
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2019-01-01

Performance analysis of data

fragmentation techniques on a cloud

server

Santos, N

http://hdl.handle.net/10026.1/15370

10.1504/IJGUC.2019.100902

International Journal of Grid and Utility Computing

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

392 Int. J. Grid and Utility Computing, Vol. 10, No. 4, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

Performance analysis of data fragmentation
techniques on a cloud server

Nelson Santos* and
Salvatore Lentini
Big Data Group,
University of Plymouth,
Drake Circus, PL4 8AA,
Plymouth, UK
Email: nelson.santos@students.plymouth.ac.uk
Email: Salvatore.lentini@postgrad.plymouth.ac.uk

Enrico Grosso
Computer Vision Laboratory,
University of Sassari,
Viale Mancini, 5, 07100,
Sassari, Italy
Email: grosso@uniss.it

Bogdan Ghita
Centre for Security, Communications and Network Research,
University of Plymouth,
Drake Circus, PL4 8AA,
Plymouth, UK
Email: Bogdan.ghita@plymouth.ac.uk

Giovanni Masala*
Big Data Group,
University of Plymouth,
Drake Circus, PL4 8AA,
Plymouth, UK
Email: Giovanni.masala@plymouth.ac.uk
*Corresponding authors

Abstract: The advancements in virtualisation and distributed computing have allowed the cloud
paradigm to become very popular among users and resources. It allows companies to save costs
on infrastructure and maintenance and to focus on the development of products. However, this
fast-growing paradigm has brought along some concerns from users, such as the integrity and
security of the data, particularly in environments where users rely entirely on providers to secure
their data. This paper explores different techniques to fragment data on the cloud and prevent
direct unauthorised access to the data. It explores their performance on a cloud instance, where
the total time to perform the operation, including the upload and download of the data, is
considered. Results from this experiment indicate that fragmentation algorithms show better
performance compared to encryption. Moreover, when combining encryption with fragmentation,
there is an increase in the security, with the trade-off of the performance.

Keywords: cloud security; data fragmentation; data security; privacy in cloud computing;
information security.

Reference to this paper should be made as follows: Santos, N., Lentini, S., Grosso, E., Ghita, B.
and Masala, G. (2019) ‘Performance analysis of data fragmentation techniques on a cloud server’,
Int. J. Grid and Utility Computing, Vol. 10, No. 4, pp.392–401.

Biographical notes: Nelson Santos is currently a PhD student of Applied Computing at the University
of Plymouth, with a project entitled ‘Data Security on Cloud’, where he is evaluating the security of
data in the cloud through fragmentation, as well as the use of multi modal biometrics on the cloud to
authenticate users. He graduated at the University of Plymouth as BSc (Hons) Computer and
Information Security in June of 2017. His interests include cloud security, cyber security, information
security and the applications of machine learning in the same domains.

 Performance analysis of data fragmentation techniques on a cloud server 393

Salvatore Lentini received his Bachelor’s degree in Computer Science at the University of
Catania in Computer Science, and he received the MSc Network Systems and Security at the
same university. He has also attended 6 months at the University of Plymouth, where he worked
in a cloud security project, publishing his research in a conference. His current research interests
are in the areas of cloud security, penetration testing and information security.

Enrico Grosso received the degree in Electronic Engineering from the University of Genoa, and
the PhD in Computer Science and Electronic Engineering, from the same university. He is
Professor in Computer Science at University of Sassari, Italy. His main research interests cover
image analysis, pattern recognition, biological and artificial vision, visuo-motor coordination,
robotics, biometrics. The research activity carried on during the last decade had an interesting
fallout in the field of advanced and anthropomorphic robotics and in the realisation of intelligent
systems and agents providing secure access to networks and environments. He is co-author of
more than 60 papers published on high-profile conferences and journals. He served as reviewer
for many international conferences and journals of repute.

Bogdan Ghita received his Diploma Engineer from Politehnica University of Bucharest,
Romania, in 1998 and his PhD from Plymouth University, UK, in 2005. He is Associate
Professor at Plymouth University and leads the networking area within the Centre for Security,
Communications, and Network research. His research interests include computer networking and
security, focusing on the areas of network performance profiling and optimisation, wireless and
mobile networking, and network security, with over 100 publications in these areas. He has been
principal investigator in several industry-led, national, and EU research projects. He graduated
13 PhD students, over 50 MSc students, and is currently supervising 20 PhD projects.

