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Abstract

The automated decision paradigms presented in this work address the false positive (FP) biopsy 

occurrence in diagnostic mammography. An EP/ES stochastic hybrid and two kernelized Partial 

Least Squares (K-PLS) paradigms were investigated with following studies:

• methodology performance comparisons

• automated diagnostic accuracy assessments with two data sets.

The findings showed:

• the new hybrid produced comparable results more rapidly

• the new K-PLS paradigms train and operate Essentially in real time for the data sets 

studied.
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Both advancements are essential components for eventually achieving the FP reduction goal, 

while maintaining acceptable diagnostic sensitivities.

Keywords

kernel-partial least squares; evolutionary programming/evolutionary strategies derived Support 
Vector Machines; machine intelligence; computer aided diagnosis/classification

1 Introduction

Carcinoma of the breast is second only to lung cancer as a tumour-related cause of death in 

women. It has been reported by the National Cancer Institute (NCI) that 212,920 new cases 

and 40,970 deaths will occur just in the USA (National Cancer Institute, 2006). It also has 

been proposed that mortality from breast cancer could be decreased by up to 25% provided 

that all women in appropriate age groups are regularly screened (Strax, 1989). Currently, the 

method of choice for early screening of breast cancer is conventional x-ray mammography, 

due to its general widespread availability, low cost, speed, and noninvasiveness. At the same 

time, while mammography is sensitive to the detection of breast cancer, it has a low Positive 

Predictive Value (PPV), resulting in costly and invasive biopsies that are only 15–34% 

likely to reveal malignancy at histological examination (Lo et al., 1997).

Computational intelligence has been applied to automated breast cancer diagnosis by several 

researchers. A brief survey of this research is provided here. Earlier work (Floyd et al., 

1994) demonstrated the applicability of back propagation-trained Multiple Layer Feed 

Forward Neural Networks (MLFNs) to this task. Evolutionary-Programming (EP) based 

feed forward networks were applied by Fogel et al. (1995, 1997, 1998a, 1998b) and Land et 

al. (2000a). These applications were able to achieve similar or better results than those 

trained by back propagation, but with much simpler architectures (i.e., fewer nodes in the 

hidden layer). EP based Linear Discriminate Analysis (LDA) (Fogel et al., 1998b), and 

adaptive boosting/EP hybrid (Land, et al. 2000b) also were investigated as potential 

classification mechanisms. More recently, Other researchers have investigated Supprot 

Vector Machines (SVMs), genetic programming, and Neureal Networks (NNs) using image 

derived features as a means of mass classification (Mavroforakis et al., 2006; Nandi et al., 

2006; Verela et al., 2006), respectively. Delogu et al. (2007) also used image based features 

with a NN classifier (Delogu et al., 2007). In addition to using SVM classification, these 

researchers (Mavroforakis et al., 2006; Nandi et al., 2006) also applied other various 

classification methods including LDA and NN approaches. Other researchers also used LDA 

for mass classification with features derived from the image automatically (Sahiner et al., 

2001; Shi et al., 2008). Other researchers considered temporal change using SVMs, which 

showed the temporal features contribute to the classification performance (Timp et al., 

2007). Habas et al. used automatically derived features for inputs into various 

methodologies, which included a Back Propagation Neural Network (BPNN), a General 

Regression Neural Network (GRNN), and an SVM coupled with decision model reliability 

analysis using a Knowledge-Based Computer-Assisted Detection (KB-CADe) system 

(Habas et al., 2007). In the KB-CADe approach suspect, queried regions of interest are 

compared with cataloged cases that are relevant (Habas et al., 2007). The knowledge base of 
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the KB-CADe system should improve as the number of cataloged known samples increases, 

but comparisons will become computational inefficient due to stored redundancies and the 

shear number of comparisons (Tourassi et al., 2007). Other researchers applied both decision 

tree learning and case-based reasoning approaches for predicting breast biopsy outcomes 

from BI-RADS assessments (Elter et al., 2007); comparison with a NN decision shows the 

methods are about equivalent. The case-based reasoning approach for combing medical 

history and the BI-RADS assessments was developed earlier by these researchers (Floyd et 

al., 2000). It is rather difficult to make performance comparisons between these methods 

because the input variables and number of samples varied considerably from one study to 

the next.

This paper extends the knowledge gained from our previous research in machine 

intelligence applications in the following ways: First, most iterative methods in current use 

to optimise SVM parameters are iterative time consuming processes, which can sometimes 

yield sub-optimal values, resulting in performance degradation. In many cases, optimising 

the parameters required by the SVM involves a simple trial and error approach. This 

frequently requires the user to perform a large number of trials with no real guarantee of 

producing the best possible SVM. In order to address this problem of optimising the 

parameters used to configure the SVM, an EP/ES hybrid methodology was developed and 

applied. This methodology evolves stochastically finding the regularisation parameter (C) 

and the kernel-specific mapping parameters used by the SVMs. Secondly, SVM technology 

as well as Kernalized Partial Least Squares (K-PLS) use the concept of similarity, which 

motivates the design of kernels for particular types of data or applications. That is, an 

understanding of environment data similarity between (an within) the training and validation 

sets may reflect prior knowledge, which could suggest similarity measures provided by a 

specific kernel type in a given application. Consequently, a section on similarity measures 

for different frequently used kernel type is provided. Finally, the Partial Least Squares (PLS) 

linear approach for feature reduction is extended to nonlinear spaces by using the Gaussian 

kernel mapping trick.

The remainder of the paper is organised as follows: Section 1.1 discusses the False Positive 

(FP) biopsy artifact in diagnostic mammography, which is a consequence of maintaining a 

high true positive breast cancer classification rate. The methodology Section 2 describes: the 

development of the EP/ES stochastic hybrid SVM, the important topic of kernel function 

and similarity, brief theoretical background of why SVM produce a global minimum, 

statistical learning theory and decision methods, Kernalized PCA and PLS as well as kernel 

defined feature spaces. The two data sets utilised in this research are then described, which 

is followed by a results section using these machine learning paradigms. The results section 

includes:

• performance comparison of the new EP/ES SVM stochastic hybrid with the 

standard iterative method of training using an identical data set and statistical cross 

validation methods

• performance tradeoff and diagnostic accuracy of the auto-K-PLS, K-PLS and the 

EP/ES SVM hybrids using the MRM and non-image data sets
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• EP/ES SVM hybrid and K-PLS classification accuracies using the BIRADS and 

clinical feature data set.

