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Abstract: In this work, we use an improved fractional-order logistic map to 
introduce a new colour image encryption algorithm. By analysing the 
Lyapunov exponent and the bifurcation diagram, the map provides a wider 
range and a uniform distribution of data compared to its classical. It also has 
additional parameters and thus a larger key space, which makes it better in 
protection and safety against hacker attacks. Our algorithm relies on random 
input of pixels in order to obtain a different image in each encryption round to 
ensure greater protection. The algorithm also provides great permutation and 
diffusion features. The simulation results and security analysis indicate that our 
scheme has a good impact on encryption and can withstand various attacks, 
such as statistical attack, differential attack and data loss and noise attacks. 
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1 Introduction 

Nowadays, with the great increasing popularity of the internet and with the evolution of 
network technology, digital images have become very pivotal and of important role, so it 
has become necessary to secure these images on the network (Enayatifar et al., 2017; Suri 
and Vijay, 2019). Because of certain intrinsic features that characterise images, such as 
large data space, correlation between neighbouring pixels and high level of redundancy. 
The use of some traditional encryption algorithms has become ineffective such as  
data encryption standard (DES) and advanced encryption standard (AES) and Rivest 
Shamir-Afleman (RSA) (Liu et al., 2020; Enayatifar et al., 2014; Wu et al., 2015). 
Furthermore, in order to meet the requirement for the safe transmission of digital images. 
Encryption algorithm using chaotic systems has attracted considerable interest from 
researchers because of the important features that these systems provide, such as highly 
sensitive, dependence on initial conditions and control parameters, unpredictability, 
pseudo-randomness, ergodicity and complex dynamic characteristic (Li et al., 2017; Wu 
et al., 2017; Chen et al., 2004; Zhu et al., 2011; Zhou et al., 2016; Xu et al., 2016a, 
2016b; Herbadji et al., 2019a, 2019b, 2019c, 2020a, 2020b). Therefore, the chaotic 
systems can be used to encrypt images. 

The fractional differential equations have recently attracted extensive interest from 
researchers (Lin and Qu, 2019; Shammakh and El-Shahed, 2011; Ruan et al., 2018; 
Khalil et al., 2014; Singh et al., 2017; Kumar et al., 2017; Tarasov, 2015; Srivastava  
et al., 2017; Li et al., 2011; El Raheem and Salman, 2017), because of their applications 
in various fields, for example control (Using et al., 2014), electromagnetics (Shamim et 
al., 2011) and analog electrical engineering (Radwan et al., 2008; Said et al., 2016). 
Fractional-order dynamic systems display different and new behaviours in bifurcation 
and attractors. It also shows different chaotic behaviours compared with the integer-order 
equation (Zhang et al., 2020), also the encryption algorithms using fractional chaotic 
systems have a greater security characteristic due to the fractional order parameter, which 
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provides more range and freedom as pseudorandom number generators (PRNG). Despite 
the fact that fractional order chaotic systems, such as fractional order logistic map, are 
preferred over integer order chaotic systems. However, it still suffers from some 
problems such as uneven distribution of data and limited chaotic behaviour. Many 
researchers have recently become interested in image encryption based on fractional 
order chaos, where several encryption methods have been suggested. Zhao et al. (2015) 
proposed an improper fractional-order chaotic system for image encryption, this scheme 
relies on splitting the original image into four parts to implement the diffusion and 
substitution process. Wu et al. (2015) introduced a new encryption model, which includes 
permutation and diffusion process. They used coupled-map lattices (CML) and a 
fractional-order chaotic system to encrypt red, green and blue components of the colour 
image. Yang et al. (2020) suggested a new image encryption technique based on the 
fractional order hyper-chaotic system, where they confirm that the hyper-chaotic 
sequence may be used in image encryption since it is more unpredictable. Mani et al. 
(2019) presented an image encryption algorithm in which fractional order chaotic fuzzy 
cellular neural networks (FOFCNNs) were employed to produce pseudo-random 
sequences to implement the diffusion process. Li et al. (2017) suggested a new technique 
combining the fractional-order hyper-chaotic system with DNA sequence to increase the 
level of image encryption security. Lui et al. (2020) suggested a fast chaotic image 
scheme model depend on permutation and diffusing at the same time, which provides 
more protection against separated attack. Zhang et al. (2020) suggested an image 
encryption model using S-boxes and fractional order chaotic system, where it was 
confirmed that the system provides better protection against cryptanalyst attacks due to 
its wider range and higher chaotic behaviour than its classical one. Xu et al. (2014) 
designed a novel image encryption method where they used a combination of the 
fractional chaotic system and its synchronisation system to encrypt and decrypt the 
image. 

