
MIT Open Access Articles

From reconfigurable architectures
to self-adaptive autonomic systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Santambrogio, M.D. “From Reconfigurable Architectures to Self-Adaptive Autonomic
Systems.” Computational Science and Engineering, 2009. CSE '09. International Conference on.
2009. 926-931. © 2009 IEEE

As Published: http://dx.doi.org/10.1109/CSE.2009.490

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/52483

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/52483

From reconfigurable architectures to self-adaptive
autonomic systemss

Marco D. Santambrogio
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

santambr@mit.edu

Abstract—Systems on a Chip (SoC) can draw various benefits
such as adaptability and efficient acceleration of compute-
intensive tasks from the inclusion of reconfigurable hardware
as a system component. Dynamic reconfiguration capabilities of
current reconfigurable devices create an additional dimension in
the temporal domain. During the design space exploration phase,
overheads associated with reconfiguration and hardware/software
interfacing need to be evaluated carefully in order to harvest the
full potential of dynamic reconfiguration. In order to overcome
the limits deriving by the increasing complexity and the asso-
ciated workload to maintain such complex infrastructure, one
possibility is to adopt self-adaptive and autonomic computing
systems [1]. A self-adaptive and autonomic computing system
is a system able to configure, heal, optimize and protect itself
without the need for human intervention.

Index Terms—Performance, Reconfiguration, Codesign, Run-
time Adaptability, Self-Adaptive Systems.

I. INTRODUCTION

New application domains demand ever increasing adaptabil-
ity and performance [2]–[4]. In order to cope with changing
user requirements, improvements in system features, changing
protocol [5] and data-coding standards, and demands for
support of a variety of different user applications [6], many
emerging applications in communication, computing and con-
sumer electronics demand that their functionality stays flexible
after the system has been manufactured. Reconfigurable SoCs
employing different microprocessor cores [7] and different
types of reconfigurable fabrics are one attractive solution for
these domains. The increasing prominence of reconfigurable
devices within such systems requires HW/SW codesign for
SoCs to address the trade-off between software execution and
reconfigurable hardware acceleration.

Inclusion of hardware reconfigurability allowed a deeper
exploration of the design space, thanks to the ability to adapt
the hardware part of the system in a simple and economical
way. However, in order to harvest the true benefit from a
system which employs dynamically reconfigurable hardware,
codesign approaches need to pursue the best trade-off be-
tween hardware acceleration, communication cost, dynamic
reconfiguration overhead, and system flexibility. In existing
approaches to codesign, the emphasis is placed on identifying
computationally intensive tasks, also called kernels, and then
maximizing performance by implementing most of these tasks

on reconfigurable hardware. In this scenario, software primar-
ily performs the control dominated tasks. The performance
model of the reconfigurable hardware is mainly defined by
the degree of parallelism available in a given task and the
amount of reconfiguration and communication cost that will
be incurred. The performance model for software execution
is on the other hand static and does not become affected by
external factors.

Reconfiguration capabilities and hardware-software code-
sign techniques, are therefore becoming just elements of a
more complex scenario. Nowadays information systems can
be seen as aggregates of complex architectures, spanning
from grids including thousands of geographically distributed
systems dependent upon multi-site collaboration [8]–[10], and
fast, reliable access to shared resources and data [11], to
small and specialized embedded systems [7]. We achieved
such a complexity in the infrastructure, no matter what kind
of architecture it is based on, because of the increasing
demanding for high performance computation, high reliability
and for the need in providing always different, more complex,
and high quality services to the users [12], [13]. Both in [10]
and in [9] have been presented studies to adapt the applications
workloads to the computational environment with respect to
a given estimation of the performance of the grid. Adaptabil-
ity is provided by migrating the operations among different
components regarding the predicted time with respect to the
gathered execution time using monitoring and analysis tools
provided by other parts of their framework. Understanding the
characteristics of the users’ workload is an important aspect
also when designing and providing web services [8]. More-
over, these complex, heterogenous and distributed systems can
be characterized also by another factor: being able to provide
service on-demand guaranteeing high system availability to
properly support unpredictable workloads. Let’s take into
consideration the visa’s transactions processing system which
is routinely updated as many as 20, 000 times per year, yet
tolerates less than 0.5% down-time [14].

