
On the Design and Development of Emulation Platforms for NFV-based Infrastructures

On the Design and Development of Emulation
Platforms for NFV-based Infrastructures

Vinicius Fulber-Garcia*, Giovanni Venâncio de
Souza, Elias Procópio Duarte Junior

Department of Informatics,
Federal University of Paraná,
Paraná, PR, BR
E-mail: {vfgarcia, gvsouza, elias}@inf.ufpr.br

Thales N. Tavares, Leonardo da C. Marcuzzo,
Carlos R. P. dos Santos
Department of Applied Computing,
Federal University of Santa Maria,
Santa Maria, RS, BR
E-mail: {tntavares, lmarcuzzo, csantos}@inf.ufsm.br

Muriel Figueredo Franco, Lucas Bondan, Lisandro
Zambenedetti Granville, Alberto Egon
Schaeffer-Filho
Institute of Informatics,
Federal University of Rio Grande do Sul,
Porto Alegre, RS, BR
E-mail: {mffranco, lbondan, granville, alberto}@inf.ufrgs.br

Filip De Turck

INTEC,
Ghent University,
Ghent, PR, VB
E-mail: {filip.deturck}@ugent.be

*Corresponding author

Abstract: Network Functions Virtualization (NFV) presents several advantages
over traditional network architectures, such as flexibility, security, and reduced
CAPEX/OPEX. In traditional middleboxes, network functions are usually executed on
specialized hardware (e.g., firewall, DPI). Virtual Network Functions (VNFs) on the other
hand, are executed on commodity hardware, employing Software Defined Networking
(SDN) technologies (e.g., OpenFlow, P4). Although platforms for prototyping NFV
environments have emerged in recent years, they still present limitations that hinder the
evaluation of NFV scenarios such as fog computing and heterogeneous networks. In this
work, we present NIEP: a platform for designing and testing NFV-based infrastructures
and VNFs. NIEP consists of a network emulator and a platform for Click-based VNFs
development. NIEP provides a complete NFV emulation environment, allowing network
operators to test their solutions in a controlled scenario prior to deployment in production
networks.

Keywords: NFV; VNF; Emulation; Platform; Infrastructure; Click; Mininet; Network

Reference to this paper should be made as follows: Garcia, V.F., de Souza, G.V.,
Duarte Junior, E.P., Tavares, T.N., Marcuzzo, L.D.C., dos Santos, C.R.P., Franco, M.F.,
Bondan, L., Granville, L.Z., Schaeffer-Filho, A.E. and De Turck, F. (2020) On the design
and development of emulation platforms for NFV-based infrastructures, Int. J. Grid and
Utility Computing, Vol. 11, No. 2, pp.230242.



Int. J. of Grid and Utility Computing Vol. 11, No. 2, 2020 2, Vol. 11, No. 2, 2020

Biographical notes:
Vinicius Fulber-Garcia is a Ph.D. student in Computer
Science at the Department of Informatics of the Federal
University of Paran (UFPR - Brazil) under the supervision of
Prof. Dr. Elias Procpio Duarte Jnior. He holds a Computer
Science degree from Federal University of Santa Maria
(UFSM - Brazil) and a Master degree in Computer Science
from UFSM Post-Graduate Program in Computer Science.
His research interests include, but not limited to, network
functions virtualization and information theory.

Giovanni Venncio de Souza is a Ph.D. student in
Computer Science at the Department of Informatics of
the Federal University of Paran (UFPRBrazil) under the
supervision of Prof. Dr. Elias Procpio Duarte Jnior. Giovanni
holds an MSc (2017) in Computer Science and a Computer
Science degree (2016) at the same institution. His research
interests include Network Function Virtualization and Fault-
Tolerant Distributed Systems.

Elias Procpio Duarte Junior is a Full Professor at Federal
University of Parana, Curitiba, Brazil, where he is the leader
of the Computer Networks and Distributed Systems Lab
(LaRSis). His research interests include Computer Networks
and Distributed Systems, their Dependability, Management,
and Algorithms. He has published more than 200 peer-
reviewer papers and has supervised more than 130 students
both on the graduate and undergraduate levels. Prof. Duarte
is currently Associate Editor of the IEEE Transactions
on Dependable and Secure Computing, and has served as
chair of more than 20 conferences and workshops in his
fields of interest. He received a Ph.D. degree in Computer
Science from Tokyo Institute of Technology, Japan, 1997,
M.Sc. degree in Telecommunications from the Polytechnical
University of Madrid, Spain, 1991, and both BSc and MSc
degrees in Computer Science from Federal University of
Minas Gerais, Brazil, 1987 and 1991, respectively. He chaired
the Special Interest Group on Fault Tolerant Computing of
the Brazilian Computing Society (2005-2007); the Graduate
Program in Computer Science of UFPR (2006-2008); and the
Brazilian National Laboratory on Computer Networks (2012-
2016). He is a member of the Brazilian Computing Society
and a Senior Member of the IEEE.

