declared in RNA as follows:

II. HW DESIGN. SYNCHRONOUSTRANSFER
ARCHITECTURESTA

Formal Description of STA Cores
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wr_port:[(md-write "w" vect_inputs)].

This example of RNA describes a simple STA system with
the organization presented in figure 3. In the same way as
we have described this simple example, we can describe more
Likewise, we can declare a data type vector of 8 elementemplex systems comprising memories, address generators,
where each element is a 40-bit integer: program counters, ICU (Data Interconnection Network), etc.
However, by means of RNA we can not only describe data
types, basic blocks and connections between ports, but we are
also able to describe the behavior of processor instructions.
It is important to point out that in these declarations theor example, the declaration
number of vector elements can be parameterized and th d-op "mac_op" (md-opcode mac Ox1)
we can describe STA cores with different levels of SIM md-tmpl "+*_[(md-tmpl "** [
parallelism. We use the labels related to data types in or el e

. . . d-match "a" 0 vct_16)
to describe the input and output ports of basic blocks. F 1 i
example, in order to declareMAC unit in RNA we write d-match "b" 0 vet_16)])
xample, | unit we wri (md-match "c" 0 vct_40)

vct_16:(type-vector int_t
(dimension-known s:8) name="vct_16")

vct_40:(type-vector accu_t
(dimension-known s:8) name="vct_40")

mac:(md-fu "mac" in_ports out_ports), 1l
wherein _ports declares three input portsb,c ]()md-match aceu” 1 vect_40)
in_ports:[ behaviour="$accu=$a*$b+%c;"
(md-input "a" vct_16 vect_inputs) )

(md-input "b" vct 16 vect_inputs)
(md-input "c" vct_40 [
(md-connection mac "accu")])]

is the instruction template for a vector MAC operation. The
instruction has three vector inputs. Two inputs are vectors with
16-bit elements and one input is a vector with 40-bit elements.
andout _ports declares two output portsaccu The input operands are fed to the paatb,c at the time O

and the resulfaccu is produced one cycle later. In the case
of pipelined data paths, this parameter can be replaced by the
latency of the unit. The behavior section describes in a C-like
It is important to note that in the declaration iof _ports syntax how the result has to be computed.

we find the description of which output ports of the same or
of other basic blocks are connected to the input ports. Fer
instance, the 40-bit output port of the umitac is connected o
to the 40-bit input port of the same unit. In order to describe Contrary to other processor description approaches
more complex connections we can make use of labels agdif€ [61.[71[8], the purpose of RNA is not to become a
For example, the labelect _inputs of the declaration N€W genericADL (Architecture Description Language). Our

out_ports:[(md-output "x" vct 16)
(md-output "accu" vct_40)]

Interim Discussion

in _ports can be defined as follows: starting point is the STA architectural template and the origin

of RNA was motivated by the necessity of describing STA
vect_inputs:[ systems in an structural rather than at a behavioral way.
(md-connection vect_rf "ra”) In fact, the intention of RNA is to capture the necessary
(md-connection mac  "x")] information of our scalable STA cores in order to enable the

To complete our example we write the declaration of a regist@#tomatic manipulation of the machine description file.
file unit with four registers of typerct _16 as

rf:(md-rf "rf* 4 vct_16 wr_port rd_port), D. Automatic Core Generation

The description of an STA concept in a machine description
enables the automatic manipulation of this information in
rd_port:;[(md-read "ra")] order to generate different hardware and simulation models

where
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Area Estimation for Scalable SIMD DSP Cores
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_ with a 130 nm standard-cell library by UMC using Synopsys
Fig. 5. STA Processor Layout Design Compiler. For place and route and back annotation we
used Cadence SoC Encounter. For the implementation of the
) arithmetical data paths we used DesignWare components from
of the processor. In figure 4 we can observe the process opsys. For Memories we used SRAM macros from UMC
stages we are applying to the machine description file. I figure 5, we can observe the layout for a processor with
first, an instruction set architecture layout is created. For t Sdata patﬁs a data memory with 4096 words of 16 bit each
purpose, the binary encoding for instructions and multiplex lice and a p;rogram memory with 3072 words of 64 bits. In
control are determined. The binary encoding establishes re 6. we can observe the estimation of areaim? for
_tl)_'rt] mdéhﬁof thte correspondmg fllelds in the w;s’gulc;tlon Worddifferent numbers of data paths. This values were estimated

hen, ditierent processor models are generated. or proce ﬁg the same amount of memory as indicated above.
simulation purposes a model in the ADL langudd&A [8]

is generated. RTL models of the processor are also generatﬁeés‘Ccordlng to the synthesis results the DSP core with 16