The remaining of this paper is organized as follow. Section
II describes the main characteristics and issues of nowadays
reconfigurable systems, while Section III presents an overview
of the literature where both hardware, not only FPGA-based

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.490

926

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.490

926

Authorized licensed use limited to: MIT Libraries. Downloaded on March 03,2010 at 10:49:18 EST from IEEE Xplore. Restrictions apply.

architecture, and software components have been considered
as reconfigurable elements. Section IV introduces the self-
adaptive autonomic system concept showing how these sys-
tems belong and pervade different IT domains. Section V
presents two examples of FPGA-based adaptable systems and
finally, Section VI presents some concluding remarks.

II. RECONFIGURABLE SYSTEMS: CHARACTERISTICS AND
ISSUES

Reconfigurable hardware is becoming a prominent com-
ponent in a large variety of SoC designs. Reconfigurability
allows efficient hardware acceleration and virtually unlimited
adaptability. On the other hand, overheads associated with
reconfiguration and interfaces with the software component
need to be evaluated carefully during the exploration phase.
This section provides some insights in the FPGA-based recon-
figurable architecture research area, trying to describe how it
can be utilized and some of its drawbacks.

A. Reconfiguration support

In order to configure an FPGA1 with the desired functional-
ity, one or more bitstreams are needed. A bitstream is a binary
file in which configuration information for a particular FPGA
device is stored, that is where all the data to be copied on
to the configuration SRAM cells, the configuration memory,
are stored, along with the proper commands for controlling
the chip functionalities. Therefore Virtex [15] devices, such as
Virtex II Pro [16] and Virtex 4 [17], are configured by loading
application specific data into their configuration memory. I will
refer to the physical implementation on the FPGA of a given
functionality, configured on the device using a bitstream, with
the term configured task. On the Virtex FPGAs the configura-
tion memory is segmented into frames. A frame represents the
smallest unit of reconfiguration. According to the device, this
element can span the entire length of the FPGA, such as in the
Virtex II Pro context, or just part of it, as in Virtex 4 devices.
The number of frames and the bits per frame are specific for
each device family. The number of frames is proportional to
CLB width. Bitstreams can be either partial or full. A full
bitstream configures the whole configuration memory and is
used for static design or at the beginning of the execution of
a dynamic reconfiguration system, to define the initial state
of SRAM cells. Partial bitstreams configure only a portion
of the device and are one of the end products of any partial
reconfiguration flow.

FPGAs provide different means for configuration, under the
form of different interfaces to the configuration logic on the
chip. There are several modes and interfaces to configure a
specific FPGA family, among them the JTAG download cable
(which is the method used in this work), the SelectMAP
interface, for daisy-chaining the configuration process of mul-
tiple FPGAs, configuration loading from PROMs or compact
flash cards, micro-controller-based configuration, an internal

1From now on, whenever using the term FPGA, I will refer to the Xilinx
FPGA devices.

configuration access port (ICAP) [18] and so on, depending on
the specific family. The ICAP provides an interface which can
be used by the internal logic to reconfigure and read back the
configuration memory. A set of configuration registers defines
the state of this configuration logic at a given moment in time.
Actual configuration data is first written by the bitstream into
these registers and then copied by the configuration logic on
the configuration SRAMs.

B. Partial Dynamic Reconfiguration

Partial dynamic reconfiguration is one of the key features
that makes FPGAs unique devices, offering degrees of freedom
not available in other kind of technologies and in some cases
pushing FPGA-based solutions towards the standard appli-
cation platform e.g., network controller capable of handling
the TCP and UDP protocols by exploiting partial reconfig-
uration [5], cryptographic system [3], mechatronic systems
[4]. In particular, two important benefits can be achieved by
exploiting partial dynamic reconfiguration on reconfigurable
hardware: (1) the reconfigurable area can be exploited more
efficiently with respect to a static design, (2) some portion of
the application must change over time and react to changes in
its environment.

The two main advantages given by a Partial Dynamic Re-
configuration (PDR) solution thus address the lack of resources
needed to implement an application and its adaptability needs;
it must be pointed out that both of the advantages could
be replaced by having a larger resource array, where all of
the functionalities could be implemented. This solution is not
always viable for non-trivial designs and a PDR strategy must
be implemented. Reconfigurable hardware taking advantage of
partial dynamic reconfiguration can be thus seen as the middle
point in the trade-off between the speed of HW solutions and
the flexibility of SW.

