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Abstract: As the most common type of evidence at crime scenes, footwear 
marks are found more often than fingerprints, and yet left largely unused  
due to lack of efficient and reliable tools. While the central task is stated  
simply – retrieve the closest matches among a database of known outsole  
prints – the difficulty is the poor quality of the marks and a very large and 
increasing number of outsole patterns. Since grouping the database into clusters 
can dramatically speed-up retrieval, we propose clustering based on recurring 
outsole patterns. The clustered database is used to retrieve similar prints for a 
given crime scene mark. Geometric shapes like line segments, circles and 
ellipses are proposed as features for crime scene marks. Then these features are 
structurally represented in the form of an attributed relational graph (ARG). 
Robust ARG matching is achieved with the introduced footwear print distance 
(FPD), a similarity measure for footwear prints. Sensitivity analysis of FPD is 
performed to show its robustness. The proposed system is invariant to scale, 
translation, rotation and insensitive to noise and degradations of the prints. 
Experiments show that the approach outperforms other state-of-the-art footwear 
print retrieval systems. 
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1 Introduction 

As evidence in crime scenes, footwear marks can serve to narrow-down a list of suspects 
as well as provide a clue to link multiple crimes. Despite being found more frequently 
than fingerprints, footwear marks remain largely ignored as evidence. This state of affairs 
is largely because crime scene prints tend to be partial, noisy or highly degraded and the 
number of existing outsole patterns is very large. Manual comparison of crime scene 
marks with a large database of outsole patterns is very tedious and inefficient. At present 
there is no fully automated footwear print retrieval system to assist the forensic examiner, 
largely because most features to characterise footwear patterns fail with crime scene 
marks. 

There is very little history of research on clustering footwear prints and its use in 
retrieving the closest print for a given crime scene mark. Retrieval based on a query 
consisting of a crime scene footwear mark is difficult as there are no known robust 
features that suit both partial crime scene marks and degraded database prints. 

Geometric shapes like line segments, circles and ellipses are commonly found in 
footwear patterns. They withstand wear-and-tear for a long time, their shapes are 
preserved and commonly found in crime scene marks. Based on this observation, they are 
proposed here as features. Their relationship structure is represented in the form of an 
attributed relational graph (ARG). Attributes of nodes and edges in the ARG are defined 
to capture spatial relationships in terms of relative distance, position, dimension and 
orientation and also to be invariant to scale, rotation and translation. 

Prints represented in the form of ARGs are compared by defining a footwear print 
distance (FPD), which is built upon the nested earth mover’s distance (EMD) (Kim et al., 
2010). As a similarity measure it promises robustness in the matching of partial crime 
scene marks. Sensitivity analysis indicates that the FPD changes very little when node 
and edge attributes change marginally; thereby demonstrating insensitivity to small errors 
in the extraction of line segments, circles and ellipses. 
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Clustering and retrieval are two different but related problems. Clustering (Bishop, 
2006) is the problem of grouping a set of objects into clusters based on similarity, so that 
objects within a cluster are as similar as possible, while objects of different clusters are as 
dissimilar as possible. The problem of retrieval is to find the most relevant objects in a 
database for the given query object. Similarity and relevance become equivalent if they 
are based on the same distance measure. Clustering has been used in information retrieval 
(Liu and Croft, 2004) for improving speed and accuracy. 

Due to the nested structure of FPD, it is computationally intensive and slow in 
retrieval. This is alleviated by clustering, or grouping, the prints of similar outsole 
patterns. Domain knowledge (of the dataset) is used to determine the cluster  
centres prior to clustering. This speeds up clustering by assigning each object to its 
closest pre-determined cluster centre and avoiding iterative re-computation of cluster 
centres. 

Figure 1 Proposed system for retrieving similar prints for a crime scene mark (see online version 
for colours) 

 

Note: FPD is shown below retrieved similar prints. 

Retrieval speed is increased by comparing the crime scene mark with a cluster 
representative rather than with every print in the database. Once the closest cluster is 
determined the crime scene mark is compared with prints in the cluster to determine the 
closest print. The main contributions of this paper are: 

• Geometric shapes (line segments, circles and ellipses) are proposed as features, and 
new algorithms to extract features are presented. 

• The features are represented as an ARG. Node and edge attributes are defined in a 
way to make it invariant to scale, translation, rotation and insensitive to noise and 
degradation of the prints. 

• FPD, a distance measure built upon nested EMD is introduced as a similarity 
measure for footwear prints. Robustness of FPD is shown with sensitivity analysis. 

• A system (shown in Figure 1) is proposed to retrieve similar prints with queries of 
crime scene footwear marks. 
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• The proposed retrieval system is compared with the state-of-the-art image matching 
algorithm such as scale invariant feature transform (SIFT) (Lowe, 2004), shape 
context-based object recognition algorithm (Belongie et al., 2002) and existing 
image retrieval systems specifically designed for footwear prints. 

The rest of the paper is organised as follows: Section 2 presents the existing  
footwear print retrieval systems. Section 3 describes the algorithms for feature extraction. 
Section 4 deals with the structural representation of the extracted features in the form  
of an ARG. Section 5 introduces the FPD, a similarity measure for footwear prints. 
Section 6 deals with the clustering of footwear prints using recurring patterns. Section 7 
presents the performance of the proposed method on a dataset of 2,660 prints and  
300 crime scene marks, followed by sensitivity analysis of FPD in Section 8. Finally, 
Section 9 concludes the paper. 

2 Related work 

While there are many existing footwear print retrieval systems that work with synthetic 
and clean footwear prints, there is no published literature on clustering known footwear 
prints or retrieving them with real degraded queries. No one has reported good 
performance of their system with real crime scene footwear marks. Mikkonen and 
Astikainen (1994) proposed a classification system for shoeprints in which classification 
codes based on basic patterns are used to identify and classify the partial footwear 
impressions. Geradts and Keijzer (1996) described an automatic classification for shoe 
outsole designs. Here, different shapes in shoes are recognised using Fourier features and 
then these features are used in a neural network to classify the footwear. Alexander et al. 
(1999) presented a fractal pattern matching technique with mean square noise error as a 
matching criteria to match the collected impression against database prints. 

Chazal et al. (2005) proposed a fully automated shoe print classification system 
which uses power spectral density (PSD) of the print as a pattern descriptor. Here, crucial 
information of the print is preserved by removing the low and high frequency 
components and 2D correlation coefficient is used as similarity measure. Zhang and 
Allinson (2005) proposed an automated shoe print retrieval system in which edge 
direction histogram (EDH) is used to represent the shapes in shoes. 1-D discrete Fourier 
transform on the normalised EDH is used as features and Euclidean distance is used as 
similarity measure. Pavlou and Allinson (2006) presented an automatic footwear 
classification system where maximally stable external region (MSER) feature detectors 
encoded with SIFT descriptors are used as features and then Gaussian feature similarity 
matrix and Gaussian proximity matrix are used as similarity measure. 

Ghouti et al. (2006) described a ShoeHash-based approach to classify the shoeprints. 
Directional filter banks (DFBs) is used to capture the local and global details of the 
shoeprints and the energy dominant blocks are used as a feature vector. Finally, 
normalised Euclidean distance is used as similarity measure. Su et al. (2007) proposed a 
shoeprint retrieval system based on topological and pattern spectra. Here, pattern 
spectrum is constructed using the area measure of granulometry and topological spectrum 
is constructed using the Euler number. Then, normalised hybrid measure of these two is 
used to match the shoeprints. Crookes et al. (2007) described two ways to classify 
shoeprints: 
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1 in the spatial domain, modification of the existing techniques: Harris-Laplace 
detector and SIFT descriptor is proposed; the Harris corner detector is used to find 
the local features; Laplace-based automatic scale selection is used to decide the final 
local features and nearest neighbour is used as similarity measure 

2 in the transform domain, phase-only correlation (POC) is used to match the 
shoeprints. 

Sun et al. (2008) used expectation-maximisation (Dempster et al., 1977) and K-means 
(Bishop (2006)) clustering to group colour prints of shoe. Here, RGB information is used 
as features but most of the database prints and all the crime scene marks are  
grey-scale images hence their method is of limited use in computational forensics. 
Gueham et al. (2008) evaluated the performance of optimum trade-off synthetic 
discriminant function (OTSDF) filter and unconstrained OTSDF filter in classifying 
partial shoeprints. 