Thales N. Tavares is a graduate of the course on
Computer Network Technology at the Federal University of
Santa Maria (2016) in Brazil. He is currently a substitute
lecturer at the polytechnic school of the same university.
Has knowledge in the area of Computing, with emphasis
on Computer Networks. Research interests in network
management, software networks and virtualization of network
functions.

Leonardo da C. Marcuzzo holds a degree in Computer
Science from Federal University of Santa Maria (UFSM)
and currently is a M.Sc. Candidate in Computer Science at
the same institution. His research interests include network
functions virtualization and operating systems.

Carlos R. P. dos Santos is Adjunct Professor of Computer
Science at the Department of Applied Computing of the
Federal University of Santa Maria (UFSM), Brazil. He holds
Ph.D. (2013) and M.Sc. (2008) degrees in Computer Science,
both received from the Federal University of Rio Grande
do Sul (UFRGS), where he was also Postdoctoral Research
Fellow from October 2013 to September 2014. From May
2010 to April 2011 he was a visiting researcher at the
IBM T.J. Watson Research Center - Hawthorne, where he
developed projects on IT Service Management and Security
Management. His current research interests focus on design
and management of Future Networks and Technologies,
including aspects such as network virtualization, quality of
service management, network programmability, and security
management.

Muriel Figueredo Franco is pursuing his Ph.D. under the
supervision of Prof. Dr. Burkhard Stiller at the University
of Zurich (UZH). He is also a Research Assistant at the
Communication Systems Group (CSG). Muriel holds an M.Sc
(2017) in Computer Science from the Federal University of
the Rio Grande do Sul (UFRGS) under the supervision of
Prof. Dr. Lisandro Granville and obtained a B.Sc (2014) in
Computer Science from the Federal University of Pelotas
(UFPEL). His research topics include Network Functions
Virtualization, Information Visualization, and Blockchain.

Lucas Bondan is a Ph.D. student in Computer Science
at the Institute of Informatics of the Federal University of
Rio Grande do Sul (UFRGS) in Brazil and an R&D Project
Manager at the Brazilian National Research and Educational
Network (RNP). From 2016 to 2018 he was a Ph.D.
student fellow at the Department of Information Technology
of Ghent University in Belgium, working with security-
related areas of Network Functions Virtualization (NFV).
He has a Computer Engineering degree from Pontifcia
Universidade Catlica do Rio Grande do Sul and a Master
Degree in Computer Science from UFRGS. His research
interests include network functions virtualization, network
management and orchestration, service function chaining,
cognitive networks, and wireless communication systems.

Lisandro Zambenedetti Granville is Full Professor of
Computer Science at the Institute of Informatics of the
Federal University of Rio Grande do Sul (UFRGS), Brazil.
He holds Ph.D. (2001) and M.Sc. (1998) degrees in Computer
Science, both received from UFRGS. From September 2007
to August 2008 he was a visiting researcher at the University
of Twente, The Netherlands, with the Design and Analysis
of Communication Systems group. He is a member of the
Computer Networks Group, where he develops research
projects on network and service management. As a Full
Professor, he is also involved with supervision and education
activities on undergraduate and graduate courses in both
Computer Science and Computer Engineering.

Alberto Egon Schaeffer-Filho holds a Ph.D. in Computer
Science (Imperial College London, 2009) and is Associate
Professor at Federal University of Rio Grande do Sul
(UFRGS), Brazil. From 2009 to 2012 he worked as a research
associate at Lancaster University, UK. Dr. Schaeffer-Filho is
a CNPq-Brazil Research Fellow and his areas of expertise
are network/service management, network virtualization and
software-defined networks, policy-based management, and
security and resilience of networks. He has authored over
60 papers in leading peer-reviewed journals and conferences
related to these topics, and also serves as TPC member for
important conferences in these areas, including: IFIP/IEEE
IM (2019), NetSoft (2019), CNSM (2018), and IEEE/IFIP
NOMS (2018). He is the general chair for SBRC 2019, co-chair
for IEEE ICC 2018 CQRM Symposium, and demo co-chair
for IFIP/IEEE IM 2017.