C. Issues in PDR design methodologies

Besides the benefits introduced by the usage of partial
dynamic reconfiguration, some issues remain in the design
methodologies used to achieve the final reconfigurable ar-
chitecture. The issue that is impairing a wider diffusion of
such architectures is certainly the lack of a complete software
toolchain capable of taking into account partial dynamic recon-
figuration in a sound manner, even if few novel methodologies
have been proposed [19]. It is true that this is not the only issue
in working with reconfigurable architecture, i.e., using partial
dynamic reconfiguration leads to the introduction of time
overhead due to the reconfiguration process, but without strong
theoretical studies and the definition of the corresponding
design methodologies and developing frameworks, it will be
impossible to effectively used such a concept in designing the
next generation of computer architectures, and not only in the
SoC context.

The current methodologies for Xilinx FPGAs [20] [21], as
an example, comprise a long series of steps that the developer
has to undertake in order to convert the product of conventional
CAD tools into the final full and partial bitstreams necessary to

927927

Authorized licensed use limited to: MIT Libraries. Downloaded on March 03,2010 at 10:49:18 EST from IEEE Xplore. Restrictions apply.

deploy a partial dynamic reconfigurable architecture. During
the various steps, moreover, the system designer has to keep
clearly in mind partial reconfiguration constraints and use
the software to enforce them. Due to the relative novelty
of partial reconfiguration techniques these procedures are
not yet included into the manufacturer’s software, and many
operations have to be done manually. This factor may deviate
the focus of the development process away from the real
application towards these details, thus resulting in an extended
time-to-market of the developed application. Another issue
related to the lack of support for partial reconfiguration in
the manufacturer’s design flow is that some tools that make
up the development flow are not reconfiguration aware.

III. HARDWARE AND SOFTWARE AS RECONFIGURABLE
RESOURCES

In the context of reconfigurable systems, many approaches
focused on effective utilization of the dynamically reconfig-
urable hardware resources. Related works in this domain focus
on various aspects of partitioning and context scheduling. A
system called NIMBLE was proposed for this task [22]. As an
alternative to conventional ASICs, a reconfigurable datapath
has been used in this system. The partitioning problem for
architectures containing reconfigurable devices has different
requirements. It demands a two dimensional partitioning strat-
egy, in both spatial and temporal domains, while conventional
architectures only involve spatial partitioning. The partitioning
engine has to perform temporal partitioning as the FPGA can
be reconfigured at various stages of the program execution
in order to implement different functionalities. Noguera and
Badira [23] proposed a design framework for dynamically
reconfigurable systems, introducing a dynamic context sched-
uler and hw/sw partitioner. Banerjee et al. [24] introduced a
partitioning scheme that is aware of the placement constraints
during the context scheduling of the partially reconfigurable
datapath of the SoC.

In [25] the authors propose a new methodology to allow
the platforms to hot-swap application specific modules without
disturbing the operation of the rest of the system. This goal is
achieved through the use of partial dynamic reconfiguration.
The application presented in that paper has been implemented
onto a Xilinx Virtex-E FPGA. According to this, the proposed
methodology finds its physical implementation as an external
reconfiguration that implies that a Virtex-E active array may
be partially reconfigured by an external device such as a
Personal Computer, while ensuring the correct operation of
those active circuits that are not being changed [26]. The
reconfigurable modules are called Dynamic Hardware Plugin,
DHP. The methodology proposed in [25] transforms standard
bitfiles, computed by common computer aided design tools,
into new partial bitstreams that represent the DHP modules
due to the PARtial BItfile Transform tool, PARBIT, [27].

Two interesting examples of reconfigurable chip multipro-
cessor architecture have been presented in [7] and [28]. In [7],
an heterogeneous multi-core architecture has been proposed in

order to assign to the most appropriate core, in terms of power
consumption, the execution of a specific part of an application,
since different cores have varying energy efficiencies for the
same workload. This architecture has been designed taking
into consideration the fact that typical programs go through
phases with different execution characteristics, which can lead
to different workloads, therefore the most appropriate core
during one phase may not be the right one for a following
phase. In [28] the Core Fusion architecture is proposed. This
architecture is characterized by the presence of different tiny
independent cores that can be used as distinct processing
elements or that can be fused into a bigger CPU based on
the software demand.