This research aims to enhance the fractional-order logistic map in order to overcome 
its issues to use in image encryption. Therefore, a novel image encryption approach using 
an improved fractional-order logistic map has proposed. Several analyses have been 
discussed to ensure the proposed algorithm’s effectiveness in protecting the requirements 
for transferring digital images, such as correlation coefficients, sensitivity analysis, 
histogram, differential attacks, as well as other analytical measurements. 

The architecture of this paper is structured as follows: Section 2 provides analysis of 
the fractional-order logistic map and the enhanced one. In Section 3, we propose the 
novel image encryption algorithm in detail. Section 4 summarises the suggested scheme 
evaluation as well as the simulation results. Finally, the conclusion is given in Section 5. 

2 Analysis of the fractional-order logistic map and improved map 

Fractional-order calculus is the generalisation of the conventional integer-order calculus. 
The fractional-order logistic map is calculated using the Caputo fractional-order 
derivative. The definition of Caputo is presented as follows: 

( ) 1
0

0

1( ) ( )( )
( )

t
a m m a
t

t
D f t f u t u du

m a
− −= −
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where α is the fractional order, m is an integer thus (m − 1) < a < m and Γ(.) is the gamma 
function. 

Consider the fractional differential equations given by (Akbergenov and Pelyukh, 
2016; El-Sayed and Salman, 2013): 

( )( ) ( ) 1 ( ) , 0aD x t x t x t tρ= − >  (2.2) 

with x(0) = x0 is the initial condition, α is the fractional-order parameter and ρ is the 
growth rate. 

In the next section, we present the process of discretisation to discretise the 
counterpart of equation (2.2) with piecewise constant arguments 

( ) 1 ,a t tD x t x r x r
r r

ρ
       = −              

 (2.3) 

where x(0) = x0 the initial condition, r is is a constant. 

Let t ∈ 0, r, then 0,t r
r

∈     so, we obtain: 

( )0 0( ) ( ) 1 , 0,aD x t x t x t rρ= − ∈     (2.4) 

The solution of equation (2.3) is given by: 
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Let t ∈ r, 2r, then 1,2t
r

∈     so, we obtain: 

( )1 1( ) ( ) 1 , 0,2aD x t x t x t rρ= − ∈     (2.6) 

The following is the solution of equation (2.3): 
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  (2.7) 

We can easily find the solution of equation (2.3) by repeating the process. This solution is 
given as follows: 

( )1
( )( ) ( ) ( ) 1 ( ) , , ( 1)

(1 )n n n n
t nrx t x nr x nr x nr t nr n r

α
ρ

α+
−= + − ∈ +  Γ +

 (2.8) 

Let t → (n + 1)r the discretisation is obtained 
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( ) ( )1 ( 1) ( ) ( ) 1 ( )
(1 )n n n n
rx n r x nr x nr x nr

α
ρ

α+ + = + −
Γ +

 (2.9) 

Consequently, the fractional-order logistic map is obtained: 

( )1 1
(1 )n n n n
rx x x x

α
ρ

α+ = + −
Γ +

 (2.10) 

where r is a constant, α is the fractional-order parameter, ρ is the growth rate and xn is the 
current population. 

To overcome the issues of the fractional order logistic map, we suggest improving it 
by applying basic mathematical operation and the use of the modular arithmetic 
(mod1).The mathematical equation for the improved map is presented as follows: 

( )1 2 2 1 2 mod1
(1 )

k k k
n n n n

rx x x x
α

ρ
α+ = × + × × − ×

Γ +
 (2.11) 

where k is a constant, xn in equation (2.10) is replaced with the term (2k × xn). 

2.1 Bifurcation diagram 

Bifurcation diagram is the study of the dynamic behaviour of a system in terms of control 
parameter values (Ramadan et al., 2016). Figure 1 presents the diagram of the bifurcation 
of the improved map and the fractional-order logistic map. The dotted area indicates that 
the system is chaotic, and the empty zone proves that the system behaviour is not chaotic. 