1.1 False Positive (FP) artifact problem

There is a well known FP biopsy artifact in diagnostic mammography, which is a 

consequence of maintaining a high true positive breast cancer classification rate. It is 

estimated that about 80% of the biopsies performed in current diagnostic mammography 

prove to be FP. To put the current state of diagnostic mammography in perspective we quote 

verbatim the findings of a recent report sponsored by the Agency for Healthcare Research 

and Quality (AHRQ, 2006). This report (AHRQ, 2006) provided a systematic review of 

diagnostic ultrasound, magnetic resonance, position emission scanning, and scinti-

mammography (it included 81 published reports) that resulted in these findings based on 

assuming a 2% false negative rate:

• an average women with abnormal biopsy due to a mammogram has 20% risk of 

breast cancer

• for 1000 women with negative PET scans 924 would avoid a needless biopsy, but 

76 would have missed cancers

• for scintimammogram the corresponding numbers are 907 avoided biopsies and 93-

missed cancers

• for MR there are 962 avoided biopsies and 38-missed cancers

• for ultrasound 950 avoided biopsies and 50 missed cancers, respectively.

The conclusion indicates most women sent for biopsy do not have cancer, and none of these 

adjunctive tests can replace biopsies if a less than 2% false negative rate is deemed 

acceptable.

To address this low diagnostic specificity, we are following a holistic approach in 

developing an automated decision tool for adjunctive use in diagnostic mammography with 

conventional x-ray mammograms. This research includes developing, comparing, and then 

determining the best decision methodology, which involves:

• Evolutionary Programming (EP)/Evolutionary Strategies (ES) stochastic SVM 

hybrids (EP/ES SVMs)

• KPLS analysis.

The work also includes developing novel methods of determining feature selection, which is 

one of the major emphasis of this current paper, as well as the appropriate set of input 

features for the decision device. Consequently, feature selection, as described here, is of 

major importance. We propose that a data fusion approach is needed to improve the 

diagnostic specificity, where the features are acquired from the source best able to provide 

the feature. We are currently investigating breast cancer risk factors, Breast Imaging 

Reporting and Data System (BI-RADS) lesion descriptors as input features to the decision 

device(s) as well as other features derived from the image (conventional mammograms) 

with automated methods. In our previous work the radiologist’s overall BI-RADS 
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assessments (the ratings that provide the overall indication of negative findings through a 

highly suspicious findings of malignancy) were also incorporated into the automated 

decision process, which represents a novel approach (Land et al., 2005a) for automated 

analyses; although subjective, these descriptors appear to be reliable input features. Often, 

the automated decision model application attempts to predict some form of the overall 

patient assessment. This combined approach represents a means to an end of developing a 

non-invasive automated system with these attributes (design requirements)

• trained-operated in real time

• provides a probability of malignancy output

• is relatively inexpensive-easily portable

• most importantly, reduces a significant number of FP biopsies while not reducing 

the current acceptable sensitivity rates in mammography.

For example, in this work and the initial work in references (Land et al., 2005a, 2006), we 

showed the BI-RADS mass lesion descriptors coupled with age were strong features for 

predicting the probability of malignancy for data obtained from x-ray film mammography 

specific to mass-type abnormalities. To advance the initial work further, the data used for 

the work presented here was obtained from patients undergoing MRM diagnostics. This 

MRM patient data set represents subset of the total diagnostic patient group, which is 

described below. Likewise, the breast pathology in this new dataset is not restricted to a 

particular type of breast malignancy but may contain any type of abnormality found in 

breast tissue. MRM may also be applied when the other forms of diagnostic mammography 

are ineffective and it requires the injection of contrast agents. Although not an ideal data set, 

many of the other traditionally breast cancer risk factors were available with this data. For 

future model building efforts, in this work we seek relationships that may exist between data 

not related to the image acquisition (for example, some reproductive factor) and spatial 

features observable in the MRM image. If relationships are found between non-image based 

factors and image-observable features, it may indicate that a more thorough investigation of 

spatial features observable in mammograms is needed in conjunction with the important 

non-image based features. Eventually, the various segments of this ongoing research project 

will be combined into a total package and validated for clinical operation.

2 Methodology

2.1 Evolutionary programming

Based on the work of Fogel (1995) the evolutionary process as implemented in this study 

evolves the parameters for a collection of SVMs. A generic description of this process is as 

follows:

• A population of candidate solutions (SVMs) is randomly configured.

• Mutation. Each of these candidate solutions is then copied and mutated, yielding a 

solution pool of twice the original size.

• Selection. All elements of this pool are scored using an objective function. These 

objective function scores are then used to order the candidate solutions from the 
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‘most fit’ to the ‘least fit’. Although this ordering may be as simple as ranking the 

candidate solutions in order by their objective function scores, in practice better 

results usually are obtained from using tournament selection methodologies. With 

tournament selection, each candidate solution competes against a random subset of 

the remaining solutions. Finally, the upper 50% of the solution pool is selected to 

continue as the basis for the next generation and the remaining 50% is ‘killed off’ 

(discarded) to reduce the pool to the original population size. (See section on 

tournament selection for a more complete description of this process.)

This process is generically depicted in Figure 1.

The mutation and selection cycle is repeated for a pre-specified number of generations. If 

this cycle results in population elements (candidate solutions) that increase in fitness, the 

average and maximum population fitness will asymptotically increase to some maximum 

value as the population is evolved over several generations.