Nowadays, different works have also focused their atten-
tion of the effective utilization of dynamically reconfigurable
software resources [29], [30]. In [31], [32] the runtime imple-
mentation, hardware or software, of specific elements of the
systems is taken online during the system execution. A hot-
swap-based approach has been used to implement software
reconfiguration in the K42 Operating System [29]. Aims of
the work presented in [33], is to characterize and understand
the interactions between hardware and software and to affect
optimizations based on those characterizations. To achieve
this, they have designed and implemented a performance and
environment monitoring (PEM) infrastructure that vertically
integrates performance events from various layers in the exe-
cution stack. The authors have developed an architecture for
continuous program optimization (CPO) [34] to assist in, and
automate the challenging task of performance tuning a system.
CPO utilizes the data provided by PEM to detect, diagnose,
and eliminate performance problems. Tackling the PEM and
CPO together, it is possible to obtain an efficient monitoring
system able to improve operating system availability [35] with
dynamic update based on hot-swapable objects [36], [37].

IV. TOWARDS THE DEFINITION OF SELF-ADAPTIVE AND
AUTONOMIC COMPUTING SYSTEMS

In order to overcome the limits deriving by the increasing
complexity and the associated workload to maintain such
complex infrastructure, one possibility is to adopt self-adaptive
and autonomic computing systems [38]. A self-adaptive and
autonomic computing system is a system able to configure,
heal, optimize and protect itself without the need for human
intervention [1]. Different companies, i.e., IBM [39], Oracle,
and Intel have invested a lot of their efforts in this research,
realizing several products characterized by a self-adaptive
behavior. Examples of these products are the Oracle Automatic
Workload Repository [6], the IBM Touchpoint Simulator, the
K42 Operating System [29] and the Intel RAS Technologies
for Enterprise [2].

Within this context, a self-adaptive and autonomic comput-
ing system is no longer view as a static bunch of hardware
components with a passive set of applications running on
top of an operating system used to properly coordinate the
underling hardware architecture. It becomes an active system
where either the hardware, the applications and the operating

928928

Authorized licensed use limited to: MIT Libraries. Downloaded on March 03,2010 at 10:49:18 EST from IEEE Xplore. Restrictions apply.

system have to be seen as an unique entity that have to be able
to autonomously adapt itself to achieve the best performance2.
In order to achieve such a scenario, the self-adaptive and
autonomic computing systems have to be able to monitor its
behavior to self update itself, in one, or in a combination of
several, of its components (hardware architecture, operating
system and running applications), to overcome possible failure
in accomplishing its tasks. Most current architectures include
at least basic hardware assists for system monitoring, usually
in the form of counter registers. Counter-based techniques
suffer common shortcomings [40]: too few counters, sampling
delay, and lack of address profiling. Modern systems [41] try
to address these deficiencies, however they still suffer the fact
that they can be applied only to collect aggregate statistics
using sampling. It is not possible to react to single events
or to collect additional data. The Itanium processor family
[42], overcomes also this limit introducing microarchitectural
event data that have to be delivered to the consuming software
through an exception for each event. This solution implies that
the process using this information has to experience frequent
interrupts.

In [43], the FPGA has been used as a sort of filter to moni-
tor, using the dependability analysis, the data flowing through
a certain part of the system. Unfortunately, this approach, even
without introducing overhead into the computation, cannot be
considered as non intrusive with respect to the overall system.
A partial reconfiguration approach, due to the reconfiguration
capabilities of modern FPGAs [44]–[46], has been proposed in
[47] to implement an online adaptive system, able to update its
underlying architectural implementation to optimize the power
consumption. This is an interesting approach which is only
proving that partial reconfiguration can be used to implement
an online solution, but the runtime environment has not been
realized nor information on how to monitor online its behavior
has been outlined.

V. FPGA-BASED ADAPTABLE SYSTEMS: TWO EXAMPLES

A. Adaptive software and reconfigurable hardware
In [30], the authors identify the best trade-off considering

application-specific features in software, which can lead itself
to software-based acceleration and lead to a revision of the
view that certain computationally intensive tasks can only
be accelerated through hardware. The presented methodology
addresses the problem of the identification of the software and
the hardware components of a complex dynamically reconfig-
urable SoC, introducing an adaptive computation approach.
The authors aim to accomplish this goal by utilizing the
concept of Adaptive3 programming [48].