AlGarni and Hamiane (2008) proposed an automatic shoeprint retrieval system in 
which Hu’s moment invariants are used as features. Then results from standard similarity 
measures like Euclidean, city block, Canberra and correlation distances are compared. 
Xiao and Shi (2008) presented a computerised shoeprint matching using PSD and 
Zernike moments. Jingl et al. (2009) presented a new feature directionality to match 
shoeprints. Here, features extracted from cooccurrence matrix, Fourier transform and 
directional mask are matched using sum-of-absolute-difference. Nibouche et al. (2009) 
proposed a solution for matching rotated partial shoeprints. Harris points encoded with 
SIFT descriptors are used as features and they are matched using random sample 
consensus (RANSAC). Dardi et al. (2009) described a texture-based retrieval system for 
shoeprints. A Mahalanobis map is used to capture the texture and then matched using a 
correlation co-efficient measure. They have reported cumulative match characteristic 
(CMC) with 87 known prints and 30 real crime scene marks. Wang et al. (2009) 
presented a wavelet and fuzzy neural network-based approach to recognise  
footprints. Patil and Kulkarni (2009) used the Gabor transform to extract the  
multi-resolution features from shoeprints and then the Euclidean distance to match these 
features. 

3 Feature extraction 

Features being the crucial component of the retrieval system, the chosen features should 
be reliable. Colour, texture and shape can be used to distinguish images (Rui et al., 1999). 
Colour components are missing in crime scene marks while textures are susceptible to 
wears and hard to be captured. Geometric shapes can be easily captured and they are the 
most durable and reliable features of the outsole especially, in crime scene footwear 
marks. Shape features are also robust against occlusion and incompleteness, i.e., the 
variation or missing local region on the outsole will affect shape features in other regions 
to the minimal extent. 

Visual inspection of 5,034 footwear prints from Foster and Freeman 
(http://www.fosterfreeman.com/) Dataset revealed that 91.8% of footwear prints can be 
represented by three basic shapes: line segments, circles and ellipses. Based on these 
shapes, footwear prints can be classified into eight types: piecewise lines, only 
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circles/arcs, only ellipses, circles and ellipses, lines and circles, lines and ellipses, lines, 
circles and ellipses and only texture. Any shapes other than circles and ellipses are 
approximated by piecewise lines. Combinations of these shapes can be used to 
distinctively identify the pattern of the footwear print. The distribution of fundamental 
shapes is given in Table 1, and sample prints are shown in Figure 2. 
Table 1 Distribution of fundamental shapes in footwear prints 

Fundamental shapes Number of prints 

Piecewise lines only 3,397 
Circles/arcs only 73 
Ellipses only 15 
Lines and circles 812 
Lines and ellipses 285 
Circles and ellipses 5 
Lines, circles and ellipses 37 
Texture only 410 

Total 5,034 prints 

Figure 2 Eight types of footwear prints, (a) piecewise lines (b) lines and circles  
(c) lines and ellipses (d) only circles/arcs (e) only ellipses (f) lines, circles and  
ellipses (g) circles and ellipses (h) only texture 

 
(a) (b) (c)        (d)  (e)      (f)           (g)  (h) 

The standard Hough transform (SHT) (Hough, 1962; Nixon and Aguado, 2002) detects 
shapes in an image by mapping foreground pixels into a parameter space represented by 
an n-dimensional accumulator array, where n is the number of parameters used to 
describe the shape of interest in Hough space. Each significant pixel from the shape of 
interest would cast a vote in the same cell of an accumulator array, hence all pixels of a 
shape gets accumulated in a single cell. The number of valid peaks in the accumulator 
array would correspond to the number of shapes in the image. 

The foremost step in the feature extraction is to perform morphological  
operations such as dilation and erosion. This makes the interior region of the boundary 
uniform and hence the Canny (1986) edge detector does not detect any edges inside the 
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boundary. This helps to enhance the quality of the edge image. In the proposed retrieval 
system (Figure 1), three basic shapes are detected: straight line segments, circles and 
ellipses. 

Circle detection: SHT with a three-dimension accumulator array is used to detect  
circles. Gradient orientation (Goulermas and Liatsis, 1999) and spatial constraints  
(e.g., constraints on the distance between the centres of two candidate circles) are used to 
eliminate spurious circles. Pixels of detected circles are removed from the edge image 
and fed as input for ellipse detection. In the subsequent subsections we present two 
algorithms to detect ellipses and line segments respectively. 

3.1 Ellipse detection 

An ellipse in a Cartesian plane is described by the centre (p, q), length of the  
semi-major/minor axes a, b and the orientation θ. In case of SHT, these five parameters 
demand a five-dimensional accumulator which is computationally expensive but 
randomised Hough transform (RHT) (Xu and Oja, 1993; McLaughlin, 1996) is 
computationally advantageous. In case of ellipse detection in footwear prints, RHT 
cannot be used directly1. Hence, in RHT, we incorporate ideas: 

1 decomposition of footwear prints into connected components 

2 elimination of unwanted components based on their eccentricity2 

3 smart selection of three random points based on local smoothness indicator (LSI) 
(explained below) at each pixel 

4 elimination of spurious ellipses using gradient orientation. 

We introduce a measure of local smoothness on image edges, LSI. The LSI at a 
foreground pixel z is defined by the standard deviation of gradient orientation of 
foreground pixels within the neighbourhood of z, i.e., zLSI( ) = ({ }),zz std z Nθ ′ ′∈  where 
std stands for standard deviation, zθ ′  is the gradient orientation at pixel z′, Nz is a  
7 × 7 neighbourhood window centering at z. The LSI of good ellipse pixels should be 
within a proper interval [sl su] to ensure that they are locally smooth. Algorithm 1 
summarises ellipse detection. Detected ellipses before and after validation are shown in 
Figure 3. True ellipse pixels are removed from the edge image and the output is fed as 
input for line detection. 
Algorithm 1 Ellipse detection 

Input: Original image of footwear print, I and its edge map Ie. 
Output: Detected ellipses and their parameters. 
1. Compute the gradient orientation of I. 
2. Decompose Ie into components, find the eccentricity e of each component. 
3. Eliminate connected components with e < 0.3 and size < 20 pixels. 
4. For each connected component Ĉ  Do 

5.  Pick three pixels randomly 
6.  Compute LSI at each pixel to get s1, s2 and s3 
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7.  If s1, s2, s3 are all within interval [sl su] 

8.   Then Apply RHT and find parameters of the ellipse (p, q, a, b, θ) 
9.    Find candidate pixels that satisfy ellipse equation 
     2 2

2 2
(( )cos ( )sin ) (( )cos ( )sin ) 1x p y q y q x p

a b
θ θ θ θ− + − − + −

+ =  

10.    Find analytical derivative d at each candidate pixel using 
     

2 2
2 2

2 2
2 2

2 2( )cos sin ( )sin ( )cos ( )cos sin

2 2( )cos ( )cos sin ( )cos sin ( )sin

x p y q y q x p
a bd

x p y q y q x p
a b

θ θ θ θ θ θ

θ θ θ θ θ θ

−⎛ ⎞ ⎛ ⎞− + − + − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=
−⎛ ⎞ ⎛ ⎞− + − + − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

11.    Accept the pixel as an ellipse pixel if the difference between d and tangent of 
gradient orientation is below T1 

12.    
Declare Ĉ  as an ellipse if 2

numberof ellipse pixels
circumferenceof ellipse

T≥  

Figure 3 Validate ellipses extracted using gradient orientation, (a) input (b) detected ellipses 
before validation (c) true ellipse after validation (see online version for colours) 

 
     (a)  (b)       (c)  

How to choose threshold T1, T2, sl and su: In Canny (1986) edge detection errors exist in 
the gradient orientation computation due to following steps: 

1 increase in the size of sobel mask to make it less sensitive to noise leads to poor 
localisation 

2 discrete differentiation operation in the sobel mask leads to approximation error in 
gradient. 

