
GRACE-2: Integrating
Fine-Grained Application
Adaptation with Global
Adaptation for Saving
Energy∗

Vibhore Vardhan

Daniel G. Sachs

Wanghong Yuan

Albert F. Harris

Sarita V. Adve

Douglas L. Jones

Robin H. Kravets

Klara Nahrstedt
Department of Computer Science
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, USA
E-mail: grace@cs.uiuc.edu

Abstract:
Energy efficiency has become a primary design criterion for mobile multimedia

devices. Prior work has proposed saving energy through coordinated adaptation in
multiple system layers, in response to changing application demands and system re-
sources. The scope and frequency of adaptation pose a fundamental conflict in such
systems. The Illinois GRACE project addresses this conflict through a hierarchical
solution which combines (1) infrequent (expensive) global adaptation that optimizes
energy for all applications in the system and (2) frequent (cheap) per-application (or
per-app) adaptation that optimizes for a single application at a time. This paper
demonstrates the benefits of the hierarchical adaptation through a second-generation
prototype, GRACE-2. Specifically, it shows that in a network bandwidth constrained
environment, per-app application adaptation yields significant energy benefits over and
above global adaptation.

Keywords: power management, mobile devices, cross-layer adaptation, hierarchical
adaptation, multimedia applications, resource management

Reference to this paper should be made as follows: Vardhan, V., Sachs, D.G., Yuan,
W., Harris, A.F., Adve, S.V., Jones, D.L., Kravets, R.H. and Nahrstedt, K. (2007)
’GRACE-2: Integrating Fine-Grained Application Adaptation with Global Adaptation
for Saving Energy’, Int. J. Embedded Systems †

Biographical notes: Vibhore Vardhan is a Software Systems Architect at Texas In-
struments Inc., USA. His research interests are in high-performance low-power embed-
ded system design. He received his M.S. in 2004 from University of Illinois.

∗This work is supported in part by the National Science Founda-
tion under Grant No. CCR-0205638 and a gift from Texas Instru-
ments.

†This work is an extension of our paper in the 2nd International
Workshop on Power-Aware Real-Time Computing (30). Major addi-

tions include a detailed description of the GRACE-2 implementation
(Section 4), workloads and resource constraint scenarios evaluated
(Section 5), GRACE-2 overheads (Section 6), complete results for
global and per-app adaptation (Section 7.1), analysis of the results

Copyright c© 200x Inderscience Enterprises Ltd.

1

1 Introduction

Mobile devices primarily running soft real-time multimedia
applications are becoming an increasingly important com-
puting platform. Such systems are often limited by their
battery life, and saving energy is a primary design goal. A
widely used energy saving technique is to adapt the system
in response to changing application demands and system
resources. Researchers have proposed such adaptations in
all layers of the system; e.g., hardware, application, op-
erating system, and network. Recent work has demon-
strated significant energy benefits in systems that employ
coordinated multiple adaptive system layers or cross-layer
adaptation (33; 32).

Such systems must employ intelligent control algorithms
that determine when and what adaptations to invoke, to
exploit the full potential of the underlying adaptations.
These algorithms must balance the conflicting demands of
adaptation scope and frequency. On one hand, an algo-
rithm that considers all applications and adaptive system
layers, referred to as global, is likely to save more energy
than a more limited scope algorithm (e.g., considering only
one application at a time). On the other hand, global al-
gorithms are also likely to be more expensive since they
must optimize across the cross-product of all configura-
tions of all adaptive layers, considering the demands of all
(possibly adaptive) applications on these configurations.

Previous cross-layer adaptation work, therefore, per-
forms global adaptation relatively infrequently (e.g., when
an application enters or leaves the system (33; 32)). This
infrequent invocation in turn reduces the system’s respon-
siveness to change, potentially sacrificing energy benefits.
Other work performs adaptations more frequently, but as-
sumes only one application in the system (28) or only a
single adaptive layer (9).

To balance the conflict of frequency vs. scope, the Illinois
GRACE project (Global Resource Adaptation through Co-
opEration) takes a hierarchical approach that invokes ex-
pensive global adaptation occasionally, and inexpensive
limited-scope adaptations frequently (27; 33; 32). GRACE
uses three adaptation levels, exploiting the natural frame
boundaries in periodic real-time multimedia applications
(Figure 1 (27)). Global adaptation considers all appli-
cations and system layers together, but only occurs at
large system changes (e.g., application entry or exit). Per-
application adaptation (or per-app) considers one appli-
cation at a time and is invoked every frame, adapting all
system layers to that application’s current demands. Inter-
nal adaptation adapts only a single system layer (possibly
considering several applications) and may be invoked sev-
eral times per application frame. All adaptation levels are
tightly coupled by ensuring that the limited-scope adapta-
tions respect the resource allocations made by global adap-
tation. The different adaptation levels may or may not
consider the same adaptations; they are distinguished by
the granularity at which they consider an adaptation (e.g.,

(Section 7.2), and complete results for system-wide energy savings
(Section 7.3).

(a) Global
cross-layer adaptation

(b) Per-app
cross-layer
adaptation

(c) Internal
per-layer adaptation

time

la
ye

r

ap
p

coarse
granularity

hardware

network

OS

app 1
…
app n la

ye
r

hardware

network

OS

medium
granularity

fine
granularity

time

app i

ap
p

app i

h/w

n/w

OS

Figure 1: GRACE adaptation hierarchy. (We do not yet
adapt the network.)

both global and per-app levels may consider dynamic volt-
age and frequency scaling or DVFS for CPU adaptation).

We previously reported on the first GRACE prototype,
GRACE-1, with adaptations in the CPU (DVFS), applica-
tion (frame rate and dithering), and soft real-time sched-
uler (CPU time allocation) (33; 32). GRACE-1’s focus
was on cross-layer global adaptation, for which it showed
significant energy benefits. It reported a few experiments
with hierarchical adaptation in the CPU and scheduler,
but showed only modest benefits over global adaptation
when running multiple applications.

This work focuses on the benefits of hierarchical adap-
tation in a mobile multimedia system, and reports results
from the second generation prototype, GRACE-2. Our
main contribution is to show that per-app application adap-
tation provides significant benefits over and above global
adaptation when network bandwidth is constrained. These
benefits occur with and without per-app CPU adaptation.
Notably, the benefits with both per-app application and
per-app CPU adaptation are often more than additive.
In contrast, GRACE-1 neither provided per-app applica-
tion adaptation nor implemented a network constraint, and
is thus unable to obtain GRACE-2’s benefits. Further,
GRACE-1’s hierarchical adaptation had to be redesigned
to incorporate per-app application adaptation because it
implicitly assumed a fixed application configuration be-
tween global adaptations.

GRACE-2 is implemented on a Pentium M based lap-
top running Linux 2.6.8-1. As illustrated in Table 1,
GRACE-2 implements global adaptations in the CPU, ap-
plication, and soft real-time scheduler; per-app adaptation
in the CPU and application; and internal adaptation in
the scheduler. It respects the constraints of CPU utiliza-
tion and network bandwidth, while minimizing CPU and
network transmission energy. All aspects of the system
are fully implemented except for network communication.
We report both the measured energy savings for the en-
tire system and modeled energy savings for just the CPU
and network (we could not isolate the CPU energy through
measurements).

We emphasize that the individual adaptations in
GRACE-2 are not our focus, and have been previously
proposed. Our focus is on their hierarchical control, and
specifically on per-app application adaptation.

2

Objective: Minimize CPU and network transmission energy
Constraints: CPU time, network bandwidth

Layer Adaptation Hierarchy level
Global Per-app Int.

CPU Dynamic voltage and frequency scaling (DVFS) yes yes no
Application Drop DCT and motion estimation computations based on adaptive thresholds yes yes no
Scheduler Change CPU time, network bandwidth budget yes no yes

Table 1: Adaptations supported in GRACE-2

To our knowledge, this work is the first to demon-
strate the benefits (energy savings) from per-app applica-
tion adaptation over and above global adaptation. It is also
the first to demonstrate significant benefits from hierarchi-
cal adaptation on a real multimedia system implementing
multiple applications, adaptations, and constraints. Sec-
tion 8 further discusses related work.

2 Layer Adaptations and Models

2.1 CPU

Adaptations: We study dynamic voltage and frequency
scaling (DVFS). Our Pentium M CPU supports five fre-
quencies {600, 800, 1000, 1200, 1300 MHz} and corre-
sponding voltages {956, 1260, 1292, 1356, 1388 mV} (15).