The proposed methodology has been introduced for exploit-
ing application specific properties in purely software-based

2Where performance can have different meaning according to a specific
scenario. It is possible to have a system trying to maximize the overall
completion time of a set of applications, and, under different constraints,
having the same system running trying to minimize its power consumption.

3Adaptivity implies that due to input changes the output of the system
is updated only re-evaluating those portions of the program affected by the
changes.

systems in order to accelerate execution time by up to three
orders of magnitude for various applications [49]. The main
idea behind this methodology is to examine the relationship
between inputs and outputs of a computation as the input
changes. An adaptive program, [48], responds to input changes
by updating its output while only re-evaluating those portions
of the program affected by the change. Adaptive programming
is useful in situations where input changes lead to relatively
small changes in the output. In limiting cases one cannot avoid
a complete re-computation of the output, but in many cases the
results of the previous computation may be re-used to obtain
the updated output more quickly than a complete re-evaluation.
Based on this observation it is possible to define the set of
adaptive metrics that are able to provide information on how a
software-based computation is going to be affected by an input
change. In the proposed paradigm they use this concept to
create a comprehensive analysis engine. The proposed solution
for generating the software partition of a codesigned SoC is
based on this generalized analysis scheme [30].

The authors adapt this paradigm into HW/SW codesign for
reconfigurable SoCs, developing a new performance model
and an associated evaluation metric to identify application
specific input behavior thereby differentiating between various
levels of performance across different portions of software
modules. This general performance model is then embedded
along with hardware performance models into the codesign
environment, which will yield a highly flexible means to
evaluate the performance impact of different partitioning and
allocation decisions.

B. On-Line Task Management

In [50], [51] an extension of a well-known and portable
kernel such as GNU/Linux, in order to introduce a support for
dynamic reconfiguration and to simplify the interface between
the user application and the reconfigurable hardware, has been
proposed. Each software application, also named process, can
issue one or more system calls in order to require a specific
functionality, which may be available either as a software
library, or as a hardware IP-Core, or both. The operating
system is in charge of choosing among the software or the
hardware implementation according to different criterias, such
as the amount of free area on the FPGA.

In [51] a cryptographic reconfigurable architecture, involv-
ing two popular encryption algorithms (the Advanced Encryp-
tion Standard and the Data Encryption Standard) has been
presented to evaluate the performance of the run-time decision
of the best implementation for an demanded task. Both the
algorithms have been implemented as software applications
and IP-Cores, whose FPGA-implementation has been shown
in Figure 1, and they have been made available through the
reconfiguration manager.

The evaluation system, implemented on Xilinx Virtex-II Pro
VP30, has been defined using an architecture composed of two
reconfigurable cores reconfigured using a self partial dynamic
reconfiguration technique managed by the Microblaze, running

929929

Authorized licensed use limited to: MIT Libraries. Downloaded on March 03,2010 at 10:49:18 EST from IEEE Xplore. Restrictions apply.

Figure 1. AES and DES IP-core implementations: FPGA-view.

the extended PetaLinux, with the 2.4 uCLinux kernel, operat-
ing system, and realized using the ICAP port. The proposed
case study, as shown in Figure 2, compares the performance
of different implementations of the AES algorithm.

Figure 2. Execution time of the implementations of the AES algorithm.

The data related to the software solution has been computed
using an Intel Pentium Dual Core working at 1.60GHz with
Ubuntu 8.10 (kernel 2.6.27). Figure 2 shows the impact of
the reconfiguration latency in the execution of a functionality,
since it may dominate the overall execution time and makes
the IP-Core implementation less efficient than a software
execution. Additional elements can affect the behavior of
the system at runtime, such as a situation where the entire
FPGA area is being used, and therefore a new task cannot
be executed until one of the configured IP-Cores completes
its execution. In order to optimize the execution time of a
functionality, it is important for the operating system to be
able to choose the best implementation at runtime. It has to
be able to understand on which point of the graph shown in

Figure 2 it is working. This will lead the OS to choose the
most appropriate implementation for the demanded task. The
benefits of a combined use of implementation selection and IP-
Core caching can be observed by evaluating the time required
to serve a large number of requests.