In an ellipse E, the analytical derivative at each ellipse pixel P represents the ideal value 
of the slope of the tangent at P, while the tangent of gradient orientation at P is an 
estimated value of the slope of the actual tangent to the ellipse E at P. Ideally, these two 
values should be identical but because of the errors introduced in the gradient orientation 
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computation, there is always some difference between them. For spurious ellipse pixels, 
this difference is large while it is small for true ellipse pixels. Hence, threshold T1 is 
introduced to distinguish true ellipse pixels from spurious ones. If the value of T1 is set 
too small, then some true ellipse pixels might be eliminated; if it is set too large, then 
spurious ellipse pixels might be accepted as true ones. In our experiments we found that 
T1 falls in the range of [0 0.26] hence we set T1 to 0.26. 

For complete ellipses, the ratio numberof ellipse pixels
circumferenceof ellipse

 equals 1. But, ellipses in the 

degraded footwear prints are mostly partial making the ratio less than 1. In experiments 
we found that ratio falls in the range [0.4 1] so we set T2 to 0.4. From multiple trials of 
experiments we found that, when sl and su are set to 0.03 and 0.25 respectively, selected 
pixels are good for determining ellipse parameters. 

3.2 Line detection 

On average, line segments in a footwear print ranges from 200–300. Each group of  
co-linear pixels generates a peak in Hough matrix. Numerous line segments make it 
difficult to differentiate true peaks from spurious ones. Further, useful but short line 
segments sometimes get missed. Hence, SHT alone is unlikely to give satisfying results 
for complex images like shoeprints. We propose a new algorithm that is able to detect 
line segments accurately and completely. First, connected components are labelled in the 
edge image. Then, for each component, SHT is applied and peaks are detected. When a 
peak in Hough matrix is identified and the line segments are extracted, the pixels 
contributing to those line segments are eliminated from the edge image. Then, an updated 
Hough matrix is obtained by applying SHT on the modified edge image. This  
procedure repeats until all line segments have been detected. Algorithm 2 summarises 
line detection in footwear prints. Sample results of feature extraction are shown in  
Figure 4. 
Algorithm 2 Line segment detection 

Input: Original image I and edge map Ie after removing all circle/ellipse pixels 
Output: Line segments and their parameters 
1. Find the connected components in Ie 
2. For each connected component Ĉ  Do /*outer loop*/ 

3.  Form a sub-image Ies of the same size as Ie 
4.  Compute Hough matrix M using SHT 
5.  For each peak P in Hough matrix M Do /*inner loop*/ 
6.   Initialise counter c to 0 
7.   Compute row-column indices of pixels in Ies that map to P 
8.   Extract line segments in Ies associated with P 
9.   Merge two line segments if their distance is below threshold dmin 
10.   

Discard line segments if ratio min
numberof online pixels
length of line segment

R<  

11.   If at least one new line segment associated with P is accepted 
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12.    Then suppress pixels that are mapped to accepted line segment(s) 
13.     Apply SHT on Ies to update Hough matrix M 
14.     Reset counter c to 0 
15.    Else suppress neighbouring cells of peak P in M 
16.     Increment counter c by 1 
17.    If c ≥ Nmax then break 

Figure 4 Results of feature extraction for a few crime scene footwear marks and a database print 
(see online version for colours) 

 

Notes: Detected lines, circles and ellipses are shown in green, red and blue respectively. 
Best viewed in colour. 

How to choose threshold dmin, Rmin and Nmax: threshold dmin is used to decide whether to 
merge two line segments based on their distance. Rmin plays a similar role as T2 in 
Algorithm 1. Threshold Nmax is the maximum number of consecutive failures in retrieving 
true line segments from each component ˆ.C  When counter c reaches Nmax, which reliably 
indicates that all true line segments in Ĉ  have been detected, the execution breaks from 
the inner loop and continues searching for line segments from the next component. These 
parameters have been set as follows and used throughout the experiments without the 
need of extra tuning: dmin = 16 pixels, Rmin = 0.48, and Nmax = 20. 

4 Attributed relational graph 

Relational structures have been used to represent complex objects and scenes (Haralick 
and Shapiro, 1992). Such graphical representation (Bunke et al., 2008) has great 
advantages over feature vector because of its ability to explicitly model relationships 
between individual parts and feature points. 

After feature extraction, a footwear print has been decomposed into a set of 
primitives. To obtain a structural representation of these primitives, an ARG (Sanfeliu 
and Fu, 1983; Bunke and Messmer, 1995) is built for each print. An ARG is a three-tuple  
(V; E; A) where V is the set of nodes, E is the set of edges and A is the set of attributes. 
Lines, circles and ellipses are defined as nodes. Each edge describes the spatial 
relationship between nodes. The attributes include node attributes (unary) and edge 
attributes (binary). 
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There are three types of nodes (lines, circles and ellipses) and nine types of edges 
(line-to-line, line-to-circle, line-to-ellipse, circle-to-line, circle-to-circle, circle-to-ellipse, 
ellipse-to-line, ellipse-to-circle and ellipse-to-ellipse denoted as L2L, L2C, L2E, C2L, 
C2C, C2E, E2L, E2C, E2E edges). To tackle the case of nodes being missing or 
incorrectly detected due to noise, occlusion and incompleteness, a fully-connected 
directed graph is adopted. This means that there is a directed edge from each node to all 
other nodes. To distinguish one node from the other or one pair of nodes from another, 
node and edge attributes have been carefully defined to quantify the spatial relationships 
between each pair of nodes in terms of distance, position, size and orientation, which are 
tabulated in Table 2, where N-α, N-rs, rd, pd, rp, N-ro represent normalised relative 
angle, normalised relative size, relative distance, perpendicular distance, relative position, 
and normalised relative orientation respectively. All these attributes have been 
normalised in the range [0 1]. The weights shown for each edge attribute are determined 
using the sensitivity analysis described in Section 5.2.2. This rich feature descriptor is 
invariant to scale, rotation, and translation, as the value of each attribute does not 
depend on the scale, orientation or position of the footwear print. It is also insensitive to 
noise and degradations. It mimics the way humans distinguish one collection of shapes 
from the other. 
Table 2 Node and edge attributes 

Edge type Att Definition Normalisation Weight 
N-α | 1. 2. |

180
L Lθ θ−  

- 0.4472 

N-rs 1.
1. 2.

L len
L len L len+

 
- 0.4472 

rd ( 1. , 2. )
1. 2.

dist L m L m
L len L len+

 
21

rd

rd+
 

0.4472 

pd ( 1. , 2)
1. 2.

dist L m L
L len L len+

 
21

pd

pd+
 

0.4472 

rp1 min( , )
max( , )

OA OB
OA OB

 1 1
2

rp +  
0.4472 

L2L 

rp2 min(| |,| |)
max(| |,| |)

OA OB
OA OB

−  2 1
2

rp +  
0.4472 

N-rs 1.
1. 2.

C r
C r C r+

 
- 0.7071 

rd1 ( 1. , 2. )
1. 2.

dist C cen C cen
C r C r+

 1
2

11

rd

rd+
 

0.7071 

C2C 

rd2 ( 1. , 2. )
1. 2.

dist C cen C cen
C r C r−

 2
2
21

rd

rd+
 

0.0 
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Table 2 Node and edge attributes (continued) 

Edge type Att Definition Normalisation Weight 
N-rs .

. .
L len

C r L len+
 

- 0.5774 

rd ( . , )
.

dist C cen L
C r

 
21

rd

rd+
 

0.5774 

L2C 

rp min( 1, 2)
max( 1, 2)

S S
S S

 1
2

rp +  
0.5774 

N-rs .
. .

L len
L len E ER+

 
- 0.5 

rd ( . , . )
. .

dist L m E cen
L len E ER+

 
21

rd

rd+
 

0.5 

rp1 min( , )
max( , )

OA OB
OA OB

 1 1
2

rp +  
0.5 

rp2 min(| |,| |)
max(| |,| |)

OA OB
OA OB

−  2 1
2

rp +  
0.5 

L2E 

N-ro | . . |
180

L Eθ θ−  
- 0.5 

N-rs .
. .

C r
C r L len+

 
- 0.5774 

rd ( . , )
.

dist C cen L
C r

 
21

rd

rd+
 

0.5774 

C2L 

rp min( 1, 2)
max( 1, 2)

S S
S S

 1
2

rp +  
0.5774 

N-rs .
. .