Giovanni Masala received the degree in Electronic Engineering from the University of Cagliari,
Italy, and the PhD in Physics, from the same university. He was a Lecturer in Networks and
Cloud Computing and Programme Manager of Computer System and Networks at University of
Plymouth in the School of Computing, Electronics and Mathematics, also leading the Big Data
group in the same university. He recently joined the Metropolitan University of Manchester as
Senior Lecturer in Computer Science and he is visiting professor at University of Plymouth. He is
supervising many PhD students and Research Masters. He has published widely on topics related
to machine learning, pattern recognition and cloud computing. He is author of more than 60
papers published on high-profile conferences and journals.

This paper is a revised and expanded version of a paper entitled ‘A comparison of data fragmentation
techniques in cloud server’ presented at the ‘International Conference on Emerging Internet, Data and
Web Technologies (EIDWT 2018)’, Tirana, Albania, 15–17 March 2018.

1 Introduction

Cloud computing has grown in such a way that can be
considered one of the most promising IT paradigms, in which
most applications are now hosted as services on the internet.
Such services can be divided into three main categories:
Software-as-a-Service (SaaS), Platform-as-a- Service (PaaS)
and Infrastructure-as-a-Service (IaaS). NIST (2011) defines
cloud computing as a model that allows access to a pool of
resources such as networks, storage or applications that are
provisioned with minimal effort from the provider. In this
scenario, virtualisation and distributed computing are the
cornerstones. This allows the customers to reduce the cost of
the storage and computing clusters, as well deviate from
the burden of maintaining the infrastructure and shift all the
focus towards the development of applications (Bahrami and
Singhal, 2015).

Although cloud computing brought many benefits, it also
generated a number of challenges. Among them, the protection
of the data being stored in the cloud and the privacy of the
users are the most significant ones. Surveys conducted by the
Intel IT Centre (2012) and the Cloud Security Alliance (2013),
indicated that the top three cloud security concerns are the
inability to measure the provider's security services, the lack of

control over data and the confidence in the capabilities of the
provider. In addition, the data is handled by the provider, which
also oversees its safekeeping. According to the Cloud Security
Alliance (2010), Kumar and Raj (2018), Hegarty and Haggerty
(2015) the cloud provider often does not disclose internal
procedures on storing and safekeeping the data to the user.
Furthermore, many of the organisations that provide cloud
services use data mining techniques to extract information from
the clients and utilise or sell such information, often for
advertising purposes, as described by Chow et al. (2009) and
Dev et al. (2012). Such behaviour exposes users to attackers
with unauthorised access to the cloud (Dev et al., 2012).
Encryption schemes often satisfy the data privacy problem,
however, they bring forward performance issues, such as the
complexity and computationally expensive nature of the
encryption algorithms (Bahrami and Singhal, 2015; Bahrami
and Singhal, 2016). As a result, researchers shifted their focus
on alternative measures to protect the privacy of users. This
paper explores the use of data fragmentation in the cloud, by
analysing the performance of different fragmentation algorithms
on a cloud instance, hosted in the Amazon Web Services
(AWS), from (Amazon, 2018). It will start by analysing the
state of the art in fragmentation algorithms, followed by an
explanation of the different methods. Each mechanism will be

394 N. Santos et al.

thus evaluated, and results analysed and compared with AES
(Federal Information Processing Standards, 2001) a common
encryption algorithm. Furthermore, the combination of AES
and Random Pattern fragmentation is analysed, showing that
this approach allows for the highest level of security among all
the tested methods. The comparison of the methods gives a
better understanding of each mechanism, along with their
benefits and drawbacks.

2 State of the art

This section will highlight the current state of the art with
regards to research performed in the data privacy on the
cloud. It will investigate the use of data anonymisation, and
data fragmentation.