Filip De Turck is professor in the department of
Information Technology (Intec) of Ghent University with
expertise in network software and research interests in
adaptive large-scale data processing and software systems
for healthcare, anomaly detection, and resilience of ICT
infrastructures and services. In this research area, he is
involved in several research projects with industry and
academia, serves as Chair of the IEEE Technical Committee
on Network Operations and Management (CNOM), chair of
the Future Internet Cluster of the European Commission,
and is on the TPC of many network and service management
conferences and workshops and serves in the editorial
board of several network and service management journals.
Together with a team of PhD students and postdoctoral
researchers, novel techniques and algorithms are designed,
and validated by means of large scale evaluation studies,
together with partners from industry and academia.

Copyright c© 2020 Inderscience Enterprises Ltd.



On the Design and Development of Emulation Platforms for NFV-based Infrastructures

1 Introduction

Network Functions Virtualization (NFV) is a novel
networking paradigm that fosters innovation and supports
the creation of disruptive network services [MSG+16].
In NFV, the network functions are decoupled from the
associated hardware and executed in commodity servers
(i.e., commercial off-the-shelf servers) by using virtualization
technologies. This shift provides significant advancements in
how the networks are designed, maintained, and managed
while improving the flexibility, scalability, and cost-benefit of
networked environments [LLF+15].

All those advantages have brought NFV to the attention
of the industry, academia, and standardization bodies.
Several efforts have been conducted for the development
of new architectures, systems, and applications for NFV
[GMUJ16]. Despite a large number of results that have
already appeared in this field, several challenges are still open.
One of those challenges is to develop a de facto approach
for predicting the impact of deploying novel Virtualized
Network Functions (VNFs) in production environments. In
this context, VNF emulation is a promising method that can
support the design and evaluation of NFV-based scenarios.

Emulation has proved to be an effective method
to evaluate network-based environments, systems and
applications [ISH10] [SVZ+14]. In the same way, providing
comprehensive emulation tools that support the specific NFV
elements (e.g., Virtualized Infrastructure Manager (VIM)
and VNF Manager (VNFM)) is of paramount importance
for network operators, researchers, and developers. However,
despite its inherent benefits, solutions for NFV emulation are
still scarce, limited (e.g., due to low portability or lack of
support for heterogeneous environments), usually they are
not intuitive, and involve a steep learning curve before they
can be fully adopted.

In this paper, we present the NFV Infrastructure
Emulation Platform (NIEP) 1, a novel platform based
on Click-on-OSv [dCMGC+17] and Mininet [LHM10] that
allows VNF evaluation by the emulation of diverse
NFV scenarios. NIEP allows operators to rapidly create
heterogeneous NFV emulated scenarios. These scenarios are
portable because of the full virtualization strategy adopted
by NIEP. We also show the feasibility of NIEP in a case
study considering a Fog computing and Virtual Customer
Premises Equipment (vCPE) scenario. We expect that NIEP
will effectively assist network operators in the offline analysis
of the functionality and performance of VNF deployments.
Pre-tested configurations can be evaluated and optimal
configurations may be established before actual VNFs are
deployed in the network infrastructure.

The rest of this paper is organized as follows. In Section
II, the background and related work are reviewed. We
then present the simulation/emulation requirements and
the proposed NIEP architecture in Section III. In Section
IV, we discuss the data model employed to specify the
network topologies. In Section V, we describe a case study
to demonstrate the feasibility of the platform. Finally, the
conclusions follow in Section VI, along with a discussion of
future work directions.

2 Background and Related Work

In this section, we present an overview of NFV and network
virtualization technologies. After reading this section, it
should be clear that NFV brings multiple advantages
in comparison with traditional network architectures that
are based on middleboxes often deployed on specialized
hardware. However, it should be also clear that there

are challenges for the successful deployment of NFV-
based solutions in production networks. This section also
presents issues related to NFV prototyping and evaluation
are discussed, highlighting the pros and cons of existing
frameworks.

2.1 Network Functions Virtualization (NFV)

NFV technology was first proposed and standardized by the
European Telecommunications Standards Institute (ETSI) as
a paradigm that decouples network functions from dedicated
hardware allowing their implementation using virtualization
technology that can be executed on Commercial Off-The-
Shelf (COTS) hardware. The fact that NFV does not
require specialized hardware and is deployed as a virtual
infrastructure enables the development and management of
network function in an easy, cost-effective, and flexible way
[CW+12]. Furthermore, NFV allows the fast creation of new
network functions that can be combined to provide complex
network services. NFV together with other technologies
based on virtualization has solved the Network Ossification
phenomenon [Han06].