C r
C r E ER+

 
- 0.5774 

rd ( . , . )
. .

dist C cen E cen
C r E ER+

 
21

rd

rd+
 

0.5774 

C2E 

rp min( , )
max( , )

OA OB
OA OB

 1
2

rp +  
0.5774 

e_ratio 1.
1. 2.

E e
E e E e+

 
- 0.2236 

f(Δe) 1. 2. 1
2

E e E e− +  
- 0.2236 

E2E 

rd ( 1. , 2. )
1. 2.

dist E cen E cen
E ER E ER−

 
21

rd

rd+
 

0.4472 
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Table 2 Node and edge attributes (continued) 

Edge type Att Definition Normalisation Weight 
N-rs 1.

1. 2.
E ER

E ER E ER+
 

- 0.4472 

N-ro | 1. 2. |
90

E Eθ θ−  
- 0.4472 

E2E 

rp rp (E1.major-axis, 
E2.major-axis) 

1
2

rp +  
0.4472 

Node attributes 
Node Attributes Definition 
Circle Quality     

  
Number of pixels on circle

Circumference of circle
 

Circle Completeness Standard deviation of the angle that all on-circle pixels 
make with respect to the centre 

Ellipse Eccentricity 2

21 b
a

−  

Symbols and its definition 
L Line segment E Ellipse dist Euclidean distance 
r Radius mid Mid-point rp Relative position 
e Eccentricity cen Centre rd Relative distance 
C Circle pd Perpendicular 

distance 
rs Relative size 

len Length ER a b∗  θ Orientation 
att Attributes N Normalised a, b Semi-major axis and semi-minor axis 

of the ellipse respectively 
max Maximum | | Absolute value p, q Centre of the ellipse 

5 Similarity measure 

Image retrieval applications typically employ histogram (or probability density) distance 
measures. Bin-by-bin distance measures such as Euclidean distance (or its generalisation 
known as the Minkowski distance) and Kullback-Leibler divergence are perceptually 
unsatisfactory. Kolmogorv-Smirnov is only applicable to one-dimensional problems. 
EMD, a cross bin distance metric has become most popular in content-based image 
retrieval (Rubner et al., 2000). Advantages of EMD include: allows partial matches, 
ability to efficiently handle high-dimensional feature spaces and closeness to perceptual 
similarity when applied to image histograms. 

5.1 Earth mover’s distance 

EMD evaluates the least amount of work that is needed to transform one distribution into 
the other. Consider the evaluation of the distance between two signatures (histograms)  
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P1 = {P1i⎜1 ≤ i ≤ n1} and P2 = {P2j⎜1 ≤ j ≤ n2}. The bins [P1i] have corresponding weights 
w1 = [w1i] and similarly [P2j] have weights w2 = [w2j]. The ground distance matrix  
C = [cij] specifies ground distance between all pairs of bins, cij. The flow matrix F = [fij], 
where fij is the amount of ‘supplies’ transferred from bin P1i to bin P2j. The goal is to find 
proper values of F in order to minimise the overall work given by 

( )
1 2

1 2
1 1

, ,
n n

ij ij
i j

WORK c f
= =

=∑∑w w C  (1) 

which is subject to the following constraints: 

1 20,      1 ,  1 ,ijf i n j n≥ ∀ ≤ ≤ ≤ ≤  (2) 

2

1 1
1

,      1 ,
n

ij i
j

f w i n
=

≥ ∀ ≤ ≤∑  (3) 

1

2 2
1

,      1 ,
n

ij j
i

f w j n
=

≤ ∀ ≤ ≤∑  (4) 

1 2 1 2

1 2
1 1 1 1

min , .
n n n n

ij i j
i j i j

f w w
= = = =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑∑ ∑ ∑  (5) 

Constraint 2 allows moving ‘supplies’ from P1 to P2 and not vice versa. Constraint 3 
limits the amount of ‘supplies’ that can be sent by the bins in P1 to their weights. 
Constraint 4 limits the bins in P2 to receive no more ‘supplies’ than their weights. 
Constraint 5 forces to move the maximum amount of ‘supplies’ possible. This amount is 
referred to as the total flow in the transportation problem. 

This is a linear programming problem which is solved efficiently by the 
transportation simplex algorithm (Hillier and Liebermann, 1995). Once the flow matrix F 
is found, the EMD is defined as the overall work normalised by the total flow 

( )
1 2

1 2

1 1
1 2

1 1

EMD , .

n n
ij iji j

n n
iji j

c f
P P

f

= =

= =

=
∑ ∑
∑ ∑

 (6) 

The computation of EMD assumes that there exists a proper distance measure to compute 
ground distance matrix C, where the element cij is the unit distance between a pair of bins 
P1i and P2j, i.e., the work required to move one unit of ‘supplies’ from the source bin P1i 
to the destination bin P2j. Such distance can be straightforwardly defined between 
histogram bins because of their strict relative order. 

5.2 Footwear print distance 

Robust ARG matching requires an assignment algorithm that yields not only a 
correspondence between two sets of vertices but also the similarity between them. 
Popular assignment algorithms are nearest neighbour search, Hausdorff distance, bipartite 
matching and EMD. EMD is the state-of-the-art assignment algorithm (Kim et al., 2010; 
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Rubner et al., 2000). In EMD, the bins are replaced by vertices and relations between 
them. Both vertices (nodes) and relations (edges) have attributes associated with them. 
The vertices also have associated weights with them, which are useful in performing 
assignment. However, when matching two ARGs, the ground distance between two 
vertices depends not only on the two vertices themselves, but also is related to their 
incident edges. Therefore, computing the ground distance between two vertices, involves 
a combinatorial optimisation procedure to establish correspondence as consistently as 
possible between the attributed trees rooted at vertices. Hence, direct application of the 
basic EMD algorithm cannot solve the ARG matching problem and it needs to be 
augmented with a method for computing the ground distance matrix between all pairs of 
nodes. 

Recently, Kim et al. (2010) have used nested structure of EMD to achieve robust 
ARG matching in computer vision. This kind of technique has never been analysed in the 
forensics domain until now. However, their method will not work well when two graphs 
to be matched have multiple attributes of different scales, and the difference in each 
attribute between two ARGs contribute unequally to the resulting overall distance. In this 
case, we need to apply appropriate weights on different attributes to balance their 
contributions to the overall distance, so that the difference in one feature/attribute will not 
dominate the overall distance. This step is essential as crime scene marks are created in 
an uncontrolled environment and they are highly degraded and partial, too. 

5.2.1 Computation of FPD 

We propose a method to learn the weights for different attributes using sensitivity 
analysis and incorporate the learned weights into the framework of EMD to finally derive 
a distance measure (FPD) for footwear prints. First, we elaborate how FPD is derived 
from EMD, and how learned weights are incorporated, followed by how to learn the 
weight vector. 

A completely connected ARG is formally defined as P = (V, R, n) where  
V = {Vi⎜1 ≤ i ≤ n} is the set of nodes and R = {Rij⎜1 ≤ i, j ≤ n} is the set of relations 
between nodes. Each node has a weight and an attribute vector, Vi = (wi, vi) and each 
relation Rij has an attribute vector rij. 

Let ARG of 1st and 2nd footwear prints be F⎜P1 = (V1, R1, n1) and F⎜P2 = (V2, R2, n2) 
respectively. To compute the FPD between FP1 and FP2, an appropriate mapping M 
between the two sets of nodes is needed. The cost or ground distance matrix is C = [cij] 
where cij = c(V1i, V2j ⎜V1i ∈ V1, V2j ∈ V2). The unit cost or distance between V1i and V2j is 
evaluated based on the similarity of the spatial configurations at the two nodes, which is 
explained later in this section. 

By providing identical weights for all nodes the nested structure of EMD can handle 
the case of subgraph matching, i.e., 

( )1 2 1 2
1 2

1 ,   1 ,  1 .
max ,i jw w i n j n

n n
= = ≤ ≤ ≤ ≤  (7) 

Unlike EMD, a node of FP1 can transfer its weight to only one node of FP2. This is 
known as uniqueness constraint. To enforce one-to-one correspondence, each node i in 
the first ARG can match only one node j in the second ARG or left unmatched, i.e., fij 
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may take the value of either 
( )1 2

1
max ,n n

 or 0, ∀i ∈ {1, …, n1}, j ∈ {1, …, n2}. 