The mutation process implemented in this study uses a self-adaptive mutation vector. This 

vector stores the variances corresponding to the normal distribution being sampled for each 

configurable parameter. During mutation, each element of the mutation vector is updated 

using the following expression:

(1)

where n is the total number of configurable parameters being evolved. (Note, here n is not 

the population size, it is the length of the v vector for each element of the population.) N(0, 

1) is a standard normal random variable sampled once for all n parameters of the v vector. 

Ni(0, 1) is a standard normal random variable sampled for each of the n parameters in the v 

vector.

The second step of this more rigorous mutation process comprises the updating of each 

configurable parameter for all elements of the evolving population. If we let the vector xi 

denote these elements for each of the individual member of the population, this update 

process will be accomplished as follows:

(2)

where i is the ith component of the x vector. x is the vector containing the current values of 

the configurable parameters, v′i is the variance computed by Equation (1) and C is a 

standard Cauchy random variable (this random variable has slightly longer tails than a 

normal random variable and usually offers slightly better mutation performance). This new x
′i vector is then computed, in turn, for each child element of the next generation.

While one anticipates that the mutation process will improve the fitness of individual 

population elements, the objective function is used to sort out which elements to keep and 

which to discard. As such, the objective function chosen affects the ability of the EP process 

to generate an overall population, which increases in fitness. Typically (and in this study), 

this objective function is based on the error of a candidate solution over the training data – 
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solutions that make fewer mistakes on the training data are declared ‘more fit’ and are kept. 

Because of the objective function’s usage in judging the fitness of candidate solutions, it is 

often called the fitness function.

2.2 Tournament selection

Three types of selection processes were investigated as part of this research: rank order, and 

tournament selection with and without replacement. Rank order selection is the simplest, 

where after the mutation process of each generation, each population sample is evaluated 

against the elements of the training set and these 2N (N = number of samples in the training 

set) samples then ‘rank ordered’ based on the number of correctly classified samples of the 

training set. The lowest N population samples are then ‘killed off’, thereby reducing the 

population size back to N.

Tournament selection (with and without replacement) is a bit more complex, where selection 

without replacement is depicted in Figure 2. The advantage of this approach is that the 

population elements undergo more competitions, thereby allowing samples with initially low 

fitness to improve and, consequently, not be eliminated early, which could occur with a 

simpler process, such as rank order selection. The process operates as follows. Each of the 

2N population elements is deterministically selected, say , (see Figure 2) as a candidate 

sample.

Then  samples (usually ) are randomly selected, which are competed against the 

first deterministically selected sample. If the  sample wins the competition (classifies the 

most samples in the training set correctly) then  keeps its place in the 2N array of samples 

and its ‘win count’ is increased. If  looses, then the win count of randomly selected 

sample subset’s win count is increased. This same process is repeated for each of the 2N 

samples and the resultant population set is reordered based on the number of win counts, 

with the lower ranking N population elements then being ‘killed off’, thereby reducing the 

population size again to N.

Tournament selection with replacement operates in the same way, except the samples are 

replaced if they loose the competition. The win count is also increased for either the 

deterministically selected sample or the specific element belonging to the  subset of 

randomly selected samples which won that specific competition.

2.3 Evolutionary programming process provides global minimum

This section describes the methodology by which the software paradigm is developed for 

implementing the family of SVMs so that a global minimum may be realised. This is an 

important component because SVM statistical learning theory addresses the problem of how 

a global minimum is theoretically possible by minimising the true risk as opposed to the 

empirical risk. The reader will recall that training neural networks by back propagation, 

using the gradient method, almost always results in a local minimum, as only the empirical 

risk is minimised.

A great majority of the kernels utilised in SVM classification problems involve one 

parameter, which has to be optimised (i.e., the σ for the Gaussian or exponential function, or 
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the order of the spline or polynomial). The other is the regularisation parameter, C, which 

specifies the upper bound on the size of the Langrangian multipliers. A second parameter 

may sometimes be required for some kernels, such as the hyperbolic tangent. Consequently, 

the search (or solution) space can generally be specified by a two (or three) dimensional 

search apace, where one axis specifies the bounds on the regularisation parameter while the 

other axis specifies the parameter characterising the mapping kernel K(xi, xj) = ϕ(xi)•ϕ(xj). 

For example, in the Figure 3, one axis could represent the kernel parameter, the other axis 

the regularisation parameter while the 3rd axis could represent the area under the receiver 

operator characteristic curve (AZ) index. It is clear that if the grid is partitioned into grids of 

small size, some of these elements will be over or at least close to the global minima. 

However, a more dense SVM distribution will require a large population size, which will 

result in a longer solution time. Consequently, we have implemented a dual fine/course 

solution approach, where a large initial set of population elements is used, which is 

optimised over only a small number of generations. Then, if necessary, for those population 

samples in the region of the global minima, a coarse method is utilised, which contains a 

much smaller population size, but can be optimised over a much larger number of 

generations in less time.

2.4 Support vector machines

We now summarise SVMs (Cristianini and Shawe-Taylor, 2000; Gunn, 1998; Burges, 

1998). This discussion provides the theoretical explanation for why SVMs can always be 

trained to a global minimum, and thereby should provide better diagnostic accuracy, when 

compared with neural network performance trained by back propagation. Assume there exist 

N observations from a data set. Each observation (or training example) consists of a vector 

xi containing the input pattern and a corresponding known classification yi. The objective of 

the learning machine is to formulate a mapping xj → yj Now consider a set of functions f(x, 

α) with adjustable parameters a, that defines a set of possible mappings x → f(x, α). Here, x 

is given and α is chosen. In the case of a traditional neural network of fixed architecture, the 

α values would correspond to the weights and biases. The quantity R(α), known as the 

expected (or true) risk, associated with learning machines is defined as:

(3)

where, p(x, y) is an unknown probability density function from which the examples were 

drawn. This risk function is the expected (or true) value of the test (or validation) error for a 

trained learning machine. It may be shown that the best possible generalisation ability of a 

learning machine is achieved by minimising R(α), the expected (or true) risk. This 

generalisation bound, for binary classification, holds with the probability of at least 1 − η (0 

≤ η ≤ 1) for all approximating functions that minimise the expected (or true) risk.