To partially alleviate the limitations of the small number
of discrete DVFS points supported, we emulate a continu-
ous set of DVFS points as follows (16). If we need to run
at an unsupported frequency, f , we run at the supported
frequency just below f (say fl) for some number of cycles
(say cl) and the supported frequency just above f (say fh)
for the remaining cycles (say ch). If c cycles need to be
executed, then cl + ch = c and c

f
= cl

fl
+ ch

fh

Energy model: We report energy measurements from
the actual system. However, we could not isolate the CPU
energy from the rest of the measured system energy. To
better understand the impact of our adaptations on the
CPU energy and to provide a CPU energy model to the
adaptation control algorithms, we use the following: En-
ergy = Power × Execution Time, where we approximate
power at frequency f and voltage V by dynamic power
∝ V 2 × f .

We derive the proportionality constant using published
numbers for the maximum Pentium M power. The above
model does not incorporate leakage (static) power or the
effect of application-specific clock gating (as is the case
in much of the DVFS literature). These are difficult to
incorporate analytically and do not affect the overall trends
in the impact of per-app adaptation. This is substantiated
by our measured (entire system) energy numbers which do
include all effects.

For future systems where leakage is expected to dom-
inate, GRACE will need to incorporate leakage-driven
adaptations and energy models for effective energy sav-

ings. For example, running application frames quickly and
shutting down the CPU until the next frame may save
more leakage energy than the savings from reduced voltage
with DVFS. Similarly, power gating different CPU struc-
tures will also save leakage energy. The GRACE frame-
work can easily incorporate such adaptive configurations
with corresponding energy models (e.g., obtained through
profiling (14), vendor-specified estimates of leakage power,
etc.). The fundamental tradeoff between processor and
network energy will still remain and GRACE can take ad-
vantage of it in just the same way. It may appear that
the linear power savings expected out of leakage-driven
adaptations may be significantly lower than the tradition-
ally expected quadratic power savings from dynamic power
driven DVFS. We note, however, that our experimental
system is already in the CMOS regime where frequency re-
ductions result in sub-linear voltage reductions and DVFS
savings are already closer to linear than quadratic. Thus,
we expect our results here to reflect trends in the leakage
dominated future as well.

2.2 Network (non-adaptive)

We assume a non-adaptive (simulated) network layer with
fixed available bandwidth. We model network transmis-
sion energy using a fixed energy/byte cost: Network En-
ergy = EnergyPerByte × BytesTransmitted (5). Table 2
summarizes energy per byte for different bandwidth values
in an IEEE 802.11b wireless network, based on the energy
consumption of a Cisco Aironet 350 series PC card (5). Al-
though here we only model network transmission energy,
our model can be enhanced to include fixed costs such as
idle energy. This will not affect our current results because
the Pentium M CPU on our laptop uses nearly 10 times
more power than the wireless network card.

We use different bandwidth values to model different
constraints in the system. If the value selected is between
two values in Table 2 (possible since not all the bandwidth
of the channel is available to one node), we assume the
transmission cost of the higher bandwidth. We believe our
network configurations represent reasonable scenarios seen
in practice. Responding to variations in network band-
width with an adaptive network layer is part of our ongoing
work.

3

Bandwidth (Mbps) 2 5.5 11
Energy per byte (e−6 J) 4 2 .08

Table 2: Network bandwidth and energy/byte.

2.3 Applications

We consider periodic soft real-time applications or tasks.
An application releases a job or a frame at the beginning
of each period. We study workloads consisting of various
combinations of speech and video encoders and decoders
(Section 5). Our H.263 video encoder is adaptive while the
other applications are non-adaptive.

Adaptations in the H.263 video encoder: We use
the adaptations proposed in (28) (in the context of a sys-
tem with a single application, and without global adapta-
tion). Since these are not our focus, we only summarize
them next and refer to (28) for details.

The adaptations trade-off CPU computation (i.e., CPU
energy) for the number of bytes transmitted (i.e., network
transmission energy), to minimize the total CPU+network
transmission energy. The appropriate trade-off varies dy-
namically, depending on the video stream, the system load,
and the ratio of network energy per byte to CPU energy
per cycle (which depends on the chosen CPU frequency).

The adaptations work at the granularity of a single video
frame. They enable dropping certain DCT (discrete cosine
transform) computations and motion searches based on a
threshold (set by the adaptation control algorithm) for the
corresponding frame. The net effect is that, by changing
the thresholds, the control algorithm can vary the bit rate
and the computation cycles for a frame by about a fac-
tor of two. These adaptations can potentially reduce the
PSNR (pseudo signal to noise ratio) of the stream, but
this is compensated for by adjusting the quantizer step
size. Thus, the adaptive encoder can be scaled between a
highly compute-intensive but lower bit rate configuration
to a less compute-intensive higher bit rate configuration,
without affecting the quality of the decoded video.

We study four DCT and four motion-search thresholds,
resulting in a configuration space of sixteen different en-
coder configurations.

Deadline misses and frame drops: A frame that
does not complete computation or transmission of all its
bytes by the end of the ensuing period is said to miss
its deadline, with one exception. For video encoders, if
a frame finishes its computation within 1ms of its pe-
riod, we do not count it as a miss. We find these delays
do not accumulate (the misses are not clustered). If the
video encoder misses its deadline for one frame, the en-
coding/transmission for that frame continues in the next
period, borrowing from the budget of the next frame. If
it misses the deadline for two frames in a row, then the
next frame is entirely dropped (i.e., incurs no computation
or network transmission), enabling the encoder to catch up
on its previous frame overruns. We have not (yet) modified
the other applications to drop frames.

Since we use soft real-time applications, we assume that
we may miss the deadline for or drop a total of up to 5%
of all frames, without affecting quality. Although strictly
speaking, missing a deadline by a small interval and drop-
ping an entire frame have different effects on quality, we
do not distinguish between the two and seek to limit both
of these effects to a total of 5%.

2.4 OS Scheduler

We assume an earliest-deadline-first (EDF) soft real-time
scheduler for CPU time and network bandwidth. The
scheduler is responsible for enforcing budget allocations
for both CPU time and network bandwidth. To reduce
deadline misses due to imperfect predictions of resource
demands, the scheduler performs an internal adaptation
called budget sharing (3). Briefly, this allows an applica-
tion to reclaim unused budget from previous applications’
underruns. The EDF CPU scheduler maintains a record
of all unused budgets and their expiration times (i.e., the
deadline for the job that released the budget). When an
application is scheduled, the scheduler first tries to exhaust
any unused budget before charging the elapsed cycles to
the application. The unused budget can be given to an
application only if the expiration time of the budget is less
than the deadline for the application (3). We similarly
exploit network bandwidth sharing between applications.
Unless stated otherwise, budget sharing is used in all sys-
tems studied here.

3 Adaptation Control Algorithms

3.1 Global Control

Overview: We use a global control algorithm similar
to that in (32), but extended to incorporate a network
bandwidth constraint. The algorithm is invoked on large
changes in the system; e.g., when an application en-
ters or exits. As input, the algorithm receives the re-
source requirements (CPU utilization, network bandwidth,
CPU+network energy) for each combination of applica-
tion and CPU configuration. The algorithm must then
choose, for each application, the combination of the ap-
plication and CPU configuration such that (i) the total
CPU+network energy is minimized, and (ii) the resource
requirements for all the applications (running with the cho-
sen configurations) are met.

More formally, for application i, let Periodi be its pe-
riod and Ci be a chosen CPU and application configura-
tion combination. Let Energyi,Ci

be the energy consumed,
Timei,Ci

be the CPU time taken, and Bytesi,Ci
be the net-

work bytes required by a frame of application i with con-
figuration Ci. Let there be a total of Napps applications
in the system and let B be the total network bandwidth
(assumed to be fixed). Then the global algorithm must
choose the CPU and application configuration Ci for each
application i to:

4

minimize
∑Napps

i=1
Energyi,Ci

subject to EDF scheduling and bandwidth constraints:

Napps∑

i=1

Timei,Ci

Periodi

≤ 1 and

Napps∑

i=1

Bytesi,Ci

Periodi

≤ B

Solving the optimization: The above optimization
problem is a multi-dimensional multiple-choice knapsack
problem (MMKP) (20) and is known to be NP-hard. For
the purpose of determining energy savings, we solve this
problem using a brute force exhaustive search approach
(with one modification below), to give global control the
best showing. This approach is impractically expensive
for a real system. When reporting the overhead for global,
we use a more practical, but possibly sub-optimal heuristic
approach based on Lagrangian techniques (20). (We found
the energy savings of both approaches to be comparable for
the scenarios studied here.)