Since the declaration of the instruction template has a C-li gta path; ag:h|eves a clock rate of 250 .MHZ and its power
c@nsumption is 306:1V. The power estimation were done us-

behavior section, a complete SystemC model can be gen . .
ated. The VHDL model contains the complete multiplexin{jghIg Synopsys power compiler and wired-load models extracted

interconnection network and stubs for the basic blocks. The5&™ the placed and routed processor.
stubs can be filled with optimized data paths.
As discussed in [3], an slice-based point of view of the
design is important to obtain good quality results in the. STA: A Compiler Friendly Architecture
hardware synthesis. Thus, for the generation of the hardware ) .
models those basic blocks are recognized, which can be splicontrary to the sliced perspective for the hardware gen-
into slices. From the hardware point of view, it is more efficierfiration, from a compiler point of view the STA architecture
to encapsulate the logic in slices. Thus, only one slice has"&s€mbles a synchronous network of basic blocks, which either
be carefully placed and routed and then it can be replied gyecute some operation (data paths) or store a state (memories

achieve the required level of parallelism. The RNA framewor®@nd register file). Moreover, the connection between basic
makes possible to support this kind of features that are specil|eck takes place at ports that deal with the same data types.
to our architectural template. This approach enables us to ta{ multiplexing interconnection network determines whether

special measures that have a great impact on the quality of figre is @ direct connection between modules or whether

generated hardware and which otherwise could not be possiBfi@ can be communicated to other basic blocks through

with a more general hardware generation approach. the register file. At each clock cycle both the multiplexing
interconnection network and the basic block are configured

) by the instruction. These characteristics of STA offer a high
E. STA Synthesis Results degree of freedom for the compiler, which can apply standard
In [9] we have presented an STA DSP for the implecompiler techniques [10] [11] in order to find a solution for
mentation of an OFDM communications system. Versions tfie routability of data in the processor. In the next section,
this processor with different levels of SIMD parallelism werave will present our approach for generating code for scalable
synthesized, placed and routed. The synthesis were carriedvarsions of our DSP architecture.
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Fig. 7. Compiler Architecture
This remarkable result enabled researchers to formulate

different fast algorithms for signal transformations like discrete
[1l. SW DESIGN: A MATLAB COMPILER fourier transforms, walsh-hadamard transforms, discrete co-

For the processor software generation, we aim to convSi?e' sine transform, etc. using the same algebraic framework.
' %! limieri [14] uses Kronecker products in order to formulate

Matlab source code into object code for scalable versionslg T algorithms for different parallel architectures. Tolimiere
our STA DSP cores. This means that the source code Has, 29 P i

X . . makes also the observation that different models of parallel
to be parameterized in such a way that the compiler can ; . i

. . .__computation can be described by means of Kronecker prod
generate object code for different levels of SIMD parallehsm.t This h icinated a lot of hin order t ; fi-
In figure 7, we can observe the architecture of our compiléjr? S TNIS has originatec a fot of research in order 1o automat
The Matla'b source code is converted into an intermedia':tgIIy generate code of signal transformations like FFT, Cosine

. . o and Sine transform for different parallel architectures [15][16].
representation by the compiler frontend. It is important tthhough there has been a lot of research on the generation

mention that the intermediate representation of our prografis . .
: . of signal transformations, there has been scarce research on
is expressed using the same syntax we used for the machi

ntta . . ) !
description files, namely RNA. For the compiler, RNA offereX ending these ideas in order to support a wider range of

S . . . .
a framework in which annotated graphs can be described. digital signal processmg_algonthms. .
. : In order to characterize the SIMD computational model
The Kronecker center part of our compiler plays an im-

let A be anm x m matrix, z a Nm x 1 vector, Iy the

portant role on the scalable code generation as we w : . : . o
. . . .N x N identity matrix and consider the following important
explain further. The function of the center part is to recognize

algebraic structures which are embedded in the matlab cog@resston:

and that describe the SIMD parallelism in order to generatey = (A® Iy)x 3)
vector instructions for this structures. These special algebraic ao.o0ln ao.m1In z
structures captures the SIMD computational model and they a17OIN a17"m—1]N ;1

can be recognized and translated into vector operations by —
the compiler center part. Moreover, this algebraic structures : : :
can be fully parameterized and thus, they are independent of m-1,0IN o Am—1m-1IN LA

the level of parallelism: Algebra is used in order to achieve gy oo using Matlab syntax we define the vectohbélements
abstraction of the algorithms regarding the level of parallelis&ni _ x(z’N . (iN + N — 1)) for i = 0,1,...,m — 1.
available on the processor. Equation (3) is known as a Kronecker vector factor [14], since