(4)

The first term on the right hand side of the above equation is known as the ‘empirical risk’, 

where the empirical risk Remp(α) is expressed by:
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(5)

This function is a measure of the error rate for the training set for a fixed, finite number of 

observations. This value is fixed for a particular choice of α and a given training set (xi,yi). 

The second term in the above expression is the “Vapnik-Chervonenkis (VC) confidence 

interval”. This term is a function of the number of training samples N, the probability value 

η and the VC dimension h. The VC dimension is the maximum number of training samples 

that can be learned by a learning machine without error for all possible labelling of the 

classification functions f(x, α), and is, therefore, a measure of the capacity of the learning 

machine. In traditional neural network implementations, the confidence interval is fixed by 

choosing a network architecture a priori. The function is minimised by generally obtaining a 

local minimum from minimising the empirical risk through adjustment of weights and 

biases. Consequently, neural networks are trained based on the Empirical Risk Minimisation 

(ERM) principle. In a SVM design and implementation, not only is the empirical risk 

minimised, the VC confidence interval is also minimised by using the principles of 

Structural Risk Minimisation (SRM). Therefore, SVM implementations simultaneously 

minimise the empirical risk as well as the risk associated with the VC confidence interval, as 

defined in the above expression. The above expression also shows that as N → ∞, the 

empirical risk approaches the true risk because the VC confidence interval risk approaches 

zero. The reader may recall that obtaining larger and larger sets of valid training data would 

sometimes produce (with a great deal of training experience) a better performing neural 

network using classical training methods. This restriction is not incumbent on the SRM 

principle and is the fundamental difference between training neural networks and training 

SVMs. Finally, because SVMs minimise the true risk, they provide a global minimum.

2.5 Kernel functions and similarity

Consider now kernel functions and their application to SVMs. SVM solutions in nonlinear, 

non separable learning environments, utilise kernel based learning methods. Consequently, it 

is important to understand the practical implications of using these kernels. Kernel based 

learning methods use a kernel as a nonlinear similarity to perform comparisons. That is, 

these kernel mappings are used to construct a decision surface that is nonlinear in the input 

space, but has a linear image in the feature space. To be a valid mapping, these inner product 

kernels must be symmetric and also satisfy Mercer’s theorem (Cristianini and Shawe-

Taylor, 2000). The concepts described here are not limited to SVMs, and the general 

principles also apply to other kernel based classifiers as well.

A kernel function should yield a higher output from input vectors which are very similar 

than from input vectors which are less similar. An ideal kernel would provide an exact 

mapping from the input space to a feature space, which was a precise separable model of the 

two input classes; however, such a model is usually unobtainable, particularly for complex, 

real-world problems, and those problems in which the input vector provided contains only a 

subset of the information content needed to make the classes completely separable. As such, 

a number of statistically-based kernel functions have been developed, each providing a 
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mapping into a generic feature space that provides a reasonable approximation to the true 

feature space for a wide variety of problem domains. The kernel function that best represents 

the true similarity between the input vectors will yield the best results, and kernel functions 

that poorly discriminate between similar and dissimilar input vectors will yield poor results. 

As such, intelligent kernel selection requires at least a basic understanding of the source data 

and the ways different kernels will interpret that data.

Some of the more popular kernel functions are the (linear) dot product, the Gaussian Radial 

Basis Function (GRBF), the Exponential Radial Basis Function (ERBF), and the polynomial 

kernel, which will be discussed below. However, specific kernels can be constructed using 

attributes from the feature space. That is, the kernel is developed by beginning with the 

features and then formulating the inner product. An advantage of this approach is that there 

is no need to check for the positive semi-definiteness because it follows automatically from 

the definition of the inner product (Cristianini and Shawe-Taylor, 2000).

The dot product and polynomial kernels are given by:

(6)

and

(7)

respectively, where u. are v, two arbitrary input vectors as defined above. Both use the dot 

product (and therefore the angle between the vectors) to express similarity; however, the 

input vectors to the polynomial kernel must be normalised (i.e., unit vectors). This restricts 

the range of the dot product to ±1, yielding kernel outputs between 0 and 2d, where d is the 

degree of the polynomial. The implication of the dot product kernel having a positive and 

negative range (vs. the strictly non-negative polynomial kernel) is that the classification 

process can learn from the unknown vector’s dissimilarity to a known sample, rather than 

just its similarity. While the dot product kernel will give relatively equal consideration to 

similar and dissimilar input vectors, the polynomial kernel will give exponentially greater 

consideration to those cases which are very similar than those that are orthogonal or 

dissimilar. The value of d determines the relative importance given to the more similar 

cases, with higher values implying a greater importance. Measures of similarity for these 

two kernels are depicted in Figures 4 and 5.

The GRBF and ERBF kernels use the Euclidean distance between the two input vectors as a 

measure of similarity instead of the angle between them (see Figure 6).

(8)
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Since ∥ μ − v∥ is always non-negative, both kernels achieve a maximum output of one when 

∥ μ − v∥ = 0, and approach zero as ∥ μ − v∥ increases. This approach is made faster or 

slower by smaller or larger values for σ, respectively. Figure 6 shows the output of the 

GRBF kernel as a function of the squared distance between the input vectors for several 

different values of σ. The same figure could demonstrate the ERBF by relabelling the 

horizontal axis with the distance (instead of squared distance) between the input vectors.

It is clear from the figure that the distance at which the kernel output reaches approximately 

zero varies with sigma, and therefore the choice of sigma for this kernel is essential in 

properly distinguishing the level of similarity between two input vectors. If the value of 

sigma is too small – that is, most pairs of vectors are far enough apart that the kernel output 

is near zero – the SVM will have too little information to make an accurate classification. If 

the value of σ is too large, so that even very distant pairs of input vectors produce a 

moderate output, the decision surface will be overly smooth. This may mask smaller 

distinctive characteristics that exist in the ideal decision surface, and will also increase the 

effect of outliers in the training data have on the classification of an unknown point.