The multiple advantages of NFV technology include: (i)
NFV is cheap, in particular in terms of capital/operational
expenditures (CAPEX/OPEX) as general purpose hardware
can be used; (ii) NFV is fast to deploy, configure and update;
(iii) NFV is flexible, as virtual functions can dynamically
migrate and by using elasticity technology they can be
scaled up and down according to the demand; and (iv)
NFV opens up the market, allowing new players to develop
for the computer networks market. NFV is often employed
with other technologies, such as Software-Defined Networking
(SDN) [HGJL15], which allows the substrate network to
be more easily customized to fulfill the specific needs of
customers.

Individual VNFs may be combined to execute complex
network services. Service Function Chains (SFC) [HP15] are
composed of multiple and independent VNFs that can be
executed on different virtualization environments. The IETF
envisions even multi-domain SFCs, which should employ a
hierarchy of orchestrators [BCV+18]. Figure 1 shows an SFC
example with three servers running each a hypervisor and set
of VNFs which are interconnected forming multiple SFCs.

Despite the multiple advantages, NFV increases the
complexity and it is undeniable that before it is deployed
major changes are required to the existing network
infrastructures. Therefore, new technologies and tools for
VNF evaluation are needed. Although tools such as tcpdump,
ping, and traceroute can still be used to identify problems
in virtualized networks, in NFV, while those tools can still
be useful, new network components must be monitored and
evaluated to identify problems such as bottlenecks, failures,
misconfiguration, or implementation bugs.

Mininet [Tea12] is a simple yet powerful tool that allows
the evaluation of Software Defined Network technology.
Mininet can be used with an external SDN controller
for running experiments. However, Mininet does not offer
support for experimentation with VNFs. As a consequence,
new tools have been proposed that integrate Mininet with
other software components that can be used to deploy and
manage VNFs. In the next subsection, we present and discuss
some of those efforts that have been proposed for NFV
experimentation.

2.2 NFV Experimentation Frameworks

A number of tools and frameworks have been recently
proposed for the experimental evaluation of NFV technology.
EsCAPE, MeDICINE, SONATA, and Maxinet are among



V. Fulber-Garcia et al.

Figure 1 A SFC example

some of the most important of those tools and frameworks.
These four platforms are described next.

• EsCAPE[SCS+15]: Extensible Service Chain
Prototyping Environment (EsCAPE) is a prototyping
framework developed in the context of the UNIFY
architecture, consisting of three abstraction layers:
Service Layer, Orchestrator Layer, and Infrastructure
Layer. EsCAPE provides a common platform that
enables users to prototype and orchestrate SFCs
whose VNFs are deployed as containers running
Click[MKJK99]. EsCAPE also features a built-in
VNF catalog with basic virtual functions. EsCAPE’s
network infrastructure is based on Mininet with
OpenVSwitches[PPK+15] connected to an external
SDN controller (POX) responsible for steering
traffic between VNFs. ExCAPE also supports the
development and test of orchestration components,
extending Mininet to work with NETCONF. The focus
of EsCAPE is thus on the creation and management
of SFCs, although it can be used to prototype and
evaluate other technologies as well.

• MeDICINE[PKvR16]: the Multi Datacenter service
Chain Emulator (MeDICINE) is an NFV prototyping
platform that was designed to emulate multi-
PoP environments in which virtual functions are
executed on containers. MeDICINE is based on
ContainerNET2, which extends the Mininet framework
to support container-based VNFs. Links between
complex multi-PoP environments are established using
the Mininet API, allowing the specification of multiple
requirements such as delay, bandwidth, and the packet
loss rate. Docker3 is used in MeDICINE to deploy
VNFs on these PoPs. MeDICINE also provides end-
points for each PoP, enabling the interconnection of
the elements also to other elements of the ETSI
architecture.

• SONATA[KDP+16]: SONATA is a tool for NFV
composition, testing, and orchestration. It contains an
emulation platform based on ContainerNet [PKvR16]
which allows developers to prototype network services
in end-to-end multi-PoP scenarios. The platform also

provides APIs for integration with other components
and systems based on the ETSI specifications.

• Maxinet[WDS+14]: Maxinet is an extension of
Mininet that can be executed in a distributed fashion,
and in this way supports the emulation of networks.
Maxinet works as an abstraction layer connecting
multiple Mininet instances running on distinct hosts
connected on a network.