The research community attempted to solve the privacy on
the cloud with various approaches, some of which include
encryption, and data anonymisation. As an example, Goswami
and Madan (2017) studied various well-known anonymisation
methods for their advantages and disadvantages. Barak et al.
(2016) applied semantic labelling to achieve anonymisation
by replacing location coordinates with semantic categories.
Ghinita et al. (2007) attempted to solve K-anonymity and
l-diversity problems by mapping multidimensional identifiers
on a single dimension. Jang (2017) the author proposes a
method based on deep anonymisation for big data, to aid in the
reduction of information loss. Furthermore, Gkoulalas-Divanis
and Loukides (2011) address the issue of information loss by
using a method based on clustering. However, this method may
allow identification of an individual based on their sensitive
information. Jesu et al. (2017) also proposed a method based
on clustering, using the Hadoop Distributed File System. Al-
Zobbi et al. (2015) proposed a novel anonymisation framework
that takes a bottom-up approach on the data and applies
sensitivity on the anonymisation process instead of generalising
equivalent records. This approach is suitable for big data
environments and is compatible with the MapReduce model.
Furthermore, Canbary and Sagiroglu (2017) proposed the use
of spark and MapReduce to anonymise streaming big data.

Some works where data fragmentation has been applied
as a mean to provide privacy include Kapusta and Memmi
(2015) who attempted to avoid encryption by separating the
data into distinct groups, each with a distinct level of security,
based on the sensitivity of the data being stored. However,
when faced with large datasets, the running time of
their algorithm increased due to the number of clusters
formed. Hegarty and Haggerty (2015) presented a system of
extrusion detection of files that are maliciously uploaded or
downloaded in the cloud. Dev et al. (2012) approached the
problem by categorising and fragmenting the data, followed
by storing the data on different providers. Nevertheless, the
constant access to the data hinders the performance of the
algorithm. Authors in Memmi et al. (2016) propose more
complex solutions, which include the use of GPUs to
incorporate fragmentation, encryption and dispersion. Ciriani
et al (2010) also addressed the data privacy issue by
combining encryption with fragmentation, by modelling the
sensitivity and the data after encryption, followed by using
fragmentation to break the association among attributes.

To improve the management of data within the cloud,
researchers investigated the use of a database to combine with
fragmentation. For instance, Alsirhani et al. (2017) proposed
a combination of encryption algorithms and distributed a
database across different cloud providers, based on the
encryption security level. Aggarwal et al. (2005) explored
different techniques to decompose data and optimise queries
in a distributed database. Masala et al. (2018) proposed an
approach of storing fragmented data with a MongoDB
database. Furthermore, Santos et al (2018) investigated the
use of random pattern fragmentation to chunk data and save
on a NoSQL database. El Mrabti et al. (2017) investigated
the possibility of applying data fragmentation on Android
devices, to allow different policy strategies for applications
that need to access data from the device.

This work will focus on the scenario where the data is
stored in a single cloud provider, considering that this is the
least recommended approach, given all the data will be
present in the same location, where an attacker inside
the cloud could access. Moreover, users may find many
occurrences such as the cloud provider running out of
business, or having data backed up on the same provider, as
it will void the intended security measures because the
complete data will be accessible through the backups.

Nevertheless, current work can be extended to work with
more data types, including but not limited to general pictures
and medical images, or it can be used on less efficient devices
such as smartphones. Other different scenarios can also be
considered when applying these techniques. For instance, the
analysed techniques use multiple SSH sessions to send the
split files to the cloud provider. Considering a scenario with
different providers, a connection can be opened with each
provider and the split files can be sent concurrently. It is
important to note that cloud providers have different speeds
and performance can be affected by the presence of additional
and uncontrolled variables; these problems, however, go
beyond the scope of this paper. Nowadays, business and
companies tend to use the cloud to back up their data. The
methods can be applied on such backups to protect them
from unauthorised access within the cloud. The data
anonymisation techniques described earlier can also be used
to add an extra layer of security on the data.

3 Fragmentation algorithms

Before explaining the pattern fragmentation algorithms, the
permutation approach must be detailed. It was introduced by
Bahrami and Singhal (2015) where the authors proposed a
light-weight method for mobile clients to store data on one
or multiple clouds using a pseudo random permutation
based on chaos systems (Gharajedagh, 2011). This is less
computationally expensive, compared to operations such as
secret key or public-key encryptions, but provides a good
balance between security and efficiency, especially for
devices with limited resources such as mobile phones. The
author’s proposal is optimised for JPEG images and, when
compared to encryption algorithms such as AES or JPEG
encoders, it proved more efficient than the counterparts,
whilst to an extent, protecting the user data privacy.