To reduce the complexity of both solution approaches,
we choose the same frequency (CPU configuration) for all
applications. We justify this simplification with Jensen’s
inequality (18): if the CPU energy per unit time (power)
is a convex function of frequency, then the best frequency
setting is a single point for all applications (if the CPU does
not support this single point, then a combination of adja-
cent supported frequencies is best). We note that the con-
ditions required for optimality may not hold for some situ-
ations; e.g., with a mix of compute- and memory-intensive
applications, since the CPU power versus frequency rela-
tionship depends on memory behavior. As discussed be-
low, our applications are not memory intensive and the
same-frequency rule yields near-optimal results. For other
applications and systems, other solution approaches will be
required, making global adaptation even more expensive.
Our use of the heuristic enables us to solve the MMKP
problem separately for each supported frequency. We then
pick the frequency that provides the minimum energy with
the chosen application configurations at that frequency.

After the above process, it is possible that the chosen ap-
plication configurations and frequency do not exhaust all
the CPU utilization and network bandwidth. In that case,
the leftover resources are divided among the applications in
proportion to their current allocation. This leftover CPU
utilization allows a further reduction in frequency. If the
resulting frequency is not directly supported, the continu-
ous DVFS emulation discussed in Section 2.1 is used.

Predicting resource requirements: The global al-
gorithm requires predicted resource usage of a frame
(Energyi,Ci

, Timei,Ci
, and Bytesi,Ci

in the optimization
equations). These predictions must be representative of
all frames until the next global adaptation is invoked. Fol-
lowing previous work on resource allocation and scheduling
for soft real-time multimedia applications (4; 32), we use
profiling of several frames to determine the resource us-
age. (In our experiments, since our streams are relatively
short and since we would like to give global control the

best showing, we profiled the entire stream off-line.)
To reduce the amount of profiling, we leverage findings

from (13). Specifically, for our applications, the number
of execution cycles for a given frame for a given appli-
cation configuration is roughly independent of frequency;
therefore, execution time scales roughly linearly with fre-
quency.1 Thus, by profiling each application configuration
at a single CPU frequency, we are able to estimate the
execution time (and the number of bytes) at all frequen-
cies. These estimates also allow estimation of energy using
the models in Section 2. (For more general applications,
frequency-dependent estimates of execution time and en-
ergy would need to be deduced – a combination of more
profiling and interpolation or alternate models could be
used, but was not required for our work.)

Since we assume a 5% deadline miss rate is acceptable,
we use the execution time (and bytes) from the frame that
falls in the 95th percentile of all profiled frames. For en-
ergy, we are concerned with minimization and not meeting
a constraint. We therefore use the average time and bytes
from the profiled frames as input to the energy models.

3.2 Per-App Control

The per-app control algorithm (derived from (28)) is in-
voked at the start of a frame with the following inputs: (1)
the resource allocation for the frame and (2) the resource
requirements for the frame for each application configura-
tion.

The algorithm then simply chooses the application and
CPU configuration combination that has the least energy,
and whose CPU time and network bandwidth requirement
is within its allocation. If such a combination is not found,
then we use the application and CPU configuration of the
last frame (likely leading to a deadline miss). The com-
plexity of this algorithm is of the order of the product of
the number of application and CPU configurations.

Predicting resource requirements: As for the global
algorithm, estimating the execution cycles and bytes for
a frame enables estimating all its resource requirements
(execution time, bandwidth, and energy). Unlike global
control, per-app control requires predicting resource usage
for only the next frame.

For non-adaptive applications, we use a common history-
based heuristic technique that uses execution information
of the last few frames to predict the behavior of the next
frame (14). There is a tradeoff between using history
from too many frames (which may not capture enough
short-term variation in resource usage) and too few frames
(which may result in unnecessary response to random one-
time fluctuations). We experimentally determined that the
average of the execution cycles and bytes of the last five
frames to predict these quantities for the next frame gave
adequate predictability for our system. For the adaptive
application, the history of the past few frames may be for
different application configurations, and cannot be used

1This is because these applications generally hit in the cache and
do not see much memory stall time (13).

5

directly to predict the behavior of the next frame for yet
other configurations. We therefore use an off-line profil-
ing based prediction technique proposed by Sachs et al. as
follows (28).

The technique generates an execution cycle predictor off-
line by repeatedly encoding one or more sequences (for a
fixed hardware frequency), randomly changing the encoder
configuration at each frame. This off-line run generates
several points for every pair of (previous, next) encoder
configurations, mapping the number of cycles in the pre-
vious frame to those in the next frame. The predictor is
generated by fitting a function in the least-squared error
sense, for every pair of (previous, next) configurations. A
byte count predictor is similarly generated. To avoid dead-
line misses, we conservatively add an adaptive leeway into
the predicted values for both execution cycles and bytes.
Improving the predictors for adaptive applications is part
of our ongoing work.

When the per-app adaptation is invoked, it determines
the cycle count and byte count for each application config-
uration for the next frame by using the appropriate pre-
dictor, given the knowledge of the previous frame’s appli-
cation configuration, actual cycle count, and actual byte
count.

3.3 Integrating Global and Per-App Control

A system that runs with only global control uses the fre-
quency and application configurations as chosen by the
global algorithm. In a system that additionally incorpo-
rates per-app control, the global algorithm’s choice of con-
figuration is only used to determine the resource allocation
for each application. This resource allocation is fed as in-
put to the per-app control algorithm. The latter then de-
termines the appropriate configurations for the next frame
based on its predictions of the resource usage of that frame
and its allocation. Since the per-app controller makes a
prediction only for the next frame (using information from
the last few, in our case five, frames), it is likely that its pre-
diction is better than that of the global algorithm (which
must make a conservative prediction that will accommo-
date the resource usage of all frames until the next global
adaptation). Therefore, the per-app controller is likely to
better utilize the resources that were allocated to its appli-
cation by the global algorithm. Figure 2 summarizes the
integrated system. As shown, the only interaction between
the global and per-app controller is that the former gives
the resource allocation to the latter.

4 Implementation

We have implemented all aspects of the system studied
except for the network communication (which is replaced
with file I/O). Our implementation is on an IBM ThinkPad
R40 laptop running the Linux kernel 2.6.8-1. The laptop
has a single Intel Pentium M processor, which features
Intel’s Enhanced SpeedStep technology with the DVFS

C
P

U

Application

Per-app Controller

Scheduler

long-term
resource demands

allocated time,
bandwidth

app config

Global Controller

next frame’s
resource demands

 frequency

Monitor Adaptor Predictor

Monitor

bandwidth

frequency

status:
energy;
miss,
overrun

cycles
usageallocated time,

bandwidth, energy

N
et

w
or

k

M
on

ito
r

M
on

ito
r

A
da

pt
or

Figure 2: Integrated global and per-app control.

CPU Scheduler
and Monitor

(kernel module)

Standard
Linux

Scheduler

Speedstep
CPU

Adaptor

hook speed
setting

Per-app Controller

Adaptive Application
Global

Controller
linked

message
 queue

system callUser level

Kernel level
signal

global
allocation

Figure 3: Software architecture. The implementation uses
an IBM ThinkPad R40 laptop running the Linux kernel
2.6.8-1.

points summarized in Section 2.1. The processor can be
made to transition between DVFS points at run time by
the operating system. We implement our operating system
components as a set of patches that hook into the Linux
kernel.

Figure 3 gives an overview of the GRACE-2 software
architecture. The architecture builds on that developed
for GRACE-1 (33; 32), but with significant additions and
changes in the implementation. Major differences include
the addition of the per-app controller, support for con-
tinuous DVFS and budget sharing in the CPU scheduler,
changes to the application interface and the CPU sched-
uler to incorporate per-app adaptation, and a different al-
gorithm for the global controller to incorporate network
constraints. We discuss the main components of the im-
plementation next.

4.1 Global controller

The global controller is implemented as a separate user-
level process because (1) its computation involves double
precision floating point variables, which is currently not
supported in the Linux kernel module, and (2) a user-level

6

global controller can run at a lower priority than the ap-
plications, ensuring that the expensive global optimization
process does not supersede applications. The global and
per-app controllers communicate via a message queue.