Therefore, we rewrite equation (6) as 

( ) ( ) { }

{ }

( , ) 0
1 2

1 2

( , ) 0

1
max ,

FPD ,
ij

ij

iji j f

iji j f

c
n n

FP FP
f

>

>

=
∑

∑
 (8) 

The total number of correspondence pairs between the two ARGs is min (n1, n2) so the 

total amount of flow transferred from FP1 to FP2 is 
( )
( )

1 2

1 2

min ,
.

max ,
n n
n n

 Substituting this term 

for the denominator in equation (8) we get, 

( ) { }
( )

( , ) 0
1 2

1 2
FPD ,

min ,
ij

iji j f
c

FP FP
n n

>
=
∑

 (9) 

Figure 5 (a) Footwear print FP1 (b) ARG of FP1 (c) Attributed tree of FP1 rooted at V11  
(d) Sample print FP2 (e) ARG of FP2 (f) Attributed tree of FP2 rooted at V21  
(see online version for colours) 

 
(a)   (b)   (c) 

 
(d)   (e)   (f) 

Note: Green squares, red circles and blue diamonds represent lines, circles and ellipses 
respectively. 
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Cost determination between two nodes: For a given pair of nodes in two graphs, say V1i 
and V2j, how one node is different from the other depends not only on the nodes, but also 
on how they relate to their respective neighbours in terms of distance, orientation, 
position, etc. This means that the distance cij between the two nodes should be evaluated 
based on the distance between two attributed relational sub-graphs, rooted at V1i and V2j 
respectively. Each attributed relational sub-graph is an attributed tree (AT) (Pelillo et al., 
2001). ARG and Attributed tree for two sample prints are shown in Figure 5. This leads 
to a nested structure of ARG matching, which consists of inner and outer steps. For the 
outer step, the unit cost or distance between V1i and V2j, is defined as 

( ) ( )1 21 2, EMD , ,
i ji j V Vc V V AT AT=  (10) 

where 
1iVAT  and 

2 jVAT  are attributed trees rooted at V1i and V2j in the two ARGs. The 

tree 
1iVAT  consists of the root vertex V1i and its connection to the rest of the n1 – 1 

vertices. 

To calculate the distance between the two trees 
1iVAT  and 

2 jVAT  using EMD framework, 

we build the inner cost matrix ˆˆ
ˆ [ ]i jc=C  whose elements correspond to pairwise  

node-to-node ˆ1( iV  to ˆ2 )jV  distances in the two trees. The inner cost between ˆ1iV  and ˆ2 jV  

takes into account not only the unary attributes of the nodes but also their edges attributes 
and is calculated by 

( ) ( ) ( )ˆ ˆ1 2ˆ ˆ ˆ ˆ1 2 1 2, , (1 ) ,i ii iE Ei j i jc V V d dα α= + − ∗ ∗v v Q r Q r  (11) 

where α is a weight co-efficient in the interval [0, 1], dE is the Euclidean distance, ˆ1 iir  is 
the attribute vector of the edge between V1i and ˆ1 ,iV  Q is the weight vector and the 
operator ‘∗’ denotes the element-wise product between two vectors. Parameter α reflects 
the relative importance of the difference of node attributes and the difference of edge 
attributes in the evaluation of inner cost between two nodes, and is set to 0.5 assuming 
equal importance. Weight vector Q for all edge attributes is derived using sensitivity 
analysis described in Section 5.2.2. 

Nodes V1i and V2j may have one of three possible labels: ‘L’, ‘C’ and ‘E’ 
corresponding to lines, circles, or ellipses respectively. Thus there are 9 combinations of 
labels for (V1i, V2j). A line cannot match with a circle or an ellipse regardless of their 
attributes and neighbours; while a circle and ellipse can match to some degree. Thus the 
unit matching cost for non-matching label pairs is c(‘L’, ‘C’) = c(‘L’, ‘E’) = 1. For other 
label pairs, the node-to-node inner costs are determined using equation (11). Algorithm 3 
summarises FPD computation. 
Algorithm 3 FPD between prints FP1 and FP2 

Input: ARGs of FP1 = (V1, R1, n1), FP2 = (V2, R2, n2), 

where V1 = {(V1i, w1i, v1i)⎜1 ≤ i ≤ n1}, V2 = {(V2j, w2j, v2j)⎜1 ≤ j ≤ n2} 

and R1 = {(R1is, r1is)⎜ 1 ≤ i, s ≤ n1}, R2 = {(R2jt, r2jt)⎜ 1 ≤ j, t ≤ n2} 
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Output: FPD(FP1, FP2) 
1. 

Set each component 1 2 1 2
1 2

1 ,  1 ,  1
max( , )i jw w i n j n

n n
= = ≤ ≤ ≤ ≤  

2. Compute outer cost matrix C 
For k1 = 1 to n1 Do 
 For k2 = 1 to n2 Do 
  If 

1 21 2(is Compatible ( ,  ) = = false)k kV V  

   Then c(k1, k2) = 1 
   Else build attributed trees rooted at 

11kV  and 
22 ,kV  viz., 

1 1kVAT  and 
2 2kVAT  

    For i = 1 to n1 
     For j = 1 to n2 
      If (is Compatible(V1i, V2j) == false) 
       Then c′(i, j) = 1
        Else ( )1 21 2 1 2( , ) ( , ) (1 )   ,    

i jE i j E k kc i j d dα α′ = ∗ + − ∗ ∗ ∗v v Q r Q r  

1 21 21 2( , ) EMD( , )
k kV Vc k k AT AT= ) 

3. Compute flow matrix F using simplex algorithm to minimise the overall cost n1 
 1 2

1 1

n n

ij iji j
c f

= =∑ ∑  

4. return { }1 2 1 2( , ) 0
FPD( , )= / min( , )

ij
iji j f

FP FP c n n
>∑  

Function is Compatible(Node V1, Node V2) 
/* to check if node types are compatible, e.g., a line and a circle are incompatible. */ 

If (V1.label == ‘L’) & (V2.label == ‘C’ ⎜⎜V2.label == ‘E’) 
 return false; 

Else if (V2.label == ‘L’) & (V1.label == ‘C’ ⎜⎜ V1.label == ‘E’) 
 return false; 
Else return true; 

Analysis of time complexity: The theoretical complexity of EMD used to computer  
c(k1, k2) in Algorithm 3 is O(n1n2niter), where niter is the number of iterations used by the 
simplex algorithm, which can be approximated by O(n1n2 max(n1, n2)) (Kim et al., 2010). 
Step 2 of Algorithm 3 may involve at most n1n2 times of EMD computation in the worst 
case [when function call is compatible

1 21 2( , )k kV V  returns true each time], so the time 

complexity of FPD is 2 2
1 2 1 2( max( , )).O n n n n  

5.2.2 Computing weight vector using sensitivity analysis 

Distance between ARGs has different sensitivities for different attributes. Weight vector 
Q in equation (11) takes care of the difference in sensitivities. For clarity, the same 
equation is shown below: 
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( ) ( ) ( )ˆ ˆ1 2ˆ ˆ ˆ ˆ1 2 1 2, , (1 )   ,    i ii iE Ei j i jc V V d dα α= + − ∗ ∗v v Q r Q r  (12) 

where α is 0.5 as explained before, dE is the Euclidean distance, ˆ1 iir  is the attribute 
vector of edge between V1i and ˆ1 ,iV  Q is the weight vector and ∗  is the element-wise 
product between two vectors. 