Figure 1 Fractional order logistic map (a) and the improved map (b–d) bifurcation diagrams  
(see online version for colours) 

 

Notes: r = 0.25 and α = 0.8 
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Figure 1 Fractional order logistic map (a) and the improved map (b–d) bifurcation diagrams  
(continued) (see online version for colours) 

 

 

 
Notes: r = 0.25 and α = 0.8 
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As the Figure 1 shows, the improved map has chaotic characteristics over the entire 
parameter field ρ∈[0, 9]. While, the range of the chaotic behaviour of the fractional order 
logistic map is ρ∈[7.30, 8.47]. Which means that the improved map provides better 
chaotic performance than the fractional order logistic map. 

2.2 Lyapunov exponent 

Lyapunov exponent is an important measure for assessing dynamic behaviour and 
identifying the system chaotic degree (Nosrati and Shafiee, 2018). The equation of 
Lyapunov exponent is given as follows. 

( )
1

1lim ln
N

i
n

i

ly f x
n→+∞

=

′=   (2.12) 

where f ′  is the derivation function of the chaotic system f. When the Lyapunov 
exponent exceeds zero ly > 0, this indicates that the behaviour of the system is chaotic. 

The improved map and the fractional-order logistic map Lyapunov exponents are 
shown in Figure 2. 
Figure 2 (a) Lyapunov exponent curves of the fractional-order logistic map and (b) the improved 

map (see online version for colours) 

 

 

As the Figure 2 shows, the range of positive Lyapunov exponent values for the improved 
map is greater than the fractional order logistic map. 

2.3 Randomness 

NIST is a collection of 15 critical tests for measuring the quality of a binary sequence 
randomness (Wu et al., 2015). For every test, the P value must be greater than 0.01 to 
confirm the success of the binary sequence in the test (Herbadji et al., 2020b). 

In order to make sure that the improved fractional-order chaotic system can be used 
for image encoding, we performed a NIST-800-22 test on the sequences generated by this 
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system. The results for NIST tests shown in the Table 1, where we can see that the 
improved map successfully passed every 15 tests. As a result, the sequences created by 
this system contain a high degree of randomness and are suited for image encryption. 
Table 1 NIST-800-22 test results of the improved fractional order logistic map 

NIST tests P value Results 
Frequency 0.638355017565112 Success 
Block frequency test 0.388233403726571 Success 
Runs test 0.958352670669443 Success 
Longest runs of ones test 0.201377525588149 Success 
Binary matrix test 0.421450616751419 Success 
DFT test 0.594556664151719 Success 
Non-overlapping template matching 0.0712333835934371 Success 
Overlapping template matching 0.324397624273318 Success 
Maurer’s universal statistical test 0.645937742145016 Success 
Linear complexity 0.3988135818906010 Success 
Serial test 0.899825376592255 Success 
Approximate entropy test 0.89331304289261 Success 
Cumulative sums 0.627394094334661 Success 
Random excursions 0.988758946011156 Success 
Random excursions variant 0.990123446161416 Success 

3 Proposed colour image encryption algorithm 

In this part, we propose a novel algorithm for image encryption using improved 
fractional-order logistic map. The latter has more parameters and a wider key than the 
classic map. The key for the proposed algorithm consists of 18 parameters presented as 
follows: 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6, , , , , , , , , , , , , , , , ,x x x x x xρ α ρ α ρ α ρ α ρ α ρ α  

The suggested algorithm is illustrated in Figure 3. The proposed algorithm uses a  
two-round encryption structure, as seen in Figure 3. Random pixel insertion, permutation, 
and diffusion processes are all used in each encryption round. The details of the 
encryption scheme are shown in the steps that follow: 

Step 1 Read the colour image On×m×3, in the beginning of each row of the original 
image, we add a pixel with a random value. To do the random input of pixels we 
use the function Rand that produces random numbers. The aim of inserting a 
random pixel is to obtain a random, different image for each round of 
encryption. 

Step 2 In this part, we introduce a permutation algorithm to break the correlation 
between pixels. This algorithm simultaneously alters the image’s row and 
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column. In the following, we will show the details of the suggested permutation 
algorithm: 
• Let X, Y two random sequences, X = {X1, X2 … … … … XM} of length M 

and, Y = {Y1, Y2 … … … … YN} of length (N + 1) generated by the 
equation (2.11) with the initial values (x0.1, ρ0.1, α0.1), (x0.2, ρ0.2, α0.2). 