EsCAPE, MeDICINE and SONATA use containers
for deploying and executing VNFs. Although container
technology should be enough for most NFV use
cases[NFV13], container-based virtualization presents
some issues for specific NFV scenarios. For example, in
comparison to hypervisor-based virtualization, containers do
not provide multi-platform compatibility and their life-cycle
management is certainly more expensive[MKK15]. Moreover,
as opposed to Virtual Machines (VMs), containers increase
the vulnerability in terms of security threats [MBD16], since
each operating system image has its own set of vulnerabilities
and share the same kernel. In scenarios with heterogeneous
networks, multiple hosts with different operating systems
form the infrastructure substrate, such as vCPE, virtual
Evolved Packet Core (vEPC) and Fog Computing. Any
given VNF can be deployed and migrated anywhere in the
infrastructure.

As for MaxiNet, although it also supports virtual nodes
in the same way that Mininet does, not all virtualization
technology is available. The main purpose is to run Mininet
instances in a distributed way.

In the next section, we introduce NIEP, a framework
that integrates a minimal VNF platform (Click-on-OSv) with
Mininet, allowing diverse NFV scenarios to be prototyped
and evaluated. NIEP fills a gap in terms of the lack of
experimental frameworks for evaluating heterogeneous NFV
scenarios, as the focus of existing platforms is on SFCs and
multi-pop environments. We believe our solution is the first
to provide a prototyping framework for the emulation of NFV
technology in a variety of scenarios.



On the Design and Development of Emulation Platforms for NFV-based Infrastructures

3 NIEP: NFV Infrastructure Emulation
Platform

In this section, we describe NIEP by first, in Subsection
3.1 discussing a set of requirements identified that must be
satisfied by the proposed platform. Next, in Subsection 3.2
the NIEP architecture is presented, with a description of all
modules of which it is composed. Next, in Subsection 3.3, the
interactions between the modules are described.

3.1 Emulation Requirements

Emulation plays an important role in the design,
development, and analysis of VNFs, especially for innovative
functions and services. The emulation of a system should
represent the system as accurately as possible, allowing the
execution of real live tests on the emulation environment
[CS03]. The use of these environments has increased
significantly in recent years, as they are so convenient for
the evaluation of large-scale systems, allowing deep analysis
of the system under realistic conditions before it is actually
deployed.

An emulation platform for NFV technology should
satisfy a set of fundamental requirements. We identified the
following requirements raised by Varga and Horing [VH08],
Baumgat, Heep and Krause [BHK07], and Schaeffer-Filho et
al. [SFMH+13] as the basis on which a novel platform for the
emulation of NFV-based infrastructures should be designed.

• Scalability: the platform must be able to involve a
large number of nodes when emulating the NFV-based
system;

• Flexibility: it should be straightforward to define and
update the emulation process, and the user should
have a choice of network topologies to specify and use.
The building blocks (e.g., hosts, switches, VNFs) with
which the system is specified must be generic enough
to be reused in a range of scenario definitions;

• Remodeling: the definition of evaluation scenarios
must be simple, dynamic, allowing fast prototyping;
the network topology must be easily modified as
needed;

• Software Execution: the building blocks provided
must reflect those of the corresponding actual system
in production, thus providing reliable experimental
results.

3.2 NIEP Architecture

NIEP is based on the integration of existing tools for VNF
design (Click-on-OSv), VM management (KVM hypervisor),
and network emulation (Mininet), plus a core element, which
is the orchestration module. The architecture is shown in
Figure 2.

We start the description of the NIEP modules with
Click-on-OSv [dCMGC+17], an NFV system based on the
single-process operating system OSv. Click-on-OSv leverages
the Click Modular Router [KMC+00] to create and execute
virtual functions and provides a Representational State
Transfer (REST) interface for controlling the underlying
operations (e.g.,., monitoring and lifecycle management).
Click-on-OSv itself is a complete virtual machine, it
simplifies the control and provisioning processes due to its
independence from the host operating system. Moreover, it
is possible to remotely create VMs on a set of heterogeneous
hosts that run VNF functions in a distributed way.

NIEP is based on a KVM hypervisor, which is a
virtual VM manager that implements full virtualization,
to support the execution of multiple VMs running images
of different operating systems. The Virsh tool4 is used
by the NIEP orchestrator to manage the KVM virtual
machines. It is a Command Line Interface (CLI) that enables
VM control with system calls. We highlight that KVM
provides better performance for Click-on-OSv due to VirtIO5.
These virtualization optimizations make packet processing
by Click running on OSv faster than other hypervisors (e.g.
VirtualBox, Xen).