Figure 6 Example of two two-node prints used in sensitivity analysis, (a) P1 (b) P2 

 
(a)      (b)  

Consider two synthetic prints shown in Figure 6, each of which contains two identical 
ellipses, i.e., n1 = n2 = 2. We assume that α equals 0.5, which means that node attributes 
and edge attributes are weighed equally. Using Algorithm 3 we arrive at the following 
distance between the two prints 

( ) ( ) ( ) ( )( )1 2 11 21 12 22 112 212FPD , 0.25 , ,   ,    E E EP P d d d= + + ∗ ∗v v v v Q r Q r  (13) 

Similarly, for two prints with arbitrary n1 and n2 nodes, with n1 ≤ n2, we have 

( )
( ) ( ){ }1

1 1 2 1 21 {( , )}
1 2 2

1

, 2   ,    
FPD ,

i i

n
E n n E ij iji i j i j

n d d
P P

n

α
= <

+ ∗ ∗
=

∑ ∑v v Q r Q r
 (14) 

We assume that we can make a print become totally different from itself by changing 
every value of both node and edge attributes from one extreme to the other. This means 
that Δr = 1, where r is an edge attribute. Suppose that P1 and P2 are such two prints 
whose distance FPD(P1, P2) equals the maximum of 1. Assuming that the difference of 
node attributes in each correspondence pair, as well as the difference of edge attributes in 
each correspondence pair, take equal responsibility for the distance FPD(P1, P2). The 
number of shares of such responsibility is 2

1 1 1 1 1( 1) (2 1).n n n n n+ − = −  

( ) ( )
1

1 2 1 2
1

  ,    ,  1 , ,  1 ,  .
2 1E is jt
n

d i s n j t n
nα

∗ ∗ = ≤ ≤ ≤ ≤
−

Q r Q r  (15) 

We can rewrite the above equality as follows. 
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( ) ( )
2 1

1 21
1

,
2 1

m
k isk jtkk

n
Q r r

nα=
− =

−∑  (16) 

where m is the dimension of the edge attribute vector. 
Finally, we arrive at the values of weight vector as follows. 

( )

( )

22
1

1 1

1

1

2 1
2

,   {1, 2, , }
1 2 1k

n
n n

nmQ k m
n m

α
⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦

= = ∀ ∈
−

…  (17) 

For large 
( )

1
1

1

2
,   1,

2 1
n

n
n

≈
−

 thus we have 1 .kQ
m

≈  When n1 = 2, 4 .
3kQ

m
=  This 

indicates that we can determine the weights {Qk, k = {1, …, m} by first deriving the value 

of Qk in the case of two-nodes, then multiplying it by 3 .
4

 The contribution of each edge 

attribute for all pairs of nodes to distance can be calculated as 

( )
( )

( )

1
1 1

1 1
2
1 1

2 1 1
2 1 1

.
2 1

n n n
n n n

n n n

α∗ ∗ − ∗
− ∗ −

=
−

 

From the definition of edge attributes (shown in Table 2), E2E edge has six attributes. 
Since the attributes eccentricity ratio and Δe bear apparent dependency between each 
other, the number of independent attributes for E2E edge is 5, i.e., m = 5. We chose the 
attribute normalised relative distance N-rd in Table 2 to conduct the experiments on 
prints with only two nodes to determine the relationship between the distance FPD and  
N-rd as well as the weight Qk. This attribute is supposed to contribute to the final distance 

an amount of 2 1 0.1491.
(2 2 1) 5

−
=

∗ −
 

In the experiments, the maximum change of N-rd is 1. Our goal is to find the value of 
Qk such that the distance reaches 0.1491 when the Δ N-rd is 1 (we set the N-rd of P1 to be 
0, so Δ N-rd = N-rd (P2) = 1). From Figure 7, we get the value of Qk as 0.5963, which is 
the same as what we would get if we substitute 5 for m, and 2 for n1 in equation (17). 
Finally, we obtain weight Qk for attribute E2E N-rd for prints with n1 nodes by 

multiplying 0.5963 by 3
4

 to get 0.4472, which is shown in subtable of E2E in Table 2. 

Similarly, the weights for other attributes have been determined by means of both 
experiments and derivations. The weights are shown in the last columns in the definitions 
of edge attributes in Table 2. 
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Figure 7 Plot of distance FPD against weight Qk (see online version for colours) 

 

Notes: N-rd(P1) = 0 and N-rd(P2) = 1 

6 Clustering using recurring patterns 

As the time complexity of FPD is 2 2
1 2 1 2( max( , ))O n n n n  it is a computationally intensive 

graph distance measure despite being robust and accurate hence to overcome the trade-off 
between its speed and accuracy we clustered the known prints in database beforehand to 
aid the retrieval. 

Clustering algorithms can be divided into partition-based, density-based and 
hierarchical-based methods (Aldenderfer and Blashfield, 1984). Popular algorithms like 
K-means (partition-based) and hierarchical clustering require huge amount of 
computation of distance between data points. For instance, assignment/reassignment of 
data points to the nearest cluster in K-means requires a huge number of distance 
computations. Similarly, building similarity matrix in hierarchical clustering is 
computationally expensive for a large dataset. In other words, an efficient distance 
measure (usu. computed in linear time) is required for a practical application of K-means 
or hierarchical clustering, for which FPD is not efficient. Moreover, K-means clustering 
assumes that data are represented by real vectors with equal dimension; Gaussian mixture 
model (GMM) (Bishop, 2006) assumes normally distributed data. Both assumptions are 
not valid for footwear prints represented by ARGs. Hence the existing clustering 
algorithms are not readily applicable to footwear prints, and so we decided to incorporate 
domain knowledge to aid the clustering. 

Recurring patterns (shown in Figure 8) such as wavy pattern, concentric circles 
(Girod, 1982; Foster and Freeman, http://www.fosterfreeman.com/; Mikkonen et al., 
1996) are typically found in footwear prints and each of them can represent a group of 
similar prints. Each pattern is simple and its graph structure has a small number of nodes. 
Further, the ARG representing a footwear print has 200–300 nodes on average and nodes 
can vary considerably in terms of relative size, position, etc. This makes the feature space 
very sparse and therefore similar footwear prints tend to stay close to each other and 
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dissimilar ones stay apart. Hence, to cluster the huge dataset we use recurring patterns as 
cluster representatives, which serve as initial seed clusters (Basu et al., 2002). This 
clustering approach is outlined in Figure 9 and is summarised as Algorithm 4. 

Figure 8 33 cluster representatives determined from a database of 2,660 prints 

 

Figure 9 Clustering Footwear prints in database (see online version for colours) 

 

Algorithm 4 Clustering database prints 

Input: Set D of footwear prints and recurring patterns P1, P2, ..., Pm

Output: Clusters of footwear prints 
1. Set # of clusters K to m, and set each recurring pattern as a cluster representative 
2. For each footwear print p ∈ D Do
3.  Compute FPD(p, Pi), ∀i = 1, … K.
4.  arg min  (FPD( , ))i

i
j p P=  

5.  If FPD(p, Pj) ≤ T 
6.   Then assign p to cluster Pj 
7.   Else increment K by 1 
8.    Create a new cluster PK and assign p to PK 
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How to choose threshold T: T is an important parameter as it decides whether to assign a 
print p to its closest cluster Pj (existing) or let it be a new cluster. An appropriate value of 
T should be located between average within-cluster FPD and average between-cluster 
FPD. On the other hand, a footwear print usually contains one dominant recurring pattern 
and one or more non-dominant pattern(s). For instance, the print in Figure 2(a) has wavy 
pattern as a dominant pattern and rest of the parallel lines as a non-dominant pattern. We 
randomly selected 200 prints and manually assigned them to a cluster representative by 
recognising the dominant pattern of each print. If no recurring pattern was found in them, 
then they form a new cluster. After the clusters were formed, we computed pair-wise 
FPDs and visualised the distributions of within/between-cluster FPD (shown in  
Figure 10). From Figure 10, it is evident that T = 0.15 separates the two distributions well 
hence 0.15 is an optimal threshold value. 

Figure 10 Distributions of within/between-cluster FPD (see online version for colours) 

 

6.1 Upper bound of FPD comparisons 

Let the database consists of N prints and m initial clusters. We assume that it is equally 
likely that a print p is to be clustered into any of m existing clusters, or becomes a new 

cluster, i.e., the probability of creating a new cluster is 1 .
1m +

 The 1st print needs to be 

compared with m clusters. For the 2nd print, the expected number of clusters to be 

compared is 1 1( 1) . .
1 1

mm m m
m m m
⋅ + + ⋅ < +

+ +
 For the 3rd print, this expectation3 will 

be 
2

2 2
1 1 2 2( 1) [ ] .