• We get two index sequences I, J by sorting the chaotic sequences X and Y. 
• We generate tow random matrices V of length M × 2 and G of length  

(N + 1) × 2 by using the equation (2.11) with the initial values (x0.3, ρ0.3, 
α0.3), (x0.4, ρ0.4, α0.4) respectively. 

• The aim of these two matrix is to determine the scan and permutation 
direction. When V(I(i), 1) > V(I(i), 2) the row I(i) of the image O is flipped 
from the left to right. Otherwise, the row I(i) of the image O is flipped from 
the right to left finally we get the permuted image P . 

Step 4 We generate two different chaotic sequence S = {S1, S2 … … … … SSW},  
Z = {Z1, Z2 … … … … ZZH} of size M × N × 3 by using the equation (2.11) 
with initial values (x0.5, ρ0.5, α0.5), (x0.6, ρ0.6, α0.6) respectively. Then S and Z are 
transformed into integer by using the following function: 

( )151( ) ( ) 10 mod 256.key i floor S i= ×  (3.1) 

( )152( ) ( ) 10 mod 256.key i floor Z i= ×  (3.2) 

where the floor function approximates the value of X to integers. 

Step 5 The cipher image C is obtained from the scrambling image P and the key1 using 
the following equations: 

( )
( )

( , ) ( , ) ( )  (   )
( , ) ( , ) ( ) ( 1, )  (   )

( , ) ( , ) 1( ) ( , ) 
j and
key

= ⊕ = =
 = ⊕ ⊕ − ≠ =
 = ⊕ ⊕ −

1 1 1
1 1 1

1

c i j p i j key i if i and j
c i j p i j key c i n elsif i j

c i j p i j i c i j otherwise
 (3.4) 

where ⊕ is the XOR operator. 

Algorithm 2 describes the proposed scheme diffusion process. We use the key2 in the 
second round. 

Figure 3 Block diagram of the proposed encryption algorithm (see online version for colours) 
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Figure 4 An example of creating chaotic sequences (a) creating two index J and I (b) creating 
two matrices V and G (see online version for colours) 

 

Figure 5 Permutation and diffusion process (a) inserting random pixels into each line of the plain 
image O (b) permutation and diffusion to P using I (c) rotate the image 90 degrees 
counterclockwise with random pixel insertion (p’) to start the second encryption round 
(d) permutation and diffusion to P” using J (see online version for colours) 

 

We will present an example with an image of size 5 × 5 to understand how the proposed 
algorithm works. The numerical example is shown in Figure 4 and Figure 5. As shown in 
Figure 4 and 5: 
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• Two random sequences X and Y of size M, N + 1 respectively were generated. 

• We arrange ascending sequences to get two index J and I. 

• We generate two random matrices V and G of size M × 2 and (N + 1) ×2 
respectively, where V and I are used in permutation in the first round and G, J are 
used for the second round. 

• We insert random pixels (pr1, pr2, pr3, pr4, pr5) in the beginning of each row of the 
original image O. 

• We use I and V to permute the image where we flip the rows depending on I. For 
example, the row of image P is replaced by the second row of the original image O 
where if V(I(i), 1) > V(I(i), 2) the row is switched from the left to right. Otherwise, 
the row is flipped from the right to left and so on. 

• We diffuse by using algorithm 2 to get the encrypted image p for the first round. 

• In the second round, we rotate the image p by 90 degrees, and we insert random 
pixels (pr12, pr22, pr32, pr42, pr52, pr52) at the beginning of each line. We get the image 

.P′  

• We use J and G to permute the image P′  and diffuse through the algorithm 2 to get 
the encrypted image .p′′  

• The encrypted image size is (M + 1) × (N + 1) due to the entry of pixels at the 
beginning of each row of the original image 

We reverse the steps of the encryption method to decrypt the image, using the same key. 
Algorithm 1 Permutation 

1 Input: V, G, I, J, O′  

2 Output: scrambling image p′′  

3 k ← M 
4 for l ← 1 to 3 do 
5  for i ← 1 to M do 
6   if V(I(i), 1) ≥ V(I(i),2) then // 
7    for j ← 1 to N do 
8     by using the following, switch the row I(i) from left to right 
9      ( ( ), ( )) ( , , )p I i j l O i j l′←  