2.6 Statistical learning theory/decision methods

Beginning with the example of least squares, this section will now address essential decision 

learning theory concepts necessary for these applications, which are:

• Data items are embedded into a vector space called a feature space.

• Ascertaining linear relations developed from the data items in a feature space.

• Using kernels in an attempt to design and implement algorithms so that the 

coordinates of the imbedded points are not directly used. Only the pair wise inner 

products of these are used.

• From the above item, the pair wise inner products can be computed efficiently 

using a kernel function directly from the original data items.

In this work, new decision paradigms are proposed for use in clinical applications. It is 

imperative to show exactly why these methods are preferable to existing techniques. The 

natural way to show this is by taking a comparative look the mathematical foundations for 

the various decision methodologies. This is provided below as evidence that the proposed 

methods will generalise and are scalable.

The reader should also consult reference (Shawe-Taylor and Cristianini, 2004) for a 

comprehensive discussion of statistical learning theory. For example, Shawe-Taylor and 

Cristianini (2004), describes: the theory of kernel functions, how statistical stability can be 

controlled, develops tools for analysing data in a kernel-defined feature space, creates a 

novelty detection algorithm, studies discovering patters using eigen-analysis, and develops a 

number of approaches for creating kernels.

2.7 Overview of the decision methods

• Linear regression may be used when linear relations between the input variables 

and the output decision are assumed. However, the relationship may not be linear 
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and the solution may not be exact, which presents as a competing compromise 

when determining the solution.

• Principal Component Analysis (PCA) may be introduced to the linear problem 

discussed above, which has the desirable effect of reducing the dimensionality of 

the data set but does not address the possibility of non-linear relationships. PLS 

may also be used to reduce the dimensionality with some advantages over PCA in 

that it represents an intelligent learning system.

• A nonlinear mapping may be found that transforms the original problem into the 

linear-type problem discussed above. This relies on determining the proper kernel 

that allows the data transformation. Once this is found, the PLS may be applied, 

which gives the KPLS approach (kernel-PLS).

• The SVM development is provided because it is better known for its ability in 

achieving a global minimum in training, whereas KPLS’s ability to achieve this is 

less known but theoretically possible. The ability to train the KPLS in near real 

time (for data bases of reasonable size) is a significant main advantage over the 

SVMs, trained by gradient methods. Thus, the K-PLS represents the new decision 

method and the SVM is used solely as a means of comparison as well as is the 

neural network.

2.8 Primal Linear Regression (PLR)

The objective of PLR is the standard problem of finding a function for where the differences 

between training pairs are small. This will be accomplished by the most commonly chosen 

measure of ‘collective’ discrepancy (sum) between the training data (the reader will note 

that this regression analysis is formulated as a learning problem) and a particular function, g, 

and is represented by:

(9)

Observe that £{(xj,yj),g} = |ξi|2 (which is the same notation) both represent the squared loss 

error of g on the sample (xi, yi) and £(f, S) denotes the collective loss of a function f on the 

training set S. One can define the regression learning problem with this simple 

formulation: The learning problem is that of identifying a vector w ⊂ ℑ, which 
minimises the collective loss.

This problem was originally studied by Gauss and is commonly known as least squares 

approximation. The collective loss is minimised by finding w such that the collective loss is 

minimised as shown below. First, define ξ = [y−Xw]. Note that X is defined as the matrix 

whose rows are the row vectors, X = {x1, x2
T, x3

T,………. x1
T} and y denotes the vector y 

= {y1, y2, y3…y1}. Note that, the Equation (9) expression is related to this linear problem by 

letting the g = {g1, g2, g3…g1} with g = Xw.

The loss is given by: Loss = £ (w, S) = |ξ| = [y − Xw ] T [y − Xw], where T is the transpose 

of the vector difference. To find the correct w, form:
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(10)

which becomes: (XTX)w = XTy. Solving for w gives, w = (XTX)−1 XTY. Although 

Equation (10) has the same form as the standard least squares approximation, there is a 

fundamental difference in the formulism. In the standard least squares approach, the form of 

w is normally assumed and then the system is minimised with respect to this assumed 

functional relation in contrast to finding the unique w = wCL that minimises the collective 

loss, which is the intent here. That is, many least squares solutions exist that satisfy equation 

(10). However, only one solution, g = g(x, wCL), exists that will minimise the collective 

loss, which is characterised by the vector wCL.

If (XTX)−1 is singular (meaning there is not enough data to ensure that (XTX)−1 is 

invertible), a pseudo inverse is used to solve the problem. This pseudo inverse will ascertain 

w, which satisfies (XT X)w = XTy, with a minimum norm. Alternately, one can trade- off 

the size of the norm against the loss, which is the process known as ridge regression. That is, 

ridge regression corresponds to solving the optimisation problem: Min £(w, S) = min λ |w|2 

+ Σ[yi − g(xi)]2, where λ = the positive number, which establishes the trade off between the 

norm and loss and, consequently, controls the degree of regularisation. Ridge regression is 

further discussed in Cristianini and Shawe-Taylor (2000).

2.9 Non-linear mappings

The methods presented thus far primarily addressed the problem of identification of linear 

relationships between an output and features characterised by the expressions xi. However, 

most practical problems can only be estimated as a nonlinear mapping from the xi into the 

yi. This mapping leads to the definition of a kernel function (ℑ), which is: A kernel function 

is one that for all x, z ε X, satisfies

(11)

where ϕ is a mapping from and input into a feature space F, defined as:

(12)

More will be said about kernel defined feature space subsequently.

2.10 Kernel principal component analysis (K-PCA)

PCA is used to reduce the effective dimensionality of a data set, which causes the 

representation (of the information content in the data) to lie on a lower dimensional surface. 