The Kronecker center part generates a sequential list ;p xpresses the computation of vectorsy. of size N x 1
SIMD-vector instructions. In fact, these RISC-like instructiongg yector operations that deal with vectors of sieeThis is

contains the whole information related to the SIMD paralgyier jllustrated if we rewrite equation (3) as follows:
lelism of the algorithm. The purpose of the compiler backend

is to exploit the instruction level parallelism present on the m—1

sequential instruction list generated by the compiler center Y; = Z(ai,q ® InN)z,, (4)

part. For details related to the compiler backend the reader q=0

is referred to [12]. for i = 0,1,2,...,m — 1 and using Matlab syntax again
In the next sections we concentrate only on the Kroneckgir: y(iN : (iN + N —1)). Equations (3) and (4) captures

center part. the SIMD computation model. Further we assume for the level

of SIMD parallelism
A. Kronecker Compiler: Mathematical Background N=2" forn=1,2,3,...

Davio [13] in his classical paper developed an algebraic
framework, where he established the connection between the Application Example 1
Kronecker product of matrices and stride permutations. In
his paper he proved the importaobmmutation theorenof
Kronecker products

In this section we show by means of a simple example how
the algebraic notation presented in section IlI-A can be used
in order to describe the SIMD computation of an algorithm.

A® B = P(mn,m)(B ® A)P(mn,n), (1) Let z andy be input and output vectors defined as

where P(L, s) is a matrix that represents the permutation of 2 = [z(k) z(k+1) z(k+2) w(k+3)]7,
L elements with stride and A ® B is a matrix known as the y = [yk) yk+1) yk+2) yk+3)",
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and a vector of coefficients defined as Further, we assume that the number of input samples to be

T processed. is also a multiple of N, thus the following holds:
h=1lho hi1 hs hs]".

L
We consider the following computation N=J forJ=123. ..
y = Hz, (5) In order to formulate the scalable computation of equation (5),

we partition the input and output vectors in sub-vectors of size
where the transformation matrix is formed taking the coeffiv. Thus, for the input vectors we can write

cients of the vectoh and has a Toeplitz structure as follows:
" P 2= [p(k+ Nj) a(k+Nj+1)...a(k+Nj+N-1)]T,

hp 0 0 O . . .

ho I 0 0 foro<j < J. OtherW|segj is a vector with N zero elements.
H= v For the output vectors, we can write

ho hi hg O

hs ha hi  ho y, =k +Nj) y(k+Nj+1)...y(k+Nj+N-1)]",

Assuming that two results can be computed in parallel, we cgft (0 < i < J. Finally the computation of (5) for an arbitrary
write for the computation of (5) the following equations  |evel of SIMD parallelism can be expressed by means of the

O:[ ho O ][x(x(k) } |:h1 0 } T 0 } following expression:

0 ho k1) 0 hi || «(k) b o
- m
L[ he 0 ][0], [h 0] 0 %=§1%®MTK%W)°£Hﬁ+ 6
0 hy 0 0 hs 0’ =0 (6)
i (ZJI\})(qu) modN:C‘ -y
- i W
Y, :[ }80 f? ] [ I(ZJF? } + { %1 IS } x(eré) ] In this equation/y and Zy are the N x N identity and
0 z(k +3) L 2R+ | ohi matrix respectively. Thus, equation (6) describes an
n [ hy 0 } [ z(k) } n { hs 0 ] [ 0 } algorithm for the implementation of the core computations
0 heo x(k+1) 0 hs z(k) |7 of an FIR filter with an scalable level of SIMD parallelism.