 Performance analysis of data fragmentation techniques on a cloud server 395

The algorithm reads binary files rather than specific
formats, and it is divided into two stages to split a file and
recombine it:

– Disassemble (Fragmentation): the original file is split
into multiple chunks and the chunks are inserted into
binary files, (split files), based on a pattern using the
chaos system (Bahrami and Singhal, 2015). A pattern
can be defined as a key for the user or can be randomly
selected. Users are also able to define different patterns
to provide a different strategy for the distribution. The
output is then stored into the cloud.

– Assembly (Recovery): The split files are recombined to
reorganise the original file. The scrambled files are
downloaded from the cloud and the chaos system
random arrays are reordered based on the pattern that
fragmented them initially.

In this implementation of the method, the user is also able to
configure the application to set the:

 Number of split files

 The size of the chunks

 The user account in the cloud to upload/download
the files.

3.1 Predefined pattern fragmentation

In the predefined pattern fragmentation (Figure 1), the
chunks are inserted in a split file with an odd or even index.
After splitting the original file, the chunks are stored in the
split file according to the index they receive. As a result,
only two split files are created and the length of each chunk
is calculated. Using this method, the attacker will need
knowledge of the length of the chunk to reconstruct the file.

Figure 1 Predefined pattern fragmentation method (Fragmentation
steps). After .splitting the file, the chunks receive an
odd or even index. Based on the index given, the
chunks are then inserted on a split file

In the reconstruction stage (Figure 2), the split files are
downloaded and opened in the same order in which they were
created, based on the length of the chunks. The chunks from
each split file are stored in a dictionary data structure, where
the data is associated with a key. This key contains the pattern
list in which the objects are then organised in their original
position. The result of this operation is then saved on the client
device, which constitutes the reconstructed file.

Figure 2 Predefined pattern fragmentation method (Recovery
steps). The split files are downloaded from the cloud and
the chunks are stored in memory as a dictionary data
structure. The file is then reconstructed with the keys of
the dictionary, which are the indexes assigned to the chunks

3.2 Random pattern fragmentation

In this method, a random function was implemented based on
the chaos theory presented in Bahrami and Singhal (2015)
i.e., a permutation of a number of N elements, set by the user,
is used to calculate the pattern indexes. The original file is
divided into N chunks, similar to the other methods, and is
then inserted in split files, where the length of each split file is
equal to the length in the associated pattern, as demonstrated
in Figure 3. The highlight of this method is that an attacker
will not know the length of each chunk, nor the order in
which the chunks are distributed in each split file.

In the original method by Bahrami and Singhal (2015) the
use case used was based on images. The header is stored
alone on a separate file, with a smaller size, compared to the
other split files. It is recommended that this header is not
transmitted to the cloud, to hinder attacker from using it to

start the reconstruction. In the proposed implementation,

padding bytes were added to the header file to mask the length

of the file before uploading to the cloud, to hinder attackers

from using this file, as they would not understand which is the
header, as it is the same size as the other split files.

During the reconstruction phase, the same dictionary
based reconstruction described in the predefined pattern
fragmentation is used, as shown in Figure 4.

396 N. Santos et al.

Figure 3 Random pattern fragmentation method (Fragmentation

steps). The file is split into chunks and those chunks are
then inserted into a split file in a random order. In cases
where one chunk would have a smaller size than the rest,
padding was added to the end of the chunk to create a
symmetric size across all chunks

Figure 4 Random pattern fragmentation method (Recovery
steps). The process is similar to the predefined pattern,
with the only difference being that the indexes are in a
random order

3.3 Simple AES encryption

AES is the most common encryption algorithm used
nowadays (Prabhu and Paramesha, 2017). It is defined as a
symmetric encryption which uses the same key for both
encrypting and decrypting data. Despite the same key being
used, it provides a high level of security when encrypting.