2 ( 1)( 2)( 1) ( 1)
m mm m m

m m m mm m
+

⋅ + + ⋅ + + < +
+ + ++ +

 In general, the 

expected number of clusters with which the kth (k = 1, … N) print needs to be compared is 

less than 1.km
m
−

+  Then the total number of comparisons with existing clusters for N 

prints4 will not exceed ( 1) .
2

N NNm
m
−

+  In our case, N = 2,660 and m = 33 hence the 

number of FPD comparisons will not exceed 194,180. However, hierarchical clustering 
would require 2,660C2 = 3,536,470 FPD computations to build the similarity matrix. So the 
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proposed clustering method reduces computation load by 94.5%. This reduction speeds 
up the retrieval and it is evident from Table 3. 
Table 3 Retrieval speed 

# of scene marks 
 used in experiments 

Average time per query 
without clustering 

Average time per query  
with clustering 

300 120 minutes 10 minutes 

7 Experiments and results 

The dataset we used contains 2,660 known prints and 300 test images from Foster and 
Freeman. The known prints (shown in Figure 11) were created by taking impressions of 
footwear outsoles provided by footwear vendors, while the test images are real crime 
scene marks (shown in Figure 12), which are mostly partial, were taken at different 
illumination/orientation. Each known print has meta-data information such as the brand 
and model of the footwear. The resolution of database images and crime scene images 
varies from 72 dpi to 150 dpi and 72 dpi to 240 dpi respectively. Known prints and crime 
scene marks come from disjoint sources. Forensic experts provided the ground truth of 
matching prints for every crime scene mark. 

Figure 11 Sample known footwear prints 

 
(a)           (b)          (c)         (d)    (e)  (f) 

Figure 12 Sample crime scene images (see online version for colours) 

 
     (a)      (b)           (c)             (d)          (e) 
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We conducted the experiments in the following steps: 

Step 1 The first step in the feature extraction is to perform morphological operations 
such as dilation and erosion. This helps to enhance the quality of the edge 
image, which is used as input for circle detection. Result of Step 1 for a sample 
footwear print is shown in Figure 13. 

Step 2 SHT is used to detect circles in footwear prints. Pixels of detected circles shown 
in Figure 14(a) are removed from the edge image and fed as input for ellipse 
detection. Pixels of detected ellipses shown in Figure 14(b) are removed from 
the edge image and the output is fed as input for line detection. Figure 14(c) 
shows the detected line segments. Features are extracted in the order of circle, 
ellipse and line. This is because circles are special case of ellipses and arbitrary 
shapes in footwear print are approximated by piecewise lines. Figure 14(d) sums 
up all the features. 

Step 3 For each detected feature, node and edge attributes shown in Table 2 are 
calculated and finally an ARG is constructed. One such ARG is shown in  
Figure 15. 

Step 4 From visual inspection, 33 recurring patterns (shown in Figure 8) were 
determined. Using Algorithm 4, 1,460 footwear prints were associated with one 
of the 33 clusters whereas the remaining 1,200 prints were so unique that each 
of them was a cluster by itself. Sample clusters from the clustered database are 
shown in Figure 16. 

Step 5 In the clustered database, real crime scene marks were used as queries in the 
retrieval system (shown in Figure 1) and the closest prints were retrieved. The 
crime scene mark was first matched against every cluster representative to find 
the closest cluster. Then within the closest cluster, crime scene mark was 
matched against each of the prints and the top k matches from the cluster were 
retrieved. Sample retrieval results for four crime scene marks are shown in 
Figure 17. 

Figure 13 Results of morphological operations on sample image, (a) original grey-scale  
image (b) edge image of (a) (c) result of morphological operations on (a)  
(d) edge image of (c) 

 
 (a) (b) (c) (d) 
Note: Morphological operations improve the quality of edge image significantly. 
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Figure 14 Results of extracting shape features from edge image in Figure 13(d) in the order of 
circle → ellipse → line, (a) circles (b) ellipses (c) line segments (d) all features  
(see online version for colours) 

 
 (a) (b) (c) (d) 

Notes: Red box in (d) indicates a small region in the footwear print.  
Best viewed in colour. 

Figure 15 ARG construction, (a) ARG for footwear print shown in Figure 13(a)  
(b) subgraph of graph (a) for the region enclosed within the red box of  
Figure 14(d) (see online version for colours) 

 
(a)   (b) 

Notes: Green and red dots represent lines and circles respectively. Please note this ARG 
is fully connected and edges are omitted for clarity. Best viewed in colour. 
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Figure 16 Sample clusters from clustered database (see online version for colours) 

 

Figure 17 Retrieval results (top matches) for sample crime scene marks 

 

Note: For each query, the matched cluster representative and the top four or five matches 
along with the corresponding FPDs are listed. 

To evaluate the system’s performance, the retrieval system was tested on 300 real crime 
scene marks. CMC and mean average precision (MAP) were used as performance 
metrics. CMC is the probability of finding a match in the first n percent of the sorted 
database. The probability of a match [cumulative match score (CMS)] is estimated by the 
proportion of times a matching footwear print appears in the first n percent of the sorted 
database. SIFT (Lowe, 2004) is the state-of-the-art image matching algorithm and shape 
context-based method (Belongie et al., 2002) has been widely used in matching shape 
patterns. Hence, we compare our approach against SIFT and shape context. The CMC 
curve of the three methods is shown in Figure 18. CMC curve of our approach remains 
the same before and after clustering, but it is evident from Table 3 that clustering gives 
12 times of improvement in retrieval speed. Further, CMS of our system is much higher 
than the other two approaches. 
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Figure 18 CMC of proposed approach, SIFT and shape context-based approach (see online 
version for colours) 

 

MAP provides a single measure of quality across recall levels. Let the set of relevant 
items for a query qj ∈ Q be {i1, …, inj} and Rjk be the set of ranked retrieval results from 
the top result until relevant item ik, then MAP is defined as 

( ) ( )
1 1

1 1 jnQ

jk
jj k

MAP Q Precision R
Q n= =

= ∑ ∑  (18) 

where ( ) #    .
#    jk

of relevant items retrievedPrecision R
of retrieved items

=  MAP of our approach, SIFT and 

shape context is shown in Table 4. 
Table 4 MAP comparison with SIFT and shape context 

Method SIFT Shape context Proposed approach 
MAP 0.17 0.10 0.56 

Since there is no benchmark dataset of real crime scene marks, direct comparison with 
the existing footwear print retrieval system is impractical but most of the existing systems 
(summarised in Table 5) work with only synthetic and clean (i.e., almost noise-free) 
prints. None of them have designed their system to capture features from crime scene 
marks. Dardi et al. (2009) have used three techniques (luminance image, images 
processed by Laplacian edge detector and Canny edge detector) to retrieve closest print(s) 
for 30 crime scene marks. CMS of the three methods varies for a given query and the 
CMS of the best match in at least one of the three methods (considering highest ranking 
technique for each mark) is reported as 74% at 10% of the sorted database. But their 
method is tested only with a very small dataset (87 known prints and 30 real crime scene 
marks). Table 5 compares our approach with existing systems in terms of performance 
and method of conducting experiments. 
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Table 5 Comparison of our nested ARG-FPD-based approach with the state-of-the-art 
footwear print retrieval systems 

Fu
ll 

pr
in

t 
Pa

rt
ia

l p
ri

nt
 

Fo
ot

w
ea

r 
pr

in
t 

re
tr

ie
va

l s
ys

te
m

s 
C

M
S 

at
 

1%
 

C
M

S 
 

at
 1

0%
 

 
C

M
S 

at
 

1%
 

C
M

S 
at

 1
0%

 

Ex
pe

ri
m

en
ts

 w
ith

 
cr

im
e 

sc
en

e 
m

ar
ks

 
Sh

or
t-c

om
in

g 
D

at
as

et
 u

se
d 

C
ha

za
l e

t a
l. 

(2
00

5)
 

64
 

90
 

 
50

 
77

 
- 

La
ck

s 
sc

al
in

g 
in

va
ria

nc
e 

47
5 

pr
in

ts
 fr

om
 d

at
as

et
 o

f 
Fo

re
ns

ic
 S

ci
en

ce
 L

ab
or

at
or

y,
 

D
ub

lin
, I

re
la

nd
 

Zh
an

g 
et

 a
l. 