4.2 Per-app controller

The per-app controller is designed as a generic function
that can be linked with the application at compile time.
This has two advantages over making it part of the global
controller: (1) the cycles it uses are charged to the corre-
sponding application by the CPU scheduler, and (2) the
application can ensure that per-app adaptation occurs at
the start of every frame. The advantage over implementing
it in the kernel is in the reduced number of system calls.
However, a disadvantage of linking with the application
is that it is vulnerable to malicious applications, making
it non-trustworthy. We can circumvent this problem by
sending global allocations to the CPU scheduler, and hav-
ing the scheduler enforce these allocations.

4.3 CPU scheduler

We use an EDF based Soft Real-Time (SRT) CPU sched-
uler (Section 2.4). (As mentioned above, the scheduler
builds on the GRACE-1 implementation (33), but is signifi-
cantly enhanced for per-app adaptation, continuous DVFS,
and budget sharing.)

Invocation of the scheduler and GRACE-2 sys-
tem calls: The scheduler is invoked either when a timer
it started expires or when an application makes a system
call.

The scheduler may set the timer for several reasons. For
example, before starting a new application frame, it sets
a timer to expire when the application’s budget runs out,
to enable handling overruns. At the end of an application
frame, it sets a timer to expire at the start of a new period
for the application, to schedule its next frame. Per-app
control requires a low overhead, high resolution timer, so
we use the High Res Posix timers (1).

The application may invoke the scheduler for various
reasons, through five system calls:

EnterSrt is invoked when the application first joins the
system. The CPU scheduler initializes its data structures
for the new application, inserts it into the SRT task list,
and signals the global controller.

BeginJob is invoked at the start of a new frame. The
per-app controller passes its chosen CPU frequency to the
scheduler. The scheduler refreshes the budget available for
the application’s new frame (based on the time allocation
made by the global controller) and invokes the CPU adap-
tor to change the CPU frequency (by performing a write
to a special CPU register MSR IA32 PERF CTL).

If the frequency is not supported, the CPU scheduler
calculates the continuous DVFS values to emulate the fre-
quency (Section 2.1). It invokes the CPU adaptor to set
the CPU speed to the lower continuous DVFS frequency,
and sets a timer to expire at the end of the low frequency

interval. When the timer expires, the scheduler invokes the
CPU monitor to get the resource usage, and the CPU adap-
tor to set the frequency to the higher continuous DVFS
frequency.

FinishJob is invoked when the application finishes its
frame. The CPU scheduler gets the resource usage (elapsed
cycles, energy) from the CPU monitor, checks for dead-
line miss, and sends the resource usage and miss status
information back to the application. The monitor checks
the cycle usage by using the rdtscll function in the Linux
kernel. It estimates the CPU energy using the model in
Section 2.

WaitNextPeriod is invoked by the application when it is
done with all of the book-keeping for its past frame, no-
tifying the scheduler that it is ready to give up the CPU.
The scheduler sets the suspend flag associated with the
application, sets a timer to wake up the application at the
start of its next period, and invokes the Linux scheduler to
give the CPU to the next application with the next highest
priority. When the timer expires at the start of the next
period, the scheduler updates the deadline of the applica-
tion, recalculates the priority of all applications based on
the EDF policy, and invokes the Linux scheduler to let the
application with the highest priority proceed.

ExitSrt is invoked when the application is done with all
its frames. The scheduler removes the application from the
SRT list, cleans up related data structures, and signals the
global controller.

Accounting and Overrun Monitoring: At every
timer expiration, the CPU scheduler invokes the CPU
monitor to get the elapsed cycles since the last expiration
and charges it to the last application. It also compares
the cycles used by this application with its allocated cycle
budget. If the application has used its entire budget, then
the scheduler decreases the priority of the application and
preempts it. If the preempted application does not fin-
ish the job by its deadline, then the scheduler replenishes
the budget available to the application and allows it to fin-
ish. This extra budget given to the application is deducted
from the application’s new frame that will run during that
period, if this is the first deadline miss in a sequence. If
this is the second miss in a sequence, then the extra budget
is compensated by asking the application to skip its next
job. This is done by sending the miss status information
via the FinishJob system call.

Budget Sharing: When an application makes the Fin-
ishJob call, the CPU scheduler adds any unused budget to
the budget queue. Later, when a timer expires because of a
frame’s overrun and the scheduler has to charge the frame
for the elapsed cycles, it first checks whether it can charge
any of the elapsed cycles to the budget queue. If it can,
then the unused budget in the budget queue is adjusted
accordingly, and a lower time is charged to the applica-
tion. The scheduler also removes any expired budget from
the budget queue. In our system, the CPU scheduler also
meets the added responsibility for tracking budget sharing
for the network bandwidth in an analogous way.

7

4.4 Application

Applications communicate with the global controller us-
ing a message queue, the per-app controller using function
calls, and the CPU scheduler via system calls. There are
four global controller calls: AddTask (add application to
the global list), DeleteTask (remove application from the
global list), GlobalAddConfigs (send different configura-
tions, along with long-term resource demands2), and Glob-
alGetAllocation (get allocated resources). There are two
per-app controller calls: FrameResourceDemands (send
the next frame’s resource demands for different configu-
rations) and FrameGetConfig (get the application config-
uration for the next frame). There are five CPU scheduler
calls as discussed in Section 4.3.

We believe the above additions can be made rather eas-
ily by application developers as the points of insertion are
well defined: beginning and end of the application (for the
calls to the global controller and the EnterSrt and Exit-
Srt calls to the scheduler) and the beginning and end of
each frame (for the calls to the per-app controller and re-
maining calls to the scheduler). Looking forward, recent
open multimedia standards such as OpenMAX (17) signify
a trend where information needed by GRACE will become
available (if not via the application directly then via calls
to the middleware).

There are two ways of handling non-GRACE and legacy
applications. The first approach is to run them in a non-
real time partition. As long as that partition is judiciously
allocated, the non-GRACE application would not be worse
off than without GRACE. Alternatively, we can use pas-
sive monitoring at the OS level to find the resource de-
mands and task boundaries of legacy applications (9). The
GRACE-2 interfaces will need to be enhanced to accom-
modate such monitoring.

5 Experimental Methodology

Energy measurement: We use an Agilent 66319D sam-
pling power supply to measure the energy consumed by the
entire system. The measurements were done with the dis-
play brightness set to level 3 (0 is minimum). The wireless
card was turned off, the laptop battery was removed, and
the only applications running were from the experimental
workload. All other parts of the system (e.g., hard drive)
were on. The network energy used was calculated using the
model in Section 2.2, and was added to the above measured
energy to give the total system energy in Section 7.3.

The form-factor and packaging of a laptop makes it diffi-
cult to measure the energy usage of individual components
such as CPU, GPU, and memory. Since we cannot isolate
the CPU energy in our measurements and since the CPU
and the network are the targets of our energy adaptations,
our first set of results (Section 7.1) are based on modeled
CPU (+network) energy, using the model in Section 2.1.

2As discussed earlier, in our implementation, the long-term re-
source demands are obtained through profiling.

Applications and input streams: We study work-
loads consisting of various combinations of an H.263 video
encoder and decoder, and a speech encoder and decoder
(from Speex project (31)). The video encoder is adaptive
as discussed in Section 2.3 while the other applications
are non-adaptive. Table 3 summarizes the input streams
for these applications. The video streams are standard
H.263 test sequences and are freely available on the In-
ternet. They have been chosen to represent a spectrum
in inter-frame computation variability (the first three se-
quences have lower variability compared to the next three).
We use QCIF size frames for the video encoder and CIF
size for the video decoder.3 The audio streams are in 16-bit
PCM format and were also downloaded from the Internet.

Workloads: We evaluate our system with four distinct
combinations of the above applications to represent real-
world workloads. Two of these workloads are run on two
different streams each. This gives a total of six evaluated
workloads, summarized in Table 4. Workloads 1 and 2 con-
sist of two video encoders representing a remote sensing
application where two video streams need to be encoded
and transmitted simultaneously (e.g., Mars rover). Work-
load 1 is run with low variability video sequences while
workload 2 uses high variability sequences. Workloads 3
and 4 represent audio-less video-teleconferencing, with a
video encoder and a video decoder, running low and high
variability sequences respectively. Workload 5 is a video-
teleconferencing setup with audio and video, and consists
of a video encoder, audio encoder, video decoder, and au-
dio decoder. Finally, workload 6 represents a setup where
the user is involved in a video-teleconference while also
watching another streaming video. It could also be con-
sidered to represent a case where the video teleconference
is between three sites, with each site sending one stream
and receiving two streams. Thus, the workload consists of
one video and one audio encoder and two video and audio
decoders.