This well known fact is very useful in the solution of practical problems because fewer input 

variables are needed to characterise the data. Consequently, one can then re-construct the 

data from a ‘new’ set of coordinates. For a linear system, the problem is equivalent to 

projecting data onto a smaller dimensional linear subspace so that the distance between the 

vector and its projection is minimised. Minimising the average squared distance between the 

vectors and their projections is equivalent to projecting data onto a subspace spanned by the 

first k eigenvectors of the XTX matrix, given by: XTXvI = λivi. Consequently, the 
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coordinates of a new vector X in this new space is obtained from its projection onto the 

eigenvector (X, vc) with c = 1, 2, 3…, k.

The more complex problem of adapting this PCA approach to a non-linear system is 

considered now, which is provided by a mapping. This mapping is accomplished by first 

embedding the data into a feature space. Kernels are used to define the feature space, since 

an algorithm can be rewritten using a format, which requires only inner products between 

the inputs. Therefore, non-linear relationships between data variables may be found by 

embedding this data into the kernel-induced feature space, where linear relations can be 

found by means of PCA. This approach has come to be known as kernel PCA.

2.10.1 Partial Least Squares (PLS) regression—PLS is another method that reduces 

the number of variables needed to optimally characterise the environment. PLS has one 

major advantage when compared to PCA and that is both independent and dependent 

variables are used in the compression step. Adding this dependent variable usually has a 

profound effect on the PLS predictive performance when compared to PCA. Secondly, 

because the independent variables are compressed in such a way to achieve an apriori 

specified output, PLS can be characterised as a supervised leaning process, and, therefore, 

defined as an intelligent process. The collective result of these advantages is that an 

intelligent linear training method results, which runs in real time (for data sets of reasonable 

size), and whose results (Land et al., 2005a, 2005b) have been shown to agree with 

statistical learning theory paradigms that theoretically have been demonstrated to provide 

global minima.

PLS was originally introduced by these researchers (Wold, 1975; Wold et al., 2001) who 

were motivated by finding a practical solution to data analytic problems in econometrics and 

the social sciences. The same fundamental problem is addressed as that for PCA: to fit a 

calibration model to empirical data, and then use this model to predict certain outputs, given 

a set of sparse data, not ordinarily large enough to characterise all the environment variables 

(i.e., an undetermined system where an undetermined system would result when using 

primal linear regression). Therefore, PLS can be viewed as a better Principal Components 

Analysis (PCA). In PLS data are first transformed into a different and non-orthogonal basis, 

similar to Principal Component Analysis (PCA), and only a few (the most important) PLS 

components (or latent variables) are considered for building a regression model (just as in 

PCA). The difference between PLS and PCA is that the new set of basis vectors (similar to 

the eigenvectors of XTX in PCA) is not a set of successive orthogonal directions that explain 

the largest variance in the data, but are actually a set of conjugant gradient vectors to the 

correlation matrices that span a Krylov space (Ipsen and Meyer, 1998; Awais, 2007). Just 

like in PCA, the basis vectors can be peeled off from the data matrix X successively in the 

NIPALS algorithm (Nonlinear Iterative PLS), also introduced by Wold (1996) by 

approximating X as X = TPT (similar to X = TB in PCA, where the T contains the scores 

and B is a matrix of eigenvectors corresponding to the largest eigenvalues for XTX).

PLS is sometimes called abstract factor analysis, or rank reduction, because physically 

significant quantities comprising (and within) the system cannot always be identified 

directly by using the mathematical modelling process (Malinowski, 1977). However, the 

Land et al. Page 14

Int J Funct Inform Personal Med. Author manuscript; available in PMC 2015 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



factor analysis method of PLS can be of significant help in identifying key environment 

factors in the data, which can be extracted from the environment, and used by the PLS 

modelling process. Furthermore, PLS is a ‘full spectrum approach’, which means that 

efficient outlier techniques can be used by identifying residuals resulting from the PLS 

process. These outliers are those environment samples which are “out of the nominal range”, 

and therefore not representative of valid training samples. The practical consequence of 

using this capability means that these methods may be employed to ‘clean’ the data sets of 

those contradictory samples that can degrade CAD classification and diagnostic 

performance. Consequently, estimated output can also be carefully examined to ascertain if 

these techniques should be used (Martens and Naes, 1989; Haaland and Thomas, 1988). The 

authors are not aware that comparable techniques exist for the standard multilayer feed 

forward neural network, trained by back propagation.

2.10.2 Kernel defined feature space—Kernel defined feature mappings are discussed 

next. Previously, it was stated that non-linear relationships between data variables may be 

found by embedding this data into a kernel induced feature space. This kernel ‘trick’ is used 

in PLS resulting in K-PLS. That is, consider now the following embedding map: ϕ : X ∈ ℜn 

⇒ ϕ (X) ε F ⊆ ℜN The objective of the map is to convert the non-linear relations into 
linear ones. This map will therefore reflect the expectations regarding the relation y= g(X), 

which must be learned. That is, the mapping will ‘recode’ the data set S as: S = {ϕ((x1), y1), 

ϕ((x2), y2), ϕ((x1), y1)}. This mapping of the data set is from nonlinear input space to a 

linear feature space. That is, the environment data representation in the input X space is 

non-linear. However, after the xi data are processed by the ϕ((xi), yi) function, the data 

characterised by this mapping is linear, with the happy result that linear techniques may be 

used on the mapped data while preserving the non-linear properties represented in the input 

space. This mapping is accomplished, as previously stated, by using a valid kernel function.

In summary, the purpose of this kernel function is to map the data into a feature space where 

the original non linear pattern (or environment) now appears as linear. The practical 

consequence is that linear techniques may be applied to the feature space data without in any 

way disturbing the nonlinear environment properties in the input space. Adding this kernel 

induced capability to the PLS approach already described means that a real time, non-linear 

optimal training intelligent method now exists, which can be used to perform CAD 

diagnosis. A second advantage of this approach is that the Kernel computes inner products 

in the feature space directly from inputs.