VI. CONCLUSION

New application domains demand ever increasing adaptabil-
ity and performance [2]–[4]. In order to cope with changing
user requirements, improvements in system features, changing
protocol [5] and data-coding standards, and demands for sup-
port of a variety of different user applications [6], many emerg-
ing applications in communication, computing and consumer
electronics demand that their functionality stays flexible after
the system has been manufactured. Furthermore, nowadays
research is pushing forward, looking for complex heteroge-
neous, reconfigurable multi-cores architecture. Good examples
of heterogeneous systems, highly dynamic in content, workload
and infrastructure (i.e., nodes are continuously leaving and
joining) are cloud computing, grid [9], [10], cluster and peer
to peer architectures. In order to overcome the limits deriving
by the increasing complexity and the associated workload to
maintain such complex infrastructures, one possibility is to
adopt self-adaptive [38] and autonomic computing systems [1].
These systems are able to configure, heal, optimize and protect
themselves without the need for human intervention. Within
this context, reconfigurable computing systems are moving to
self-adaptive and autonomic computing systems where either
hardware components [7], [28], [37], [52], the applications
[36], [53] and the operating system [29], [54] have to be seen
as an unique entity that have to be able to autonomously adapt
itself to achieve the best performance.

ACKNOWLEDGMENT

I’d like to thank all the many people who I had the pleasure
to work with over the last two years for all the useful
discussion I had with them and for their thoughtful ideas.
Special thanks to V. Rana, I. Beretta, D. Sciuto, S. Ogrenci
Memik, A. Agarwal and all the members of the CARBON and
the DRESD research groups.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] Intel, “Reliability, availability, and serviceability for the always-on
enterprise. the enhanced ras capabilities of intel processor-based server
platforms simplify 24x7 business solutions,” Online document, www.
intel.com/assets/pdf/whitepaper/ras.pdf, 2005.

[3] J. Castillo, P. Huerta, V. López, and J. I. Martı́nez, “A secure self-
reconfiguring architecture based on open-source hardware,” in Interna-
tional Conference on Reconfigurable Computing and FPGAs (ReCon-
Fig’05), 2005.

[4] K. Danne, C. Bobda, and H. Kalte, “Run-time exchange of mechatronic
controllers using partial hardware reconfiguration,” 2003, pp. 272–281.

[5] A. P. Chaubal, “Design and implementation of an fpga-based partially
reconfigurable network controller,” Master’s thesis, Virginia Polytechnic
Institute and State University, 2004.

[6] Oracle, “Automatic workload repository (awr) in oracle
database 10g,” Website, http://www.oracle-base.com/articles/10g/
AutomaticWorkloadRepository10g.php.

930930

Authorized licensed use limited to: MIT Libraries. Downloaded on March 03,2010 at 10:49:18 EST from IEEE Xplore. Restrictions apply.

[7] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen,
“Processor power reduction via single-isa heterogeneous multi-core
architectures,” Computer Architecture Letters, vol. 2, no. 1, pp. 2–2,
January-December 2003.

[8] R. Pena-Ortiz, J. Sahuquillo, A. Pont, and J. A. Gil, “Modeling continu-
ous changes of the user’s dynamic behavior in the www,” pp. 175–180,
2005.

[9] F. A. J. Buisson and J. L. Pazat, “Dynamic adaptation for grid comput-
ing,” Lecture Notes in Computer Science. Advances in Grid Computing
- EGC, pp. 538–547, 2005.

[10] S. S. Vadhiyar and J. J. Dongarra, “Self adaptivity in grid computing,”
Concurr. Comput. : Pract. Exper., vol. 17, no. 2-4, pp. 235–257, 2005.

[11] W. Gentzsch, K. Iwano, D. Johnston-Watt, M. Minhas, and M. Yousif,
“Self-adaptable autonomic computing systems: An industry view,”
Database and Expert Systems Applications, 2005. Proceedings. Sixteenth
International Workshop on, pp. 201–205, Aug. 2005.

[12] J. S. Lovstad and P. H. Hughes, “Run-time software configuration for
mobile devices using an evolutionary quantifiable deployment model,”
pp. 189–200, 2008.

[13] A. Avritzer, R. G. Cole, and E. J. Weyuker, “Using performance
signatures and software rejuvenation for worm mitigation in tactical
manets,” pp. 172–180, 2007.