Resource constraints or scenarios: To study the
effect of different types of resource constraints (i.e., system
load and/or resource availability), we use different periods
(frame rates) for our workloads and different values of the
available network bandwidth. We create four scenarios of
resource constraints, depending on whether the CPU or
network is constrained or not:

Scenario 1, only CPU constrained or C: We set the ap-
plication period so that the application configurations4

that do the most computation (i.e., the most compres-
sion for the video encoder) are unable to run on our
system (i.e., they would require a higher frequency than
that supported). The network does not pose a constraint
in this scenario – we set enough available bandwidth to
send/receive the bytes produced by the application config-

3Our current platform cannot provide real-time CIF encoding at
30 fps; we therefore use QCIF for the encoder. We used CIF for
the decoder (assuming the streaming host has enough computation
power) because the computation demand for QCIF decoding is very
low and we wanted another application somewhat comparable to the
video encoder.

4Multiple configurations apply only to the adaptive video encoder.

8

uration that does the least compression.

Scenario 2, only network constrained or N: We set the
application period and available network bandwidth so
that the bandwidth requirement of the application config-
urations that perform the least compression exceeds the
available bandwidth. The CPU does not pose a con-
straint in this scenario – the application period is set so
that even the highest computation application configura-
tion can complete in the available time.

Scenario 3, both CPU and network constrained or B:
This is a combination of the above two constraints. In
particular, we set the period and bandwidth such that the
application configurations that perform the most or least
compression are constrained.

Scenario 4, unconstrained U: In this case, we pick the
period and bandwidth such that none of the application
configurations are either CPU or network constrained.

Table 5 summarizes the workloads, their periods, and
available bandwidth for each scenario that we study. (For
example, N.1 implies workload 1 from Table 4 in the “only
network constrained” scenario.) Since workloads 3 to 6
require relatively low computation, they cannot be CPU
constrained on our platform and so do not have entries
under the C or B category. For simplicity, for a given
scenario and workload, we use the same period for both
applications, but for generality, the applications start with
an arbitrary lag between them. Note that the speex codecs
are run with a 20ms period, as specified in the speex codec
documentation (31). Each run includes between 150 to 500
frames for each application.

6 Overheads

We next summarize the overheads from various parts of our
implementation (measured using a methodology similar to
that from GRACE-1 (33)). The overheads are reported
in terms of the number of CPU cycles (which is virtually
independent of frequency). For comparison, note that the
number of CPU cycles for encoding a typical video frame
is of the order 10 to 25 million cycles.

Global vs. Per-app Control: Figure 4 compares the
cost for global and per-app control. For global, we mea-
sured the elapsed CPU cycles for the global optimization
algorithm by Moser et al. (Section 3.1). To study how the
optimizer scales with the number of applications, we report
results for systems containing one to ten applications. The
system with ten applications may represent, for example,
a teleconference system involving five sites (a video and an
audio decoder for each of the four remote sites, and a video
encoder and an audio encoder for the local site). Note that
our numbers do not include any profiling cost incurred for
making predictions for long-term resource usage for the
global optimizer (discussed further below).

To measure the cost of per-app control, for each frame
of the foreman sequence, we measured the elapsed cycles
for the per-app control algorithm (Section 3.2). We report

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10

Number of applications

N
um

be
r

of
 c

yc
le

s

global control

per-app control

Figure 4: Overhead for global and per-app control.

the (per-frame) elapsed cycles averaged over the entire se-
quence and multipled by the total number of applications
in the system (to obtain the per-invocation cost for all ap-
plications). Note that this measurement includes the full
cost of the adaptation, including the cost of predicting the
resource usage for the next frame.

We find that the cost of per-app adaptation is signif-
icantly cheaper than that for the global optimizer (e.g.,
factor of 8 lower for ten tasks). In absolute terms, the
global optimization cost with ten tasks is 5.5 × 105 cycles
(0.92 ms at 600 MHz). Per-app adaptation, on the other
hand, takes 7.0 × 103 for each application, which corre-
sponds to 0.117 ms for 10 tasks at 600 MHz, and is clearly
feasible at the frequency of once every frame. We further
discuss below why we expect the total overhead for global
adaptation to be larger than reported here.

First, we note that our global algorithm is optimized for
the system we study. Specifically, we do not explore the full
cross-product of the space of CPU and application configu-
rations – we are able to assume a common frequency for all
applications because of the special frequency-energy curve.
However, this relationship may not be true for other adap-
tations such as architecture adaptations that are becoming
increasingly common in hardware (14). Further, we also do
not consider an adaptive network layer, which will further
increase the complexity of the global algorithm. As the
number of possible adaptive layers, adaptive components
within each layer, and the number of adaptive states within
each component increases, the overhead of the global op-
timizer will increase much faster than that of the per-app
controller.

Finally, when considering the overhead of global control,
we must also consider overheads for the required prediction
of the long-term resource usage. In our system, we per-
form global adaptation when an application joins or leaves
the system, which is a relatively rare event. Therefore,
the profiling required for predictions can be done on-line
(while running the system in sub-optimal configurations);
the time spent profiling is a negligible fraction of the over-
all time that an application runs. However, for more fre-
quent global adaptation, on-line profiling at sub-optimal

9

Video Description Audio Description
salesman talking head lpcqutfe sentence read by a boy

paris talking heads female sentence read by a woman
carphone talking head male sentence read by a man
foreman talking head clinton speech by Clinton
football football game
buggy buggy race

Table 3: Input streams.

Applications Inputs
1 video (encode, encode) salesman, carphone
2 video (encode, encode) foreman, buggy
3 video (encode, decode) carphone, paris
4 video (encode, decode) buggy, foreman
5 video (encode, decode) carphone, paris

audio (encode, decode) clinton, lpcqutfe
6 video (encode, decode, decode) foreman, carphone, football

audio (encode, decode, decode) female, clinton, male

Table 4: Workloads evaluated.

Constraint Only CPU Only Network
Workload C.1 C.2 N.1 N.2 N.3 N.4 N.5 N.6

Period (Fps) 33 30 30 20 30 30 30 30
Bandwidth (Mbps) 11 11 1.2 2 2 4.4 2.1 6.7

Constraint Both Unconstrained
Workload B.1 B.2 U.1 U.2 U.3 U.4 U.5 U.6

Period (Fps) 33 30 30 26 30 30 30 30
Bandwidth (Mbps) 2 3.3 11 11 11 11 11 11

Table 5: Scenarios evaluated.

configurations can be too expensive. We cannot directly
use past history because we only have the history for the
application configuration that was chosen for a frame; the
optimizer needs to make predictions for all the configura-
tions. We could potentially use the same predictors as used
in the per-app adaptation to predict the behavior of the
next frame, and keep track of the outputs of these predic-
tors over several frames. Whether this is feasible requires
a study of how well these predictors perform for a span of
several frames. Our results show that per-app adaptation
is much simpler, and gives significant benefits over streams
of several hundred frames.

Other overheads: We measured the average cycles
used by each of the 5 system calls made by the video en-
coder while running foreman. Each call took less than
2,700 cycles, which is negligible overhead (e.g., less than
0.1% of encoding a video frame). The SRT scheduler re-
quires less than 500 cycles per application. The high reso-
lution timer it uses requires between 1,000 to 1,500 cycles
for set up. We also found the budget sharing overhead
to be negligible (consistent with (3)). Thus, the total
scheduler overhead is small. For DVFS, the Pentium M

processor decouples the voltage and frequency transition,
thereby allowing voltage to be changed while executing in-
structions. The DVFS overhead is around 10 us (15) (ex-
cept for transition to 600 MHz, where we found the over-
head to be around 400 us), making intra-frame frequency
transition feasible for many applications.

7 Energy Savings

This section quantifies the energy benefits of hierarchical
adaptation. Section 7.1 presents the energy savings in the
CPU and network subsystem since those are the targets of
this work. Section 7.2 provides detailed analysis of these
results. Section 7.3 presents the savings for the entire sys-
tem. Section 7.4 quantifies the benefits of budget sharing.
Since the primary benefit of budget sharing is in reducing
missed deadlines, we discuss all deadline misses in Sec-
tion 7.4 .