3 Data set descriptions

Two data sets, described below, were used to evaluate these new EP/ES Statistic SVM 

learning system and the K-PLS machine intelligence paradigms.

3.1 Magnetic resonance mammography data set

The Magnetic Resonance Mammography (MRM) data set consisted of 395 samples, 

approximately equality divided between cases and controls. All cancer-positive cases were 

pathology verified. The patient population represents a subset of those patients encountered 

in diagnostic mammography that are undergoing diagnostic MRM. The data is retrospective 
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and therefore was acquired with no specific imaging protocol. This collection of MRM 

subjects are patients who

• have a known diagnosis of cancer (to determine extent of disease, evaluate for 

synchronous lesions)

• have equivocal mammogram (suspicious mammogram) finding but not clearly 

localised

• require follow-up after therapy (for example, dense breasts in an XRT/lumpectomy 

patient).

The collection also consists of patients that were scanned prior to their surgeries (known 

cancer positive patients). The cases that have an equivocal mammogram are usually benign 

and are followed by repeat MRM, ultrasound, or x-ray mammogram. If an equivocal finding 

looks suspicious, it is biopsied. The patient data used as input features for the Logistic 

Regression (LR) modelling may be divided into two categories (I) non-image type (NI), and 

(II) and image type (IM) features observable in the MRM image. The NI features were

• patient age

• race/ethnicity

• weight

• age of menarche

• duration of menstruation

• age of menopause

• number of full term deliveries

• duration of hormone replacement therapy

• family history of breast cancer (yes or no)

• cigarette smoking (yes or no).

The IM based features were lesion

• size

• shape

• margin.

Since MRM requires contrast injection, the lesion description is dependent upon its 

enhancement. The shape and margins for masses are normally assessed from the first post-

contrast image to avoid washout or enhancement (Morris and Liberman, 2005). The 

database was pared-down by discarding subjects for a particular trial that had open features 

fields for a given model arraignment (for either feature non-applicable reasons or when the 

feature was not-available).
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3.2 BI-RADS and clinical feature data set

The other data set contains BI-RADS features in addition to the halo, family history and 
age features and comprises cases from women with biopsy verified malignant masses, and 

the controls are women with benign breast lesions. For this work breast masses define the 

lesion and the presence of calcifications, singular or clustered, are excluded. The benign 

controls consist of two distinct classes: those masses determined benign by biopsy and those 

determined benign after two-years follow-up without biopsy. The study consists of 175 

distinct individuals with 55 malignant cases, 40 benign controls determined by biopsy, and 

80 benign follow-up controls without biopsy. The data were collected from the diagnostic 

center at the Moffitt Cancer Center & Research Institute.

The standard BI-RADS descriptors used as input features are mass shape, mass margin, 

overall breast, composition, and density. In addition to the BI-RADS derived features, the 

presence of a halo (yes or no) around the tumour, family history (yes or no), and age were 

also used as input features. For reference, the relevant BI-RADS descriptions are provided. 

Mass shape is a five-category rating: round, oval, lobulated, irregular, and architectural 

distortion. Mass margin is a five-category rating: circumscribed-well defined, 

microlobulated, indistinct, obscured, speculated. Density is a four-category rating in the 

vicinity of the mass relative to the surrounding area: high, low, equal, or fat-containing-

radiolucent. Overall breast composition is a four-category rating: entirely fat, scattered 

fibrogaldular tissue, heterogeneously dense, and extremely dense.

4 Results

This section focuses on three topics:

• performance comparison of the EP/ES SVM stochastic hybrid with the standard 

iterative method of training using an identical data set and statistical cross 

validation methods

• performance tradeoff and diagnostic accuracy of the auto-K-PLS, K-PLS and the 

EP/ES SVM hybrids using the MRM and non-image data sets

• EP/ES SVM hybrid and K-PLS classification accuracies using the BI-RADS and 

clinical feature data set.

4.1 Performance comparison between iteratively derived and EP derived SVMs

Performance comparison for the iterative and EP derived SVM approaches (using the above 

described mutation method) are depicted in Figures 9 and 10. Both the same as well as 

different kernels were evaluated by both methods. However, the EP SVM results used 

tournament selection with replacement. As expected, the results are essentially the same for 

identical kernels, the same data set, and the same statistical cross validation methods. For 

example, for the s2000, GRBF, and dot product kernels, the EP SVM approach obtained 

very small percentage performance improvements of 0.22, 0.76 and 0.0%, respectively, 

when compared to those obtained by the iteratively trained method. These results 

demonstrated, however, that the two methods yield essentially the same result. Secondly, 

both methods produced essentially perfect classification results, generally ranging from 
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0.926 to 0.931. Only the hyperbolic tangent kernel yielded a less accurate result of 0.87. 

These were also expected results because all ambiguous findings were ‘scrubbed’ from the 

features describing the screen film data set.

Finally, both sum and product kernel implementations were built into the EP SVM software 

package and these multiple kernels gave five fold cross validation AZ indices of 0.925 and 

0.926, respectively, which agreed with the individual GRBF and degree-2 polynomial 

results.

4.2 Comparison of the Auto K-PLS, K-PLS and Stochastic EP/ES SVM using the MRM data 
set for image and non-image features

Both Non-Image (NI) and image (IM) type features were evaluated relative to their 

contribution to diagnostic accuracy (see data section for description). Table 1 depicts results 

for two types of K-PLS paradigms: auto-K-PLS and K-PLS. Auto K-PLS is an automated 

process which finds the optimal sigma value for the Gaussian Radial Basis Function (GRBF) 

mapping kernel as well as eliminating the outliers by an automated process. K-PLS has 

neither of these features. The EP-SVM process employs the same GRBF mapping kernel 

and used the EP process to optimise both the sigma (σ) value and regularisation 

parameter(C). Both auto-K-PLS and K-PLS result in essentially the same ROC AZ value 

(average of 0.76), while the EP-EVM result of 0.64 is 18.7% lower. This difference is 

attributed to the inclusion of the data set ‘outliers’. The MRM Image features size, shape and 

margin yielded a much better K-PLS AZ result, as expected, of 0.96. The EP-SVM process 

produced and expected lower AZ of 0.91, again because of the outliers. These ROC AZ 

curves are depicted in Figure 9.