This algorithm can be extended by any suitable partitioning
technigue like for exampleverlapping savén order to obtain
y, = k) ylk+ n)* the time-continuous computation of the filter.

ly(k+2) y(k+3)"
C. Application Example 2

Using the notation introduced in section IlI-A, we can write In 117 ted a block f lati ¢ .
for the computation of equation (5) the following _n [ ]3 We presented a block formulation of pure recursive
filters using Kronecker vector factors. The block formulation

where

Y

3 (q) mod2 was derived using a lifting-isomorphism [18] with a raising
P Z(hq ® Iz) - {(22) ! Zi—|g)t factor N applied to the state-space equations of the serial
7=0 formulation of the recursive filter. Our starting point for the
(7T (2~q) mod 2%—1—?&7 derivation of the raised algorithm is the serial formulation of
’ a recursive filter of ordep, namely
where0 < i < 2, |-] is the floor operatorZ, is a2 x 2 shift

|«

i ) p
matrix defined as y(k) = u(k) + > aiy(k —i).
P 0 0 i=1
N7l oo The state-space representation of this algorithm is given by
and the vector; is defined as z(k+1) = Az(k) + Bu(k)

2, = [z(k+2j) a(k+2j+1)] foro<j<2, y(k) = Cz(k) + Du(k),

. = [0 07 otherwise. where the state vectar(k) = [z1(k) ao(k)...z,(k)]" con-

- ) ~ tains past computed samples. Thus,
The equations we developed above can be generalized for

an arbitrary level of SIMD parallelisnV and for a vector of zi(k) =y(k—14) fori=1,2,....p
coefficients: For the system matrices we have
h=1lho hi ... hp_1], ar az ... ap
wherep/N is a positive integer greater that one. For the input A= 1o 0 7
and output vectors we can write
e = [ak) wlk+1) ...a(k+L—1), 0 o
y y(k) y(k+1) ...y(k+L—1)]". B=[1 0 ... 0%,
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as a parameter the number of data paths of the procéésor
Finally, we consider the expression

(y(Nk —i) ® In)c;,

p
=1

D=1

K2

We define the input and output vectors of the raised algaherep vector MAC operations are described. In the example
rithm as follows: above, we have presented a simple data transfer, namely
T broadcasting. However, we have extended the number of

u(k) = [u(Nk) u(Nk+1) ... w(Nk+N-1)] elementary algebraic structures in order to support a wider

y(k) = [y(Nk) y(Nk+1) ... y(Nk+N-1)]7, range of algorithms. This was the case of tNex N shift

. . . matrix Zy, which resembles th&urich-Zip data transfer.
where N |s_the raising factor. Thus, and accordm_g to [17]More complex transfers that are supported by our processor
we can write for the Kronecker vector formulation of thGfike stride permutation$’(L, s) are also part of our algebraic
algorithm the following repertoire.

p In the algorithm of equation (6), we find the operatio} |.
y(k) =" (y(Nk —i) @ In)c;+ This can be easily implemented in a processor as a right shift
i=1 by n positions, wheréV = 2™ holds. Moreover, this operation
Nol . determines that a new vector of input samples ¢ is
(D@ In)u(k) + (CAT B ® Iy) Z{u(k), loaded from memory only when the index becomes a
=1 multiple of N. This makes clear the advantageous property
™ of FIR filters implemented into SIMD processors by which

whereg; are vectors formed by the columns of a raised systelfte number of expensive memory accesses are decreased with

matrix an increasing level of SIMD parallelism.
C Matlab is a very popular language among digital signal
IR CA processing designers. The matrix oriented capability of the

’ language allows for easily programming algorithms using the
elementary algebraic structures of equations (6) and (7). For
example, the first part of equation (7) can be written using

and Zy is the N x N shift matrix. matlab syntax as follows:

The importance of equation (7) resides on the matter tha%lc:zeros(N 1)
it expresses the computation of the algorithm in terms {gﬁ'r =1 '

Kronecker vector factors. The algorithm deals with inpu - : N

vectors of sizeN and produces output vectors of si2é mac=mac-+kron(y(Nk-i),eye(N))*C_r(L:N.i)

and thus, it is independent of the available level of SIMSnd

parallelism. In this examplekron() andeye() are matlab functions

that implement the Kronecker product and the identity matrix

respectively. In this example is also important to note that the
indexk runs over the number of input vectors that have to be
The automatic code synthesis is based on the matter thadcessed by the algorithm. In figure 8, we offer a closer view
algorithms expressed as in equations (6) and (7) uses certaifhe architecture of the Kronecker center part of our compiler.
algebraic structures, which have a direct interpretation iR a first processing stage data types and shape of the variables
processor instructions. For example, let us take the followirg the matlab program are determined and this information is
expression of equation (7) annotated to the intermediate representation. For our programs,
) we have taken care of using variables with a unique definition.
(y(Nk —9)® IN) Supporting Matlab features of variable redefinition is a difficult
This expression means that the scaldfiVk — i) has to problem to solve and therefore, we decided to guarantee the

be broadcasted to all the data paths of the parallel DPique meaning of a variable by inserting assertions functions
architecture. Thus, this algebraic structure will be translat&d the program. If at some stage of the program the variable

into a broadcast data transfer instruction. Let us take a nB@s changed its original definition, the Matlab program will
example be interrupted with the respective assertion message.