(2
00

5)
 

85
.4

 
97

.4
4 

 
- 

- 
- 

N
ot

 te
st

ed
 w

ith
  

pa
rti

al
 p

rin
ts

 
51

2 
pr

in
ts

 fr
om

 F
os

te
r a

nd
 

Fr
ee

m
an

 D
at

as
et

 
Pa

vl
ou

 a
nd

 
A

lli
ns

on
 (2

00
6)

 
86

 
93

 
 

85
 

92
 

- 
N

ot
 te

st
ed

 w
ith

 re
al

 
cr

im
e 

sc
en

e 
m

ar
ks

 
36

8 
pr

in
ts

 p
ro

vi
de

d 
by

 F
or

en
si

c 
Sc

ie
nc

e 
Se

rv
ic

es
 d

at
as

et
, U

K
 

C
ro

ok
es

 e
t a

l. 
(2

00
7)

 
10

0 
10

0 
 

10
0 

10
0 

- 
Te

st
ed

 o
nl

y 
w

ith
 

sy
nt

he
si

se
d 

So
C

s 
50

0 
cl

ea
n 

pr
in

ts
 a

nd
  

50
 d

eg
ra

de
d 

pr
in

ts
 

C
ro

ok
es

 e
t a

l. 
(2

00
7)

 
10

0 
10

0 
 

10
0 

10
0 

- 
La

ck
s 

ro
ta

tio
na

l 
in

va
ria

nc
e 

10
0 

cl
ea

n 
pr

in
ts

 a
nd

  
64

 s
yn

th
et

ic
 s

ce
ne

 im
ag

es
 

G
ue

ha
m

 e
t a

l. 
(2

00
8)

 
- 

- 
 

- 
95

.6
8 

- 
Te

st
ed

 o
nl

y 
w

ith
  

10
0 

pr
in

ts
 

10
0 

pr
in

ts
 fr

om
 F

os
te

r a
nd

 
Fr

ee
m

an
 D

at
as

et
 

- 
- 

 
- 

- 
C

M
S 

at
 1

0%
:7

3%
 

 
 

 
 

 
C

M
S 

at
 5

%
:4

0%
 

D
ar

di
 e

t a
l. 

(2
00

9)
 

 
 

 
 

 
C

M
S 

at
 1

%
:1

0%
 

87
 k

no
w

n 
pr

in
ts

 a
nd

 
30

 S
oC

s 
87

 k
no

w
n 

pr
in

ts
 a

nd
  

30
 re

al
 c

rim
e 

sc
en

es
 fr

om
  

EN
SF

I g
ro

up
 

10
0 

10
0 

 
10

0 
10

0 
C

M
S 

at
 1

0%
:1

00
%

 
 

 
 

 
 

C
M

S 
at

 5
%

:1
00

%
 

N
es

te
d 

A
R

G
-F

PD
 

 
 

 
 

 
C

M
S 

at
 1

%
:7

0%
 

- 
2,

66
0 

kn
ow

n 
pr

in
ts

 a
nd

 
30

0 
re

al
 c

rim
e 

sc
en

e 
m

ar
ks

 fr
om

 
Fo

st
er

 a
nd

 F
re

em
an

 D
at

as
et

 

 



   

 

   

   
 

   

   

 

   

   30 Y. Tang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

8 Sensitivity analysis 

Sensitivity analysis (Smith et al., 2008) is a powerful system validation technique,  
so we conducted extensive experiments in a subset of 1,400 prints to investigate  
how sensitive FPD is to changes in attributes defined in Table 2. Results are shown in 
Figure 19. 

Figure 19 Sensitivity of FPD to variation in each attribute shows that FPD is insensitive to small 
errors in the feature extraction (see online version for colours) 

 

Notes: There are 15 plots – from top to bottom, left to right: labelled (a)-(e), (f)-(j),  
(k)-(o). A linear correlation is seen between FPD and most attributes indicating 
that FPD consistently approximates human perceptual distance. 

There are 15 graphs shown (labelled a-o), each of which is a plot of distance with respect 
to one of the attributes. The first four graphs correspond to how the distance between two 
lines (L2L) changes as attributes N-α, N-rs, N-rd, N-pd, and rp are varied. The next four 
graphs correspond to how the distance between two circles (C2C) changes as the 
attributes N-rs, N-rd1, N-rd2, and completeness of circle are varied. Similarly, the 
attributes eccentricity ratio, Δe, N-rs, N-rd, N-ro, and rp are varied to find the change in 
distance between two ellipses (E2E) in the subsequent six graphs. The final graph varies 
the radius of one of the two circles to find the change in distance between two circles 
(C2C). 

A linear correlation is seen between distance and most attributes which clearly 
indicate that FPD measures human perceptual distance. The four plots (b, j, n, o) show 
non-linear behaviour. The reason for their behaviour are explained as follows: 

(b) L2L N-rs: for instance, let the two lines be l1 and l2. Initially, l1.len > l2.len, as  
l1 becomes shorter than l2 (l1.len < l2.len) the algorithm will start to minimise FPD 
hence FPD drops after reaching a peak. 

(j) E2E Δe: similar reason as (b). 

(n) E2E rp: when the major axes of two ellipses are far, the rate of change in rp 
becomes very small hence FPD initially increases fast and then saturates. 

(o) C2C ΔC.r: when the radius r of one of the two circles vary randomly within 15%, 
the change of FPD is always below 0.025. 
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9 Conclusions 

This paper proposes geometric shapes like line segments, circles and ellipses as features 
for crime scene footwear marks and presents algorithm to detect line segments and 
ellipses in footwear prints. These features provides high distinctiveness and are very 
effective in retrieving similar prints for a partial and noisy crime scene mark. This 
distinctiveness is achieved by structurally representing the geometric shapes in the form 
of an ARG which captures the spatial relationships such as relative dimension, relative 
size, relative distance and orientation between every geometric shapes in a print. The 
attributes for every shape are defined in a way to provide scaling, rotation and translation 
invariance. Further, FPD, a perceptual similarity measure for matching degraded 
footwear prints has been introduced. The trade-off between accuracy and speed of FPD is 
overcome by clustering the database prints beforehand. A database of known prints is 
clustered based on recurring outsole patterns. 

Eventually, we have proposed a system to retrieve similar footwear prints for real 
crime scene marks, an unsolved task in the field of computational forensics. From 
experimental results it is evident that the retrieval speed improves significantly with the 
clustered database and FPD plays a crucial role in both retrieval and clustering of 
footwear prints by ensuring robust matching of prints. Further, sensitivity analysis of 
FPD showed that it is very robust to the small changes in the attributes of ARG. CMCs 
and MAP of our approach were compared with the state-of-the-art image matching 
algorithm SIFT and widely used shape matching algorithm shape context to show the 
efficacy of our system. Results from Foster and Freeman Dataset were compared  
with the existing footwear print retrieval systems to show that our system outperforms the 
state-of-the-art footwear print retrieval systems. 

Future direction is to speed up the FPD computation further by using approximation 
methods (Huet and Hancock, 1999; Pavlou and Allinson, 2009) and pre-filtering the 
whole database using histogram-based indexing (Grauman and Darell, 2004; Berg et al., 
2005). Another direction is to use the proposed system to get the best match for the crime 
scene mark and use that to interpret the result in terms of the strength of the evidence it 
can support to find if the suspect is the offender. One can use the Likelihood ratio 
approach (Everett et al., 1998) to interpret the strength of the evidence. As future work, 
this approach will be investigated to come up with a probabilistic framework for evidence 
interpretation of footwear print retrieval and identification. Other potential application is 
to combine multiple marks from crime scene and use it to enhance the evidence strength. 
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Notes 
1 There are around 50,000 foreground pixels in a footwear print of typical size 600 × 800 and 

picking three foreground pixels from them in random will never narrow down to the right 
ellipse. 

2 The eccentricity (The MathWorks, Inc., http://www.mathworks.com/help/toolbox/images/ 
ref/regionprops.html) of one component/region is defined as the eccentricity of the ellipse  
that has the same second-moments as the region. 

3 Let x be a random variable that denotes the number of clusters which need to be compared 
with the 3rd print. Then 
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