Finally, Figure 10 demonstrates the K-PLS diagnostic performance improvement for some 

of the more significant non-image features, when compared to the LR diagnostic process 

(Land et al., 2006) for the development of the LR results). Note that in all cases a significant 

amount of diagnostic information in contained in the non-linear mapping region of the 

features to the diagnostic result. This is an important new finding, and demonstrates the 

importance of collecting and using this clinical information in the diagnostic process. 

Moreover, it shows that the choice of decision methodology is as important as determining 

input features with predictive capabilities, which is clearly demonstrated in Figure 10.

4.3 EP/ES Stochastic SVM and K-PLS results using BI-RADS, Halo and clinical feature 
variables

Table 2 shows the results using three EP/ES selection methods, where each selection method 

uses eight different mapping kernels and five fold cross validation for the full complement 

of BI-RADS, Halo, family history, and age features. Results are shown for all five folds as 

well as the average across all five folds The data in this table demonstrate that all kernels 

and selection methods yield approximately the same AZ results of approximately 0.90–0.92, 

which are excellent diagnostic/classification performances. K-PLS results, shown in Table 3, 

of AZ ~ 0.91 agrees well with the EP/ES stochastic SVM results and could most probably be 

improved by examining other mapping kernels.
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The question now becomes: which variables are the most significant contributors to 

diagnostic/classification accuracy. Several LR statistical studies were done, as described in 

Land et al. (2006) and not reported here, to ascertain the most important features in this data 

set. This research showed that Halo, Family History and Breast composition were not 

contributors to the diagnostic/classification accuracy. Consequently, these features were 

removed from the original dataset and the remaining subset was processed by all of the same 

EP/ES Stochastic SVM and K-PLS classifiers. The results are depicted in Tables 4 and 5.

The results in these tables use mass margin, mass shape, density and age features only. Halo, 

family history and breast composition were removed. EP/ES SVM stochastic results (Table 

4) slightly improved to within the range 0.912~0.927, indicating that the removed features 

appear to act like ‘noise’. Note from Table 5, the K-PLS results agree will with the EP/ES 

SVM hybrid results, verifying that the removed features are unimportant contributors to 

diagnostic accuracy.

5 Conclusions

This paper described the theory and application of a EP/ES stochastic SVM hybrid and two 

types of kernelized PLS paradigms (auto K-PLS and K-PLS) that were applied to the 

diagnosis of breast cancer using two separate data sets and a five fold statistical cross 

validation technique. The objectives were to:

• validate these new algorithms

• investigate the FP biopsy artifact in diagnostic mammography, which is a 

consequence of maintaining a high true positive breast cancer classification rate.

Results were obtained for the following three research studies:

1. performance comparison of the EP/ES SVM stochastic hybrid with the standard 

iterative method of training using an identical data set and statistical cross 

validation methods

2. performance tradeoff and diagnostic accuracy of the auto-K-PLS, K-PLS and the 

EP/ES SVM hybrids using the MRM and NI data sets

3. EP/ES SVM hybrid and K-PLS classification accuracies using the BI-RADS and 

clinical feature data set.

Specifically, we showed for study (1) that the results are essentially the same for identical 

kernels, the same data set and the same statistical cross validation methods. For example, for 

the s2000, GRBF, and dot product kernels, the EP SVM approach obtained very small 

percentage performance improvements of 0.22, 0.76 and 0.0%, respectively, when compared 

to those obtained by the iteratively trained method. Consequently, the newly developed 

EP/ES stochastic SVM is in agreement with results produced by the frequently used lib 

SVM software, but the results were obtained more rapidly. Secondly, (2) we found that, for 

NI features, both auto-K-PLS and K-PLS result in essentially the same AZ value (average of 

0.76), while the EP-EVM result of 0.64 is 18.7% lower value. This difference is attributed to 

the inclusion of the data set ‘outliers’. The MRM IM features size, shape and margin yielded 

a much better K-PLS Az result, as expected, of 0.96. The EP-SVM process produced and 
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expected lower AZ of 0.91, again because of the outliers. This AZ = 0.76 for NI features is 

an important new finding, and demonstrates the importance of collecting and using this 

clinical information in the diagnostic process. Finally for study (3), using the mammogram 

screen film, clinical and other features, we verified the somewhat surprising conclusion that 

Halo, family history and breast composition features were not contributors to the diagnostic/

classification accuracy (at least for this data set).
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Figure 1. 
Generic description of Evolutionary Programming derived families of Support Vector 

Machines (see online version for colours)
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Figure 2. 
Tournament selection without replacement (see online version for colours)
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Figure 3. 
Generic description of distribution of SVM population elements over solution space (see 

online version for colours)
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Figure 4. 
Dot product kernel output as function of angle (see online version for colours)
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Figure 5. 
Polynomial kernel output as function of angle between input vectors (see online version for 

colours)
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Figure 6. 
Gaussian RBF kernel output as function of squared distance between vectors (see online 

version for colours)
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Figure 7. 
AZ results from EP SVM software package using five fold cross validation (see online 

version for colours)
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Figure 8. 
AZ results from Iteratively trained SVM software package using five fold cross validation 

(see online version for colours)
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Figure 9. 
Comparing non-image and image ROC curves (see online version for colours)
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Figure 10. 
Predictive improvement gained with auto K-PLS in comparison with logistic regression (see 

online version for colours)
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Table 1

AZ results for non-Image (NI) and image (IM) data sets.

Data set Auto K-PLS AZ KPLS AZ EP-SVM AZ

NI 0.77 0.75 0.643052

IM 0.962742 0.9549 0.906607
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Table 3

K-PLS results using a Gaussian kernel with five latent variables

KPLS options: Outliers Latent variables Sigma Az

No 5 4.792 0.906894
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