10    End 
11   Else 
12    for j ← 1 to N do 
13     by using the following, switch the row I(i) from right to left: 
14      ( ( ), ( )) ( , , )p I i K l O i j l′←  

      k ← k–1; 
15    End 
16   End 
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17  k ← M 
18 End 
19 The second round of permutation 
20 90( )p rot p′ ←  

21 Add a random pixel at the beginning of each row to the image p′  

22 k ← N 
23 for l ← 1 to 3 do 
24  for i ← 1 to M do 
25   if G(J(i), 1) ≥ G(J(i), 2) then // 
26    for j ← 1 to N do 
27     switch the row J(i) from left to right by using the following: 
28      ( ( ), ( )) ( , , )p J i j l p i j l′′ ′←  

29    End 
30   Else 
31    for j ← 1 to N do 
32     switch the row J(i) from right to left by using the following: 
33      ( ( ), ( )) ( , , )p J i j l p i j l′′ ′←  

      k ← k–1; 
34    End 
35   End 
36  k ← N 
37 End 

Algorithm 2 Diffusion 

 Input: scrambling image ;p′′  Secret keys: x0.5, ρ0.5, α0.5, x0.6, ρ0.6, α0.6 

 Output: encrypted image: C 
 Use secret keys to get the chaotic sequence S and Z of size M × N × 3 then S and Z are 

transformed into integer by using the following function: 
 key1(i) = floor(S(i) × 1015) mod 256, key2(i) = floor(Z(i) × 1015) mod 256 
 Read permuted image p′′  

 for l ← 1 to 3 do 
  for i ← 1 to M do 
   for j ← 1 to N do 
    if (i = 1 and j = 1) then // 
     ( , , ) ( , , ) 1c i j l p i j l key′′= ⊕  

    Elsif (i ≠ 1 and j = 1) then // 
     ( , , ) ( ( , , ) 1) ( 1, , )c i j l p i j l key c i n l′′= ⊕ ⊕ −  

    Else 
     ( , , ) ( ( , , ) 1) ( , 1, )c i j l p i j l key c i j l′′= ⊕ ⊕ −  
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    End 
   End 
  End 
 End 

4 Simulation results 

In this section, three image data of size 512 × 512 × 3 will be used as input for evaluating 
the performance of the suggested algorithm. In addition, it will be compared to other 
algorithms in the literature to clarify the effectiveness of this algorithm. Figure 6 depicts 
the outcome of the image encryption and decryption process. 

Figure 6 Encryption and decryption results (a) peppers (b) baboon (c) Lena (see online version 
for colours) 

 
(a) 

 
(b) 

 
(c) 

Notes: The second and the third column show the encrypted and decrypted images. 

All tests and experiments were done on a Matlab (R2015a) software and 2.7 GHz  
I7 CPU with 8 GB memory. 
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4.1 Key space analysis 

A Good cryptographic algorithm should have a wide key space in order to enhance their 
resistance to brute force attack. As it is known, the key space must be greater than 2100 
(Seyedzadeh et al., 2015; Yang and Liao, 2018; Chen et al., 2020). 

As we mentioned earlier, the security keys of our algorithm includes 18 parameters, 
such as 6 control parameters ρ0.1, ρ0.2, ρ0.3, ρ0.4, ρ0.5, ρ0.6, 6 fractional-order parameters α0.1, 
α0.2, α0.3, α0.4, α0.5, α0.6 and 6 initial values x0.1, x0.2, x0.3, x0.4, x0.5, x0.6. The precision of 
every initial value is 1014, so the key space size of our algorithm is 1018×14 = 10252 = 2837. 
As a result, our algorithm key space is wide enough to withstand brute force attacks. 

4.2 Histogram analysis 

For studying the effectiveness of encryption algorithms against statistical attacks, we use 
histogram that represents the image pixel value distribution. In which the cipher image 
must have a flat histogram (Li et al., 2015). Figure 7 shows the histograms of the pepper 
image and its cipher image. From Figure 7, it can be seen that the histogram of the cipher 
image looks uniform and completely different from the original image. This means that 
our scheme prevents the attacker from collecting any statistical data and thus prevents 
him from carrying out statistical attacks. 