[14] D. Pescovitz, “Monsters in a box. think you know what a supercom-
puter is? think again: The real thing will blow your mind.” Wired,
8(13):341–347. Online document, http://www.wired.com/wired/archive/
8.12/supercomputers.html.

[15] S. Kelem, “Virtex series configuration architecture user guide,” Xilinx
XAPP151, 2003.

[16] Xilinx, Virtex-II Pro Data Sheet Virtex-II ProTM Platform FPGA Data
Sheet. Xilinx, 2003.

[17] X. Inc., “Virtex-4 user guide,” Xilinx Inc., Tech. Rep. ug70, March 2007.
[Online]. Available: http://www.xilinx.com/bvdocs/userguides/ug70.pdf

[18] ——, “Opb hwicap (v1.00.b) product specification,” Xilinx Inc., Tech.
Rep., March 2005.

[19] V. Rana, M. Santambrogio, and D. Sciuto, “Dynamic reconfigurability in
embedded system design,” in IEEE International Symposium on Circuits
and Systems, 2007. ISCAS 2007, May 2007, pp. 2734–2737.

[20] Xilinx Inc., Application Notes 290. Two Flows for Partial Re-
configuration: Module Based or Small Bit Manipulations, San Jose,
California, 2004.

[21] ——, Early Access Partial Reconfiguration Guide, Xilinx Inc., 2006.
[22] Y. Li, T. Callahan, E. Darnell, R. E. Harr, U. Kurkure, and J. Stock-

wood, “Hardware/software codesign of embedded reconfigurable archi-
tectures,” in Proceedings of the 37th Conference on Design Automation.
ACM/IEEE, 2000, pp. 507–512.

[23] J. Noguera and R. M. Badia, “Hw/sw codesign techniques for dynam-
ically reconfigurable architectures,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 10, no. 4, pp. 399–415, 2002.

[24] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware hw-sw
partitioning for reconfigurable architectures with partial dynamic recon-
figuration,” in DAC ’05: Proceedings of the 42nd annual conference on
Design automation. ACM Press, 2005, pp. 335–340.

[25] E. L. Horta, J. W. Lockwood, and D. Parlour, “Dynamic hardware
plugins in an fpga with partial run–time reconfigurtion,” pp. 844–848,
2002.

[26] S. Tapp, “Configuration quick start guidelines,” XAPP151, July 2003.
[27] E. Horta and J. W. Lockwood, “Parbit: A tool to transform bitfiles

to implement partial reconfiguration of field programmable gate arrays
(fpgas),” Washington University, Department of Computer Science, Tech-
nical Report WUCS–01–13, July 2001.

[28] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion:
accommodating software diversity in chip multiprocessors,” SIGARCH
Comput. Archit. News, vol. 35, no. 2, pp. 186–197, 2007.

[29] O. Krieger, M. Auslander, B. Rosenburg, R. W. J. W., Xenidis, D. D.
Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen, A. Waterland,
and V. Uhlig, “K42: building a complete operating system,” pp. 133–
145, 2006.

[30] M. D. Santambrogio, S. O. Memik, V. Rana, U. A. Acar, and D. Sciuto,
“A novel soc design methodology combining adaptive software and re-
configurable hardware,” in Proceedings of the 2007 IEEE/ACM interna-
tional conference on Computer-aided design. ICCAD 2007. Piscataway,
NJ, USA: IEEE Press, 2007, pp. 303–308.

[31] V. Sima and K. Bertels, “Runtime decision of hardware or software
execution on a heterogeneous reconfigurable platform,” in IEEE Interna-

tional Symposium on Parallel and Distributed Processing, 2009. IPDPS
2009, May 2009.

[32] K. Sigdel, M. Thompson, A. Pimente, K. Bertels, and C. Galuzzi,
“System level runtime mapping exploration of reconfigurable architec-
tures,” in IEEE International Symposium on Parallel and Distributed
Processing, 2009. IPDPS 2009, May 2009.

[33] R. Azimi, C. Cascaval, E. Duesterwald, M. Hauswirth, K. Sudeep,
P. F. Sweeney, and R. W. Wisniewski, “Performance and environment
monitoring for whole-system characterization and optimization,” Pro-
ceedings of the PAC2 Conference on Power/Performance Interaction
with Architecture, Circuits, and Compilers, pp. 15–24, 2004.