o After the data type information has been embedded into
(y(Nk Z)®IN)QZ‘ . . . .
the program intermediate representation, the pattern matching
This expression contains two actions that have to be carried stdge begins to search for the algebraic structures. Finally,
by the processor: 1.- broadcastidfVK — i), 2.- component- when the structures has been recognized SIMD high level
wise vector multiplication. As we can see from this examplsgquential instructions are generated. The meaning of high
the algorithm is expressed in such a way that enables scadéel instructions in this context is that the sort of code that is
bility, since all the components involved in the equation hawgenerated at this stage is machine independent and resembles

CAN-1

D. Automatic Code Synthesis
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* Fig. 10. Speedup Factor vs. Level of Parallelism for a 32-taps pure IIR Filter
8 required to compute a certain number of input samples with a
Sequential processor architecture with one data path and the time required
Instruction List to compute the same number of input samples on the parallel
processor.
Fig. 8. Kronecker Center Part Likewise, using equation (7) we have implemented a pure

[IR filter in Matlab and processor code was automatically for
different levels of parallelism. In figure 10, we can observe
the resulting speedup factors for a 32-taps pure IIR filter.

Speedup for a 32-Tap FIR Filter

25

F. Discussion
As we can observe from figures 9 and 10, the achievable

20 -

5 speedup factor depends not only on the available processing

E‘uo, power but it also depends on the data dependencies char-
acteristics of the algorithm. In fact, due to the direct data

5] dependencies of the pure IIR filter, the speedup factors we
obtain for this algorithm are moderate in comparison with
0 ‘ ‘ ‘ ‘ the speedup factors we obtain for the FIR filter. Moreover,

2 4 8 16 32

Data Paths in [17] we showed that the achievable speedup factor for pure

recursive filters is upper bounded and once this upper bound
has been reached no more gains on the speedup factor can be
Fig. 9. Speedup Factor vs. Level of Parallelism for a 32-taps FIR Filter Obtained even if the level of parallelism is incremented. These
results illustrate the fact that in determining the optimal level
of SIMD parallelism for a certain application not only power
an ideal SIMD processor. Further stages of the compiler Wihd area constraints have to be taken into account, but the
process this sequential instruction list in order to generaifaracteristics of the algorithms play a paramount role. This

machine dependent details and exploit instruction level pajfiresses the necessity for a HW/SW design strategy, where this
allelism. In fact, the linear instruction list can be regardegyploration can be supported.

as a low level intermediate representation, which contains
the whole information regarding the SIMD parallelism and IV. CONCLUSION

which can be processed in further stages for different targetIn this paper we have presented our HW/SW design method-
architectures. We have also implemented a conversion progr gy in order to support the design of scalable SIMD DSP

that translates the sequential instruction list into C code as caf} Taking as our starting point our novel STA microar-

be observed in figure 7. chitecture, we explained how using our class library RNA
) we can express and manipulate STA-based processor cores
E. Code Generation Results in order to generate versions of our DSPs with different levels
Using equation (6), we have implemented an FIR filter iof parallelism. This enable us to build processor cores with
Matlab and processor code was automatically generated floe processing power needed to fulfill the requirements of a
different levels of parallelism. In figure 9, we can observeertain application in very short design cycles. An algebraic
the resulting speedup factors for a 32-taps FIR filter. THeEamework has been presented as a tool used to achieve
speedup is defined as the relation between the time thathe abstraction from the level of SIMD parallelism on the
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algorithm design. Moreover, the algebraic framework provides
the translation rules that enable the automatic generation froi
a high level matrix oriented language like Matlab. Finally, our
results illustrated the necessity to explore not only hardwar
complexity issues but to also take into account the characte
istics of the algorithm in order to establish the optimal level
or parallelism.
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