10

0
10
20
30
40
50
60
70
80
90

100

C.1 C.2

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

0
10
20
30
40
50
60
70
80
90

100

N.1 N.2 N.3 N.4 N.5 N.6

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

Base Global CPU Global application Global CPU + application

(a) Only CPU Constrained (b) Only Network Constrained

0
10
20
30
40
50
60
70
80
90

100

B.1 B.2

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

0
10
20
30
40
50
60
70
80
90

100

U.1 U.2 U.3 U.4 U.5 U.6

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

Base Global CPU Global application Global CPU + application

(c) Both Constrained (d) Unconstrained

Figure 5: CPU+network energy benefits from global adaptation for different resource constraints. For each workload,
the leftmost bar shows energy for a non-adaptive base system. The next three bars show energy for global CPU
adaptation, global application adaptation, and global CPU+application adaptation respectively. All adaptive systems
include internal scheduler adaptation. The energy for each system is normalized to the base system (leftmost bar).

7.1 CPU and Network Energy Savings

Benefits of global adaptation: For reference, we first
briefly summarize the benefits of global adaptation over
the non-adaptive base system (Base). For each sce-
nario/workload, Figure 5 gives the normalized energy con-
sumption of three systems with global adaptation – global
CPU adaptation, global application adaptation, and global
CPU+application adaptation. All adaptive systems in-
clude internal scheduler adaptation. The energy is normal-
ized to that of Base (which is assumed to be 100 units).

In the CPU constrained scenarios (C and B), Base
and global CPU adaptation are unable to meet the com-
putation requirements of the base configuration of the
video encoder. Global application adaptation, and global
CPU+application adaptation, however, change the appli-
cation configuration to use less computation, and are able
to successfully run these cases. Their energy consumption
shown is normalized with respect to the energy consumed
by Base running in “best effort” mode.

Overall, we see benefits from both CPU and application
adaptation, with the best savings coming from the combi-
nation. In the network constrained cases (N and B), global
CPU adaptation, global application adaptation, and global
CPU+application adaptation respectively save an average
of 10%, 14%, and 27% over Base. For the remaining 8
scenarios (C and U), global CPU adaptation, global appli-
cation adaptation, and both global CPU and global appli-
cation adaptation respectively save an average of 9%, 35%,
and 56% over Base.

To see how global adaptation saves energy, Table 6 shows
the configurations that global CPU+application adapta-
tion chooses (the application configurations are roughly
ordered by the amount of compression performed – con-
figuration 0 is the highest compression). Note that for
workloads 3 to 6, only the video encoder supports multiple
application configurations. We find that global chooses a
variety of configurations depending on the resource con-
straints.

11

Constraint Only CPU Only network
Workload C.1 C.2 N.1 N.2 N.3 N.4 N.5 N.6

CPU(MHz) 718 960 876 943 704 932 797 1174
App 1 15 15 11 1 1 1 1 1
App 2 15 15 1 2 - - - -

Constraint Both Unconstrained
Workload B.1 B.2 U.1 U.2 U.3 U.4 U.5 U.6

CPU(MHz) 841 1260 646 832 485 710 578 909
App 1 15 1 15 15 15 15 15 15
App 2 7 3 15 15 - - - -

Table 6: Configurations chosen by global CPU+application. Since only the video encoders are adaptive, the number
of applications supporting multiple configurations in a workload is only one (workloads 3 to 6) or two (workloads 1,2).

Comparing the brute force and the more practical opti-
mizer, we find that the practical solver provides very sim-
ilar energy benefits. Nevertheless, since our focus is on
the benefits of per-app adaptation, we henceforth use the
brute force optimizer to give global the best showing.

Benefits of per-app adaptation: Figure 6 illustrates
the energy benefits in the CPU-network subsystem of per-
app application adaptation. For each workload, the left-
most bar shows a system with global adaptation in the
application, CPU, and scheduler. The next three bars
show systems that incorporate this global adaptation and
additionally have per-app CPU adaptation (second bar),
per-app application adaptation (third bar), and both per-
app application and per-app CPU adaptation (the last bar,
which represents GRACE-2). The energy of all systems
is normalized to that consumed by the system with only
global adaptation (the first bar). We find that GRACE-2
consumes less than or virtually the same energy as a system
with only global adaptation for all the scenarios and work-
loads.5 The magnitude and source of the benefits depends
on the magnitude and nature of the resource constraints in
the system. The largest benefits from GRACE-2 over the
global-only system come in the network constrained cases
(scenarios N and B). For the 8 such cases studied here, the
energy savings range from 18% to 36%, with an average of
27%. The savings in the other 8 cases (scenarios C and U)
are a more modest 0% to 11% with an average of 6%. We
next discuss the contributions of the CPU and application
adaptations to these benefits.

Adding per-app adaptation in the CPU to a system with
global adaptation provides discernible benefits in all cases
(except U.3 and U.5 as discussed previously). The bene-

5In a few cases (U.3 and U.5), GRACE-2 is very slightly worse
than the global-only system. In these cases, the global-only sys-
tem already picks the lowest energy configuration supported by the
system; i.e., the lowest CPU frequency and the lowest compression
video encoder configuration. Thus, GRACE-2 cannot do any better
than GRACE-1. For a few frames, the resource usage predictors of
GRACE-2 turn out to be slightly more conservative, making it pick
slightly higher frequency than GRACE-1 and showing very slightly
higher overall energy. For other frames, GRACE-2’s resource usage
predictions are (correctly) lower than GRACE-1’s, but the system
does not support a lower frequency to convert these better predic-
tions into energy savings.

fits from CPU adaptation are modest relative to those seen
for DVFS in prior work due to the sub-linear relationship
between frequency and voltage reductions in current pro-
cessors (Section 2.1).

Figure 6 shows that adding per-app application adap-
tation to a system with global adaptation can result in
significant energy benefits. The benefits remain signifi-
cant regardless of whether the base global system contains
per-app CPU adaptation (second bar) or not. Relative to
a system with only global adaptation, the energy savings
from adding per-app application adaptation range from 6%
to 18% with an average of 13% for the network constrained
scenarios (N and B). Relative to a system with both global
and per-app CPU adaptation, the energy savings from
adding per-app application adaptation range from 12% to
32% with an average of 22% across the N and B scenarios.

It is noteworthy that adding only per-app CPU adap-
tation to global adaptation gives modest benefits. In con-
trast, combining CPU and application adaptation at the
per-app level gives more than additive benefits in some
cases, resulting in quite significant overall savings of per-
app adaptation relative to a system with only global adap-
tation.

7.2 Analysis

Next, we analyze the reasons for the above results in each
of the scenarios in more detail. Figure 7 shows the net-
work, CPU, and total energy for each application config-
uration for a specific frame of one of the video encoders
in workload 2 for each of the four scenarios. The applica-
tion configurations are ordered in increasing order of bytes
generated. Only those configurations where the CPU cy-
cles for the configuration decrease with increasing bytes
are shown, since the remaining configurations are clearly
sub-optimal. Configurations that do not meet the required
constraints are also not shown. (For this reason, the same
number on the x-axis may represent different actual con-
figurations in the four graphs.) On each curve for total
energy, we mark the application configuration chosen by
the global-only system and the GRACE-2 system, along
with the frequency chosen.

12

0
10
20
30
40
50
60
70
80
90

100

C.1 C.2

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 G
lo

ba
l

0
10
20
30
40
50
60
70
80
90

100

N.1 N.2 N.3 N.4 N.5 N.6

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 G
lo

ba
l

Global Global + Per-app CPU Global + Per-app application GRACE-2

(a) Only CPU Constrained (b) Only Network Constrained

0
10
20
30
40
50
60
70
80
90

100

B.1 B.2

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 G
lo

ba
l

0
10
20
30
40
50
60
70
80
90

100

U.1 U.2 U.3 U.4 U.5 U.6

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 G
lo

ba
l

Global Global + Per-app CPU Global + Per-app application GRACE-2

(c) Both Constrained (d) Unconstrained

Figure 6: CPU+network energy benefits from per-app application adaptation for different resource constraints. For each
workload, the leftmost bar shows energy for a system with global adaptation in the CPU, application, and scheduler.
The next three bars include this global adaptation as well as per-app CPU adaptation, per-app application adaptation,
and both per-app CPU and per-app application adaptation (i.e., GRACE-2) respectively. The energy for each system
is normalized to the system with only global adaptation (leftmost bar).