[34] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wisniewski,
“Performance and environment monitoring for continuous program
optimization,” IBM J. Res. Dev., vol. 50, no. 2/3, pp. 239–248, 2006.

[35] A. Baumann, D. D. Silva, O. Krieger, and R. W. Wisniewski, “Improving
operating system availability with dynamic update,” pp. 21–27, 2004.

[36] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski, D. D. Silva,
G. R. Ganger, O. Krieger, M. Stumm, M. Auslander, M. Ostrowski,
B. Rosenburg, and J. Xenidis, “System support for online reconfigura-
tion,” 2003.

[37] J. Appavoo, K. Hui, M. Stumm, R. W. Wisniewski, D. D. Silva,
O. Krieger, and C. A. N. Soules, “An infrastructure for multiprocessor
run-time adaptation,” in WOSS ’02: Proceedings of the first workshop
on Self-healing systems. New York, NY, USA: ACM, 2002, pp. 3–8.

[38] P. Dini, “Internet, grid, self-adaptability and beyond: are we ready?”
Database and Expert Systems Applications, 2004. Proceedings. 15th
International Workshop on, pp. 782–788, Aug.-3 Sept. 2004.

[39] IBM, “Ibm autonomic computing website,” Website, http://www.
research.ibm.com/autonomic/, 2009.

[40] B. Sprunt, “The basics of performance-monitoring hardware,” Micro,
IEEE, vol. 22, no. 4, pp. 64–71, Jul/Aug 2002.

[41] ——, “Pentium 4 performance-monitoring features,” Micro, IEEE,
vol. 22, no. 4, pp. 72–82, Jul/Aug 2002.

[42] Intel, “Intel itanium architecture software developer’s manual,” Website,
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm, 2006.

[43] N. Bartzoudis and K. McDonald-Maier, “Online monitoring of fpga-
based co-processing engines embedded in dependable workstations,”
On-Line Testing Symposium, 2007. IOLTS 07. 13th IEEE International,
pp. 79–84, July 2007.

[44] Virtex-II Pro and Virtex-II ProX Virtex-II Pro and Virtex-II Pro X FPGA
User Guide. Xilinx, 28 March 2007.

[45] Xilinx, “Virtex-4 configuration user guide,” no. ug71, January 2007.
[Online]. Available: http://www.xilinx.com/bvdocs/userguides/ug71.pdf

[46] ——, “Virtex-5 configuration user guide,” no. ug191, February 2007.
[Online]. Available: http://www.xilinx.com/bvdocs/userguides/ug191.pdf

[47] K. Paulsson, M. Hübner, and J. Becker, “On-line optimization of fpga
power-dissipation by exploiting run-time adaption of communication
primitives,” pp. 173–178, 2006.

[48] U. A. Acar, G. E. Blelloch, and R. Harper, “Adaptive functional
programming.” in POPL, 2002, pp. 247–259.

[49] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and S. L. M. Woo,
“Dynamizing static algorithms, with applications to dynamic trees and
history independence.” in SODA, 2004, pp. 531–540.

[50] M. Santambrogio, V. Rana, and D. Sciuto, “Operating system support
for online partial dynamic reconfiguration management,” in International
Conference on Field Programmable Logic and Applications, 2008. FPL
2008, Sept. 2008, pp. 455–458.

[51] M. D. Santambrogio, I. Beretta, V. Rana, and D. Sciuto, “On-line task
management for a reconfigurable cryptographic architecture,” in IEEE
International Symposium on Parallel and Distributed Processing, 2009.
IPDPS 2009, May 2009.

[52] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in ISCA ’08:
Proceedings of the 35th International Symposium on Computer Archi-
tecture. Washington, DC, USA: IEEE Computer Society, 2008, pp.
39–50.

[53] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and
L. Rauchwerger, “A framework for adaptive algorithm selection in stapl,”
in PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming. New York, NY, USA:
ACM, 2005, pp. 277–288.

[54] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the
case for a scalable operating system for multicores,” SIGOPS Oper. Syst.
Rev., vol. 43, no. 2, pp. 76–85, 2009.

931931

Authorized licensed use limited to: MIT Libraries. Downloaded on March 03,2010 at 10:49:18 EST from IEEE Xplore. Restrictions apply.