The algorithm supports block lengths of 128 bits and key
sizes of 128,192 and 256 bits in the CBC version. For this
experiment, the original file is encoded with AES 256
before being sent to the cloud. Unlike the previous methods,
the file is not fragmented. This method was considered in
the experiment not only to compare its performance with the
other methods, but also to investigate the performance and
suitability of a combination of a highly used encryption
algorithm and data fragmentation. The same file is then
downloaded and decoded as represented in Figure 5.

Figure 5 Simple encryption AES 256 (Encoding and decoding
steps). The whole original file is encrypted, and it sent
to the cloud as a unique file. Vice versa in the decoding
phase from the cloud only one single file produces the
original file

3.4 Random pattern fragmentation combined
with AES 256

This proposed implementation combines the use of random
pattern fragmentation with AES for encryption. It has been
designed to provide a higher level of security compared to
the counterparts, with the burden having encryption (time
and computationally expensive). The idea is encrypting the
original file with AES 256 CBC and divide the cypher text
into chunks. The chunks are arranged using a random
pattern before being stored in split files. Each split file is
finally sent to the cloud, as shown in Figure 6.

When reconstructing the file, as shown in Figure 7, the
split files are downloaded and read in sequence, until all the
chunks are extracted. The cypher text is recreated using the
defined pattern, similarly to the random pattern algorithm
explained previously. Finally, the cypher text is decoded
with the key and the reconstructed file is stored in the client
device.

 Performance analysis of data fragmentation techniques on a cloud server 397

Figure 6 Random pattern fragmentation encryption AES 256
(Fragmentation steps). The original file is encrypted
and subdivided in chunks. Each chunk is stored in one
of two split files through a random selection. Finally,
the split files are sent to the cloud

Figure 7 Random pattern fragmentation encryption AES 256
(Recovery steps). The original file is reconstructed
similar to the previous implementations and after
reconstructing the cypher text, it gets decoded by the
key and stored in the client device

4 Experiment

This section sets the baseline of the conducted experiments.
A dataset of four files with different extensions, jpeg, .docx,
.pdf, and .bmp respectively, all with 100 KB in size, was
used throughout the experiments. The files were uploaded
to the program, where the user would be able to set
parameters, such as the length of chunks or the number of
split files. For this experiment, we used two split files
with a chunk length of 1000 bytes. An AWS (Amazon,
2018) micro instance, with the Ubuntu image, was used
throughout this experiment to upload and download the test
files. The connection between the instance and the client
machine was made via SSH. For each of the split files
created, an SSH connection was established asynchronously
to send the split file. However, this experiment considers the
performance of the algorithm independently of external
factors, such as the network data rate. The overall time
presented includes the fragmentation process, the uploading
and downloading, with the reconstruction of the file. The
client device used was an Intel Core i7 – 6500U CPU 2.50
GHz, 8 GB of RAM on 64 Bit – Windows 10.

It is important to note that in all the methods described,
the chunks are the same size. This is achieved through
adding a few bytes of padding when needed. All the results
are reported in a file on the user machine.

5 Results

As mentioned in earlier sections, the aim of this paper is to
compare the performance of different fragmentation
algorithms on a cloud server, to analyse the pros and cons of
each algorithm. Before experimenting with the cloud, a
local analysis was performed with various chunk sizes, to
determine the size that would provide the best performance.
It can be seen in Figure 8 that bigger chunk sizes present
better performance, compared to smaller chunk sizes. This
is due to the iterations on the code that directly affect the
performance, as bigger chunks lead to less iteration in the
loop. Consequently, for the cloud experiment, the chunk
size chosen was 1000 bytes.

During the experiment, we only consider sending all the
files to a single instance on a single provider, considering it
to be the worst-case scenario, however, this being the most
common scenario on the public cloud. For comparison
purposes, the time for the same file type to be uploaded and
downloaded from the cloud without any techniques, was
introduced.

We can see that the difference between the predefined
pattern fragmentation (Figure 9) and the random pattern
fragmentation (Figure 10) can be considered minimal across
all the different file types. The random pattern fragmentation
proves to be slightly slower than its counterpart, given that
the chunks are scrambled in a random order. When compared
to the files where no fragmentation was applied, a slight delay

398 N. Santos et al.

is also seen on both graphs, considering the time to apply the
fragmentation and the defragmentation. Nevertheless, such
trade-off is considered acceptable, considering that applying
the techniques will increase the protection of the data.