Recall that network energy is simply the product of
(bandwidth dependent) energy/byte and bytes generated.
For CPU energy, we first need to determine the frequency
at which the frame will complete the required cycles within
the time allocated by the global adaptation. Network en-
ergy increases going from left to right due to increasing
byte count, while CPU energy decreases. In our graphs,
for the most part, CPU energy is dominant, and so we
find that the total energy curve primarily follows the CPU
energy.

We can now analyze the four cases. We start with the
unconstrained case (part (d)). Both the global-only sys-
tem and the GRACE-2 system are able to pick the con-
figuration with the least computation (rightmost), and so
the most energy efficient. Thus, GRACE-2 does not ben-
efit from application adaptation, compared to the global-
only system. However, GRACE-2 does benefit from CPU
adaptation because of its ability to better predict the cycle

count and use a lower frequency.

Next consider the network constrained case (part (b)).
The minimal energy configuration is the rightmost one
shown on the graph, and picked by GRACE-2. However,
the global-only system is not able to pick that configura-
tion because its estimate of the byte count for that con-
figuration is too high for the bandwidth available. The
global-only system is forced to make a conservative byte
count estimate for this frame because its estimate must be
high enough to accommodate the bandwidth requirement
of all (or at least 95% of) future frames (until the next
global adaptation). Thus, the global-only system is forced
to pick a configuration that is less energy efficient than
needed for the frame shown in the figure. GRACE-2 on
the other hand must make a prediction that is adequate for
just the frame under consideration. It is able to correctly
predict the low byte count requirement for that frame, and
correctly determine that the bandwidth requirement of the

13

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7

Application configurations

E
ne

rg
y

(J
)

Total

CPU

Network

GRACE-2
889 MHz

 Global
960 MHz

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2
Application configurations

E
ne

rg
y

(J
)

 GRACE-2
 657 MHz

 Global
943 MHz

(a) Only CPU Constrained (b) Only Network Constrained

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3
Application configurations

E
ne

rg
y

(J
)

 GRACE-2
 1115 MHz

 Global
1260 MHz

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7

Application configurations

E
ne

rg
y

(J
)

 GRACE-2
 770 MHz

 Global
832 MHz

(c) Both Constrained (d) Unconstrained

Figure 7: Analysis of the results.

rightmost configuration will be met with the given net-
work constraint. This configuration has much lower energy
(since it performs less compression and takes less CPU en-
ergy), enabling significant savings from GRACE-2. The
other cases can be similarly analyzed.

7.3 System-Wide Energy Savings

We next discuss (measured) system-wide energy savings
of GRACE-2 over a system with only global adaptation.6

Figure 8 shows the system-wide energy for the global-only
system and for GRACE-2, both normalized to that for
Base. Again, we find that the addition of per-app adapta-
tion to global adaptation is most beneficial in the network
constrained scenarios (N and B). For these cases, we found
that GRACE-2’s per-app adaptation provides a system-
wide energy benefit of 7% to 14% with an average of 10%
(relative to only global adaptation). (For reference, the
savings of the global-only system over Base for the N and
B scenarios is 5% to 22%, average 13%.)

These savings are significant, considering that they are

6As explained in Section 7.2, the network energy is modeled, but
is a very small part of the system energy.

for the entire system including the display, disk, power-
supply loss, and memory system; they are actual measured
values; and they come from only adaptation of the CPU
and application. (As reference, the one workload with mul-
tiple applications reported for GRACE-1 showed system-
wide savings from hierarchical adaptation of only 3.8%,
relative to global adaptation (33).)

7.4 Deadline Misses and Budget Sharing

The main benefit of budget sharing (i.e., the internal sched-
uler adaptation described in Section 2.4) is in reducing the
number of deadline misses (including frame drops). Budget
sharing has negligible (< 1%) effect on energy. GRACE-
2 shows acceptable deadline misses (within 5%) for each
application in each scenario/workload studied. Without
budget sharing, the deadline miss ratios are high (up to
23%) for several cases. Thus, budget sharing is effective
and critical for our system.

14

0
10
20
30
40
50
60
70
80
90

100

C.1 C.2

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

0
10
20
30
40
50
60
70
80
90

100

N.1 N.2 N.3 N.4 N.5 N.6

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

Base Global GRACE-2

(a) Only CPU Constrained (b) Only Network Constrained

0
10
20
30
40
50
60
70
80
90

100

B.2 B.1

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

0
10
20
30
40
50
60
70
80
90

100

U.1 U.2 U.3 U.4 U.5 U.6

Scenario . Workload

E
ne

rg
y

no
rm

al
iz

ed
 to

 B
as

e

Base Global GRACE-2

(c) Both Constrained (d) Unconstrained

Figure 8: System-wide energy savings for different resource constraints.

8 Related Work

There has been a large amount of work on energy and
bandwidth driven adaptations and resource allocation that
is relevant to this work. This includes CPU adaptation
with and without coordination with a real-time scheduler
(e.g., (2; 9; 22; 23; 25; 29; 34)), adaptation of one or more
applications with and without OS/middleware support
(e.g., (7; 8; 10; 11; 19; 21; 24)), and single-layer or cross-
layer adaptation or resource allocation with only global
control supporting multiple applications (e.g., (12; 35; 26))
or only per-app control supporting a single application
(e.g., (28)). The focus of this work, however, is on hierar-
chical adaptation control in a cross-layer adaptive system,
and more specifically on fine-grained (per-app) application
adaptation. None of the above systems exhibit this prop-
erty.

The systems most closely related to the hierarchical
adaptation of GRACE-2 are Fugue (6) and GRACE-
1 (33; 32), which we discuss in more detail next.

Fugue proposed adaptation at multiple time scales for
wireless video (6). This is one of the key features of
GRACE-2’s hierarchical control. However, Fugue differs

from GRACE-2 in the following important ways. First, it
considers only one application running. Second, it is based
on the insight that different types of adaptations work on
different time scales; e.g., application quality control must
occur at a coarser time scale than network transmission
power control. GRACE-2’s global and per-app controllers
consider the same set of adaptations, but for different pur-
poses – the former uses them for resource allocation among
multiple applications while the latter does the actual adap-
tation. Incorporating adaptations that inherently work at
different time scales can be viewed as an orthogonal issue
– our system incorporates these as well, but that is not the
focus of this work.

The goal of GRACE-1 was to demonstrate the benefits
of coordinated cross-layer adaptation (33; 32). GRACE-
1 therefore primarily focused on global adaptation in the
CPU, application, and scheduler, and included only very
preliminary support and experimental evaluation for hi-
erarchical adaptation (using only internal CPU scheduler
related adaptations). Further, GRACE-1 considered only
the resource constraint of execution time, and did not con-
sider any network bandwidth related resource usage. The

15

lack of any network awareness resulted in very modest ben-
efits from the hierarchical adaptation support in GRACE-1
while running multiple applications. The fundamental dif-
ference between the GRACE-1 and GRACE-2 systems is
that GRACE-2 is network-aware – it adds a network band-
width constraint in the global and per-application con-
troller and considers global and per-app application adap-
tations that are driven by the tradeoff in CPU time and
network bandwidth usage. Network awareness is critical
for the mobile environment where this work is targeted
and results in different conclusions. Specifically, our results
show that network awareness gives significant energy ben-
efits from hierarchical adaptation in GRACE-2, providing
the first demonstration of large energy benefits of hierar-
chical adaptation on a multimedia system implementing
multiple applications, adaptations, and constraints.

9 Conclusions

The GRACE project balances the scope and frequency of
energy saving adaptations in multiple layers through a hi-
erarchical approach, where expensive and infrequent global
adaptation allocates resources among applications based
on long-term predictions, and inexpensive per-app control
seeks to make the energy-optimal use of these resources
through localized short-term predictions and cross-layer
adaptations.

This paper presents results from the second generation
prototype, GRACE-2. Specifically, it shows that per-app
application adaptation provides significant benefits over
and above global adaptation when the network bandwidth
is constrained. These benefits are seen both with and with-
out per-app CPU adaptation. For example, the energy sav-
ings in the CPU+network from adding per-app application
adaptation to a system with global adaptation and per-
app CPU adaptation were seen to be up to 32% (average
22%). Interestingly, when both per-app CPU and per-app
application adaptation are added to a system with global
adaptation, the combined benefits are more than additive.