Figure 7 Histogram of peppers image and encrypted image (a)–(c) histogram of R, G, B 
components of original image (d)–(f) histogram of R, G, B components of encrypted 
image (see online version for colours) 

 
(a)   (b)   (c) 

 
(d)   (e)   (f) 
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4.3 Information entropy analysis 

Information entropy is an important indicator in measuring randomness and 
unpredictability (Cao et al., 2018). The entropy equation is presented as follows: 

( ) ( )( )2
20

( ) log
n

i ii
H m p m p m

=
= −  (4.1) 

where m denotes the information source, n denotes the bit number needed for the symbol 
mi, and p(mi) denotes the probability of symbol mi. 

The ideal entropy value is near to 8. Table 2 shows the entropy values of the various 
encrypted image. Through the results of the table, the entropy values of the various 
images encrypted by our algorithms are near to eight. Our algorithm also provides better 
results compared to those obtained in Liu et al. (2020), Li et al. (2017) and Yang and 
Liao (2018). 
Table 2 Entropy analysis of peppers, baboon and Lena 

Image Plain image Our method Liu et al. 
(2020) 

Li et al. 
(2017) 

Yang and Liao 
(2018) 

Peppers 7.6698 7.9998 7.9971 7.9994 7.9984 
Baboon 7.7624 7.9997 7.9967 / 7.9989 
Lena 7.4767 7.9998 7.9972 7.9971 7.9997 

4.4 Correlation coefficient 

Correlation analysis is an important index for studying the quality of image encryption 
algorithms. It is well known that image pixels are characterised by their strong correlation 
with each other on the horizontal, vertical and diagonal levels. Therefore, good 
encryption scheme algorithms are required to break this link between pixels (Hu and Li, 
2021). Correlation coefficient is given by: 

cov( , )
( ) ( )

xy
x yr

D x D y
=  (4.2) 

[ ][ ]( )cov( ) ( ) ( ) ,x E x E x y E y= − −  (4.3) 

1
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E x x
N =

=   (4.4) 
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i
i

D x x E x
N =

= −  (4.5) 

where N is the total number of pixels, E(x), E(y) are the means of pixel xi and yi, 
respectively. Table 3 displays the results of the correlation coefficient of the Lena cipher 
image of our algorithm compared to other algorithms found in the literature. As shown, 
the correlation values for the original image are close to 1 in all directions while the 
correlation in the cipher image is nearly zero. 
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Table 3 Correlation coefficient in the cipher and original Lena and compare with different 
algorithms 

Channels Direction Original 
Lena image 

Our 
algorithm 

Li et al. 
(2019) 

Chen et al. 
(2020) 

R channel Horizontal 0.9556 0.0026 –0.0025 0.0001 
Vertical 0.9780 –0.0002 0.0913 0.0091 
Diagonal 0.9434 –0.0005 0.0011 –0.0023 

G channel Horizontal 0.9443 –0.0023 0.0058 −0.0025 
Vertical 0.9711 0.0008 –0.0372 −0.0061 
Diagonal 0.9301 –0.0016 –0.0014 0.0058 

B channel Horizontal 0.9280 0.0007 –0.0058 −0.0074 
Vertical 0.9575 –0.0017 0.0036 −0.0059 
Diagonal 0.9030 0.0003 2.1180e–04 0.0015 

The results obtained through our algorithms are much better than those mentioned in 
(Chen et al., 2020; Li et al., 2019). So, our algorithms are able to break the correlation 
between pixels, which is shown in Figure 8. Therefore, our scheme is able to block 
statistical attacks. 

Figure 8 Neighbouring pixel distribution in different directions of Lena (see online version  
for colours) 

 

Notes: The first row shows the original image; the second row shows the encrypted 
image. 

4.5 Differential attack analysis 

In cryptography, two percentage (NPCR) the number of pixel change rate and (UACI) 
unified average changing intensity, are usually used to measure the sensitivity of the 
slight change in the original image and what results when encrypted. Therefore, these two 
percentages are of great importance in determining the effectiveness of the suggested 
scheme facing differential attacks (Wang et al., 2020).The following formulas are used to 
measure NPCR and UACI: 
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255i j

c i j c i j
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L
= ×  (4.7) 

where L is the total number of pixels, C and C1 are pixel value before and after the same 
modification, respectively. The rules for determining D(i, j) are as follows: If c(I, j) ≠ 
c1(i, j) then d(i, j) = 1, otherwise d(i, j) = 0. 