Figure 8 Local performance analysis with various chunk sizes

Figure 9 Predefined pattern fragmentation results with a
comparison of the same file without the technique applied

Regarding the security, the algorithms work with binary
data rather than specific formats. This increases the
complexity of retrieving the files and provides an additional

security layer, as attackers will not be able to discover the
pattern in which the chunks are organised.

Figure 10 Random pattern fragmentation results with a comparison
of the same file without the technique applied

The use of AES encryption to protect data has increased in
recent years. It provides a high level of protection on the data
by using a key to encrypt and decrypt data. Compared to
other methods, AES encryption utilises many computing
resources as the process of encoding and decoding data is
time expensive. This can be visualised on Figure 11, where,
in some data types, the process takes longer than 2.5 seconds.
As in the previous graphs, the time to split the header for the
.bmp file is higher than the other counterparts. However,
using the encryption the process is more than 4 seconds,
which in computation terms is very high.

Figure 11 AES encryption results with a comparison of the same
file without the technique applied

 Performance analysis of data fragmentation techniques on a cloud server 399

Another approach analysed was the combination of the
encryption algorithm with the most secure fragmentation
algorithm, which is the random pattern fragmentation
algorithm to explore how consuming would be to explore the
most secure algorithms and provide the highest level
available level of security. As it can be seen in Figure 12, this
approach is the most time consuming compared to all the
others. However, this trade-off allows for the highest level of
security on the data, as the chunks are not only scrambled, but
also encrypted with a key, making it therefore very difficult to
access the data. It is also important to note that this approach
would not be suitable in environments where the data needs
constant access, as it would consume high amounts of
computing resources and time.

Figure 12 AES encryption with random pattern fragmentation
results with a comparison of the same file without the
technique applied

Table 1 provides the main properties of each approach
summarised. It is notable that the predefined and random
pattern fragmentations are good solutions to the data privacy
problem, when considering devices with limited resources,
such as mobile phones. Where resources allow, combining
the random pattern fragmentation with the AES encryption
would significantly increase the security of the data, with
the performance trade-off.

Table 1 Summary of the properties of each algorithm. It ranks
the security, performance and suitability of each
method, from low to high

Method Security Performance Suitability

PPF Low High Mobile big data

RPF Med High Mobile big data

AES High Low
High security
environments

AES + RPF High Low
High security
environments

When comparing the average across the fragmentation
algorithms (figure 13), the difference is minimal, meaning
that they consume similar resources, apart from the algorithms
where encryption is involved, which take on average more
than 2.5 seconds. Encryption algorithms also have the highest
standard deviation, as there are more processes involved, which
include external factors outside the scope of this experiment.
Furthermore, splitting the header and sending to the provider,
proves to add a high level of complexity, as it is the operation
that takes more time to complete across all algorithms. Whilst
storing this header locally can be considered interesting, it
would provide practical issues regarding the management of
this header, in scenarios where multiple files are considered,
increasing the processing time further.

Figure 13 Mean comparison of all methods. The standard
deviation of each method is also illustrated on each bar

6 Conclusions

The aim of this paper is to provide an in-depth performance
comparison for a number of methods to secure data in a cloud
environment and to ensure the privacy of users from outside
attackers, in particular those with access to the cloud provider.

An analysis of time taken to perform each algorithm was
performed, while considering different possibilities of securing
(based on pattern fragmentations, encryption or both). It was
determined that for devices with lower computational abilities,
securing the data using pattern fragmentation provides a good
level of security without consuming much of the resources. On
the other hand, utilising encryption is recommended on high
resource devices, where the extra time would be handled by
the higher resources available. On environments of big data,
where the privacy and the performance are both priorities,
although encryption would favour protection, its resource
consumption would affect the overall performance, but
utilising fragmentation to secure the data would be the
plausible approach. Some limitations identified with these
methods include the continuous access to the data or a multi-
user environment, where the techniques are constantly applied

400 N. Santos et al.

probably affecting therefore the performance. Furthermore, the
proposed methods do not take into account the management of
the data. Therefore, it is advised to store the output of the
program into a database, where the data can be managed more
easily. Possible future developments would include combining
the described techniques with a database to provide a higher
level of management of the data, especially in big data
environments.