To our knowledge, this work is the first to demonstrate
the benefits from per-app application adaptation control
over and above global control. It is also the first to demon-
strate significant benefits from hierarchical adaptation on
a real multimedia system implementing multiple applica-
tions, adaptations, and constraints. Given the low over-
head of per-app control and the relatively low added sys-
tem implementation complexity over a system with global
control, the benefits achieved seem worthwhile to exploit.

Our ongoing work is incorporating an adaptive network
layer that responds to variations in network bandwidth,
and is also exploring other possible application adaptations
including those that affect user perception. There are sev-
eral other interesting avenues of future work. We would
like to explore adaptations and resource tradeoffs for other
compute- and network-intensive applications that would be
important for mobile workloads; e.g., graphics. We would
also like to integrate other adaptations within the CPU

(e.g., architectural adaptations) and adaptations of other
hardware components as well (e.g., main memory, display,
and disk). Recent work has shown how to perform joint
adaptation of closely coupled hardware components such
as processor and main memory for general-purpose appli-
cations (Li et al.), and we wish to integrate that work with
our cross-layer adaptation framework. We would also like
to explore adaptation with multithreaded/synchronized
applications and on multicore systems; these are currently
open problems. We also wish to extend our implementa-
tion in various ways to make it more complete; e.g., incor-
porate applications where performance may not be pro-
portional to frequency (these will require alternate perfor-
mance models and/or additional profile data); incorporate
invoking global adaptation when an application undergoes
a large (and infrequent) change in its resource requirement
or in the network bandwidth available; and run non-real
time, non-GRACE applications in a non-real time parti-
tion.

REFERENCES

[1] Anzinger, G. (2001). High res posix timers.
http://sourceforge.net/projects/high-res-timers/.

[2] Aydin, H. et al. (2001). Dynamic and aggressive
scheduling techniques for power-aware real-time sys-
tems. In Proc. of Real-Time Systems Symposium, pages
95–105.

[3] Caccamo, M. et al. (2000). Capacity sharing for over-
run control. In Proc. of Real-Time Systems Symposium,
pages 295–304.

[4] Chu, H. H. and Nahrstedt, K. (1999). CPU service
classes for multimedia applications. In Proc. of IEEE
Int. Conf. on Multimedia Computing and Systems, pages
296–301.

[5] Cisco (2004). Cisco Aironet 350 Series Client
Adapters Datasheet. http://www.cisco.com/en/US/
products/hw/wireless/ps4555/ps448/.

[6] Corner, M. et al. (2001). Fugue: time scales of adapta-
tion in mobile video. In Proc. of SPIE/ACM Multimedia
Computing and Networking Conference, pages 75–87.

[7] de Lara, E. et al. (2002). HATS: hierarchical adap-
tive transmission scheduling for multi-application adap-
tation. In Proc. of SPIE/ACM Multimedia Computing
and Networking Conference, pages 100–114.

[8] Efstratiou, C. et al. (2003). A platform supporting
coordinated adaptation in mobile systems. In Proc. of
4th IEEE Workshop on Mobile Computing Systems and
Applications, pages 128–137.

[9] Flautner, K. and Mudge, T. (2002). Vertigo: Auto-
matic performance-setting for linux. In Proc. of Sympo-
sium on Operating Systems Design and Implementation,
pages 105–116.

16

[10] Flinn, J. et al. (2001). Reducing the energy usage of
office applications. In Proc. of Middleware, pages 252–
272.

[11] Flinn, J. and Satyanarayanan, M. (1999). Power-
Scope: A tool for proling the energy usage of mobile
applications. In Proc. of 2nd IEEE Workshop on Mo-
bile Computing Systems and Applications, pages 2–10.

[12] Gopalan, K. and Chiueh, T. (2002). Multi-resource al-
location and scheduling for periodic soft real-time appli-
cations. In Proc. of SPIE/ACM Multimedia Computing
and Networking Conference, pages 34–45.

[13] Hughes, C., Kaul, P., Adve, S., Jain, R., Park, C.,
and Srinivasan, J. (2001a). Variability in the execution
of multimedia applications and implications for architec-
ture. In Proc. of the 28th Annual Intl. Symp. on Comp.
Architecture, pages 254–265.

[14] Hughes, C., Srinivasan, J., and Adve, S. (2001b). Sav-
ing energy with architectural and frequency adaptations
for multimedia applications. In Proc. of 34th Intl. Symp.
on Microarchitecture.

[15] Intel (2003). Intel Pentium M Processor Datasheet.
http://www.intel.com/design/mobile/datashts/
25261203.pdf.

[16] Ishihara, T. and Yasuura, H. (1998). Voltage schedul-
ing problem for dynamically variable voltage processors.
In Proc of Intl. Symp. on Low Power Electronics and
Design, pages 197–202.

[17] Khronos (2006). OpenMAX - The Standard for Media
Library Portability. http://khronos.org/openmax/.

[18] Krantz, S., Kress, S., and Kress, R. (1999). Jensen’s
Inequality. Birkhauser.

[Li et al.] Li, X., Gupta, R., Adve, S. V., and Zhou, Y.
Cross-component energy management: Joint adaptation
of processor and memory. ACM Trans. on Architecture
and Code Optimization. Accepted subject to minor re-
visions.

[19] Mesarina, M. and Turner, Y. (2002). Reduced energy
decoding of MPEG streams. In Proc. of SPIE/ACM
Multimedia Computing and Networking Conference,
pages 202–213.

[20] Moser, M. et al. (1997). An algorithm for the multidi-
mensional multiple-choice knapsack problem. In IEICE
Trans. on Fundamentals of Electronics, pages 582–589.

[21] Noble, B. et al. (1997). Agile application-aware adap-
tation for mobility. In Proc. of Symposium on Operating
Systems Principles, pages 276–287.

[22] Pering, T. et al. (2000). Voltage scheduling in the
lpARM microprocessor system. In Proc of Intl. Symp.
on Low Power Electronics and Design, pages 96–101.

[23] Pillai, P. and Shin, K. G. (2001). Real-time dynamic
voltage scaling for low-power embedded operating sys-
tems. In Proc. of Symposium on Operating Systems
Principle, pages 89–102.

[24] Poellabauer, C. et al. (2002). Cooperative run-time
management of adaptive applications and distributed re-
sources. In Proc. of 10th ACM Multimedia Conference,
pages 402–411.

[25] Quan, G. and Hu, X. (2001). Energy efficient fixed-
priority scheduling for real-time systems on variable
voltage processors. In Design Automation Conference,
pages 828–833.

[26] Rusu, C. et al. (2002). Maximizing the system value
while satisfying time and energy constraints. In Proc. of
Real-Time Systems Symposium, pages 246–257.

[27] Sachs et al. (2003a). GRACE: A Cross-Layer Adapta-
tion Framework for Saving Energy. SIDEBAR in IEEE
Computer, pages 50–51.

[28] Sachs, D. et al. (2003b). Adaptive video encoding to
reduce energy on general-purpose processors. In Proc.
of Intl. Conference on Image Processing.

[29] Simunic, T. et al. (2001). Dynamic voltage scaling
and power management for portable systems. In Design
Automation Conference, pages 524–529.

[30] Vardhan, V. et al. (2005). Integrating fine-grained
application adaptation with global adaptation for saving
energy. In Proc. of the 2nd International Workshop on
Power-Aware Real-Time Computing (PARC).

[31] Xiph.org (2003). Speex. http://www.speex.org/.

[32] Yuan, W. et al. (2003). Design and evaluation of cross-
layer adaptation framework for mobile multimedia sys-
tems. In Proc. of SPIE/ACM Multimedia Computing
and Networking Conference, pages 1–13.

[33] Yuan, W. et al. (2006). GRACE: Cross-Layer Adapta-
tion for Multimedia Quality and Battery Energy. IEEE
Trans. on Mobile Computing.

[34] Yuan, W. and Nahrstedt, K. (2003). Energy-efficient
soft real-time CPU scheduling for mobile multimedia
systems. In Proc. of Symposium on Operating Systems
Principle, pages 149–163.

[35] Zeng, H., Fan, X., Ellis, C., Lebeck, A., and Vah-
dat, A. (2002). ECOSystem: Managing energy as a first
class operating system resource. In Proc. International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 123–132.

17