The optimum value mentioned in the literature for NPCR and UACI are 99.6094% 
and 33.4635% respectively (Zhan et al., 2017). We have changed a single pixel of the 
original images to get NPCR and UACI values. The results obtained are shown in  
Table 4. The NPCR and UACI values of our algorithm are very nearly to the ideal values 
compared to the methods mentioned in Liu et al. (2020), Li et al. (2017) and Yang and 
Liao (2018). Thus, the suggested algorithm is very effective against differential attacks . 
Table 4 NPCR and UACI of peppers, baboon and Lena with just one pixel adjustment 

Images 
NPCR (%)  UACI (%) 

Peppers Baboon Lena  Peppers Baboon Lena 
Proposed  99.60 99.61 99.61  33.46 33.47 33.49 
Liu et al. (2020) / 99.636 99.6216  / 33.4702 33.4994 
Li et al. (2017) 99.5845 / 99.5723  33.2703 / 33.3159 
Yang and Liao (2018) 99.61 99.62 99.61  31.03 33.46 32.23 

4.6 Key sensitivity analysis 

Extreme key sensitivity is necessary for any encryption algorithm, as once the key is 
changed by a very small amount, it will result in a massive failure to decrypt and get an 
entirely different cipher image. It means that if the secret key is changed, the decryption 
result will be entirely different. To see the impact of our key sensitivity, we changed the 
value of each key by 10–14, the obtained results are shown in Figure 9. As we can see, 
once the key changes by a small percentage (10–14), we get a different image compared to 
the one that is decrypted with the right key . 

Figure 9 The key sensitivity test of the decrypted image (a) with correct key (b) with  
fractional-order α0.1 + 10–14 (c) with wrong x0.1 + 10–14 (d) with wrong α0.6 + 10–14  
(see online version for colours) 

 
(a) (b) (c) (d) 



   

 

   

   
 

   

   

 

   

    Colour image encryption based on an improved fractional-order logistic map 83    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

4.7 Data loss and noise attacks 

When transmitting the cipher image across the network, it can be dispersed by 
phenomena such as data loss and noise. For this purpose, the noise attack and data loss 
are used to determine the quality of the encryption algorithm in preventing these attacks. 
We added salt and pepper noise of level 1%, 5% and 10% to the encrypted Lena image 
for performing an anti-noise test. 

The obtained results are shown in Figure 10; we have also cropped the encrypted 
image in different sizes, which is shown in Figure 11. Through Figures 10 and 11, and 
despite the noise and data loss, the decipher image contains the majority of the original 
image information, which shows that our algorithms are effective against noise attacks 
and data loss. 

Figure 10 Decryption process with salt and pepper nose (see online version for colours) 

 

Figure 11 Data loss attack analysis results (a) 64 × 64 data loss (b) 128 × 128 data loss  
(c) 128 × 513 data loss (d) decipher image of (a) (e) decipher image of (b) (f) decipher 
image of (c) (see online version for colours) 

 
(a) (b) (c) 

 
(d) (e) (f) 



   

 

   

   
 

   

   

 

   

   84 I. Haddad et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.8 Speed analysis 

In terms of cryptography, a good encryption scheme must be characterised by high 
operating speed. We used the Matlab R2015a environment with an Intel I7-7500U CPU 
with @ 2.7 GHZ and 8 GB RAM on Windows 10 to run our algorithm. Table 5 shows 
the results of the encryption speed test. As can be shown, our scheme is faster than the 
other algorithms in Huang et al. (2019) and Wu et al. 2017 so it is reliable for real 
applications. 
Table 5 Speed analysis 

Image Proposed scheme Huang et al. (2019) Wu et al. 2017 
512 × 512 2.32 s 3.5145 s 3.76s 

5 Conclusions 

In this paper, we proposed new image encryption algorithms using an improved 
fractional-order logistics map, where this map has better features than the classic 
fractional logistic map, including a larger key space, a wider range, a uniform data 
distribution and more parameters. Which is confirmed by the analysis of the bifurcation 
diagram and the Lyapunov exponent. 

The results of performance simulations and analyses proved that our algorithm 
possesses excellent properties, including a large key space in addition to the sensitivity to 
small key changes and a low correlation compared to previous algorithms. It also 
provides better protection against hacker attacks such as statistical and differential 
attacks. 
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