References

Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H.,
Kenthapadi, K., Motwani, R., Srivastava, U., Thomas, D. and
Xu, Y. (2005) ‘Two can keep a secret: a distributed
architecture for secure database services’, Proceedings of the
Conference on Innovative Data Systems Research (CIDR),
Springer. Available online at: https://www.microsoft.com/en-
us/research/wp-content/uploads/2005/01/storage-cidr.pdf
(accessed on 29 April 2018).

Alsirhani, A., Bodorik, P. and Sampali, S. (2017) ‘Improving
database security in cloud computing by fragmentation of
data’, Proceedings of the IEEE International Conference on
Computer and Applications (ICCA), IEEE, Doha, pp.43–49.

Al-Zobbi, M., Shahrestani, S. and Ruan, C. (2016) ‘Sensitivity-based
anonymisation of big data’, Proceedings of the IEEE 41st
Conference on Local Computer Networks Workshops (LCN
Workshops), IEEE, Dubai, pp.58–64. Available online at:
http:// ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar number=
7856138&isnumber=7855949 (accessed on 29 April 2018).

Amazon Web Services, Inc. (2018) Amazon Web Services (AWS) -
Cloud Computing Services. Available online at: https://aws.
amazon.com/ (accessed on 29 April 2018).

Bahrami, M. and Singhal, M. (2015) ‘A light-weight permutation
based method for data privacy in mobile cloud computing’,
Proceedings of the 3rd IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering,
IEEE, San Francisco, pp.189–198. Available online at:
http://ieeexplore.ieee.org/stamp/ stamp.j sp?tp=& ar
number=7130886&isnumber=7130853 (accessed on 29 April
2018).

Bahrami, M. and Singhal, M. (2015) ‘The role of cloud computing
architecture in big data’, in Pedrycz, W. and SM, C. (Eds):
Information Granularity, Big Data, and Computational
Intelligence. Studies in Big Data, 8th ed., Springer, Cham.
Available online at: https://link.springer. com/chapter/10.1007%
2F978 -3-319-08254-7_13 (accessed on 29 April 2018).

Bahrami, M. and Singhal, M. (2016) ‘CloudPDB: a light-weight data
privacy schema for cloud-based databases’, Proceedings of the
International Conference on Computing, Networking and
Communications (ICNC), IEEE, Kauai, pp.1–5. Available online
at: http:/ /ieeexplore.ieee.org/stamp/stamp.j sp?tp=& ar number=
7440634&isnumber=7440540 (accessed on 29 April 2018).

Barak, O., Cohen, G. and Toch, E. (2016) ‘Anonymising mobility data
using semantic cloaking’, Pervasive and Mobile Computing,
Vol. 28, pp.102-112. Available online at: https://
www.sciencedirect.com/science/article/pii/ S1574119215001972
(accessed on 29 April 2018).

Canbay, Y. and Sagiroglu, S. (2017) ‘Big data anonymisation with
spark’, Proceedings of the International Conference on
Computer Science and Engineering (UBMK) ‘[online] Antalya:
IEEE, pp.833-838. Available online at: https://ieeexplore.
ieee.org/document/8093543/ (accessed on 29 April 2018).

Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R.
and Molina, J. (2009) ‘Controlling data in the cloud: outsourcing
computation without outsourcing control’, Proceedings of the
ACM workshop on Cloud computing security (CCSW’09), ACM,
pp.58–90.

Ciriani, V., Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S. and
Samarati, P. (2010) ‘Combining fragmentation and encryption to
protect privacy in data storage’, ACM Transactions on
Information and System Security, Vol. 13, No. 3, pp.1–33.
Available online at: https://dl. acm.org/ citation.cfm?id=1805978
(accessed on 29 April 2018).

Cloud Security Alliance (2010) Top Threats to Cloud Computing.
Cloud Security Alliance. Available online at: https:// cloud
securityalliance.org/topthreats/csathre ats.v1.0.pdf (accessed
on 29 April 2018).

Dev, H., Sen, T., Basak, M. and Ali, M. (2012) ‘An Approach to
Protect the Privacy of Cloud Data from Data Mining Based
Attacks’, Proceedings of the SC Companion: High Performance
Computing, Networking Storage and Analysis, IEEE,
Salt Lake City, pp.1106-1115. Available online at:
http://i eeexplore .ieee.org/ stamp/ stamp.j sp?tp=& ar
number= 6495915&isnumber= 6495777 (accessed on
29 April 2018).

El Mrabti, A., Ammari, N., El kalam, A., Ouahman, A. and De
Montfort, M. (2017) ‘Mobile app security by fragmentation
"MASF"’, Proceedings of the 2nd International Conference
on Internet of things and Cloud Computing (ICC’17), ACM,
New York, p.6.

Federal Information Processing Standards (2001) Announcing the
Advanced Encryption Standard (AES).

Gharajedaghi, J. (2011) Systems thinking Systems Thinking:
Managing Chaos and Complexity: A Platform for Designing
Business Architecture, Elsevier, Burlington, MA.

Ghinita, G., Karras, P., Kalnis, P. and Mamoulis, N. (2007) ‘Fast data
anonymisation with low information loss’, Proceedings of the
33rd international conference on Very large data bases (VLDB
'07), ACM, Vienna, pp.758–766.

Gkoulalas-Divanis, A. and Loukides, G. (2011) ‘PCTA: privacy-
constrained clustering-based transaction data anonymisation’,
Proceedings of the 4th International Workshop on Privacy
and Anonymity in the Information Society, ACM, New York.

Goswami, P. and Madan, S. (2017) ‘Privacy preserving
data publishing and data anonymisation approaches: A
review’, Proceedings of the International Conference on
Computing, Communication and Automation (ICCCA),
IEEE, pp.139–142.

Hababeh, I. (n.d.) ‘A novel cloud computing data fragmentation
service design for distributed systems’, International
Conference on Parallel and Distributed Processing
Techniques and Applications, At Las Vegas, Nevada, USA.

Hegarty, R. and Haggerty, J. (2015) ‘Extrusion detection of illegal
files in cloud-based systems’, International Journal of Space-
Based and Situated Computing, Vol. 5, No. 3, p.150.

Jang, S. (2017) ‘A study of performance enhancement in big data
anonymisation’, Proceedings of the 4th International
Conference on Computer Applications and Information
Processing Technology (CAIPT), IEEE, Kuta Bali, pp.1–4.

Kapusta, K. and Memmi, G. (2015) ‘‘Data protection by
means of fragmentation in distributed storage systems’,
Proceedings of the International Conference on Protocol
Engineering (ICPE) and International Conference on New
Technologies of Distributed Systems (NTDS), IEEE, Paris,
pp.1–8.

 Performance analysis of data fragmentation techniques on a cloud server 401

Kumar, P., Raj, P. and Jelciana, P. (2018) ‘‘Exploring Data
Security Issues and Solutions in Cloud Computing’, Procedia
Computer Science, Vol. 125, pp.691–697.

Masala, G., Ruiu, P. and Grosso, E. (2018) ‘‘Biometric
authentication and data security in cloud computing’, in
Daimi, K. (Ed.): Computer and Network Security Essentials,
Springer, Charm.

Memmi, G., Kapusta, K. and Qiu, H. (2018) ‘Data
protection: Combining fragmentation, encryption, and
dispersion’, Proceedings of the International Conference
on Cyber Security of Smart Cities, Industrial Control
System and Communications (SSIC), IEEE, Shanghai,
pp.1–9.

Nayahi, J. and Kavitha, V. (2017) ‘Privacy and utility preserving data
clustering for data anonymisation and distribution on Hadoop’,
Future Generation Computer Systems, Vol. 74, pp.393–408.

NIST (2011) The NIST Definition of Cloud Computing, Gaithersburg:
National Institute of Standards and Technology.

Prabhu, M. and Paramesha, K. (2018) ‘An approach for efficient
utilisation of public cloud storage and securing data’,
International Research Journal of Engineering and Technology
(IRJET), Vol. 4, No. 5, pp.841–844.

Santos, N. and Masala, G. (2018) ‘Big data security on cloud servers’,
Proceedings of the 11th International KES Conference on
Intelligent Interactive Multimedia: Systems and Services,
Springer, Gold Coast.