Mininet [Tea12], as mentioned above, is a widely used
network emulator that relies on process-level virtualization.
This lightweight virtualization strategy is used to emulate
guest machines as isolated processes, with the proper share of
memory, CPU and network resources, enabling the simulation
of large-scale network environments. In NIEP, Mininet hosts
are used to representing servers and clients, OpenFlow
switches and controllers.

Network topologies in NIEP are specified with JSON
(JavaScript Object Notation), which also simplifies the
infrastructure deployment process when compared to
Mininet. Thus, users can configure a Mininet topology with
hosts, switches, and controllers also defining other useful
information such as resource allocation for VNFs and their
interconnections forming SFCs.

The NIEP-Orchestrator provides the user interface. The
topology is entered as input, and all required actions
are executed to instantiate system. The NIEP-Orchestrator
consists of four elements, described next.

• VNF Repository: this module is responsible for
storing VNFs, which are implemented as Click
scripts. As VNFs can be deployed in a distributed
fashion across multiple hosts, the repository must
be universally accessible. Therefore it works as a
marketplace where users can share, publish and obtain
VNFs;

• Virtualized Elements Manager (VEM): this
module both controls the execution of VNFs and
provides communication interfaces (e.g.,., network
bridges). The VEM is composed of two functional
blocks, the Network Functions blocks, which directly
controls Click-on-OSv instances using a REST
interface, and the Infrastructure, that controls the
KVM hypervisor execution using the Virsh CLI;

• Topology Manager: this module allows the creation
and initialization of the Mininet topology. It creates
all the specified elements (e.g.,., hosts, switches,
controllers) through the Mininet API which later run
user operations;

• Interpreter: this component is responsible for
validating the topology specifications and handling
user requests (e.g.,., specifying a new network topology
or obtaining monitoring data). The input consists of
NIEP topology specification, and the output consists
of request results.

3.3 Module Interactions

The modules of the NIEP architecture presented in the
previous subsection are integrated by the Orchestrator,
which as the name implies orchestrates the VNF emulation
on the specified Mininet network topology. Initially, the
Orchestrator receives the topology specification, forwards the
topology to the Interpreter module which does the required
validation, checking for mandatory elements and evaluating
the configuration correctness. The Interpreter then organizes



V. Fulber-Garcia et al.

1

NIEP

NIEP-Orchestrator

Interpreter

Topology 
Manager

VEM

Network 
Functions

Infrastructure

Hypervisor MininetClick-on-OSv

VNF 
repository

1

1a

2

2a2b

2c

Figure 2 NIEP: The Architecture

the information in two sets: one with information on the
Mininet network topology (e.g., hosts, switches, controllers)
and the other set with information related to the VNFs to
be executed (e.g., memory, CPU, interfaces, plus the Click
network function itself).

The first information set of computed by the Interpreter
is sent to the Topology Manager – labeled with (1) in
Fig. 2, that processes the data of the Mininet environment.
The Topology Manager, after processing the information
to create the requested topology, triggers the Mininet
emulator (1a). The VEM element receives the second set of
information from by the Interpreter (2). It checks actions to
be executed, which are forwarded to the Network Functions
and Infrastructure blocks. The Infrastructure block (2a)
executes first, creating virtual machines using the Hypervisor
and the communication links to the network topology in
Mininet using a bridge interface.

At the end of this process, the user can make requests
to the Functions Virtualization block (2b) to start Click-
on-Osv by fetching the user-defined Click function from the
VNF Repository (2c). This process can also be used to deploy
a new Click function on the same system instance, by re-
uploading and restarting the Click-on-OSv service without
having to restart the VM or the entire topology. Figure 3
shows the high-level communication steps to run a NIEP
topology.

In synthesis, NIEP is a platform that allows rapid
prototyping and evaluation of large-scale NFV scenarios. In
this way, it can be a valuable tool for network operators, by
allowing the assessment of the functionality and performance
of individual VNFs as well as SFCs before their actual
deployment in production networks.

4 NIEP Data Model

In this section, we present the NIEP data model for defining
network topologies. The data model includes definitions of
VNFs and SFCs and the network topology, including hosts,
switches, and controllers. The elements are described in
separate JSON files and are described next.

Figure 3 NIEP Topology Instantiation

A VNF is described as a JSON object with five
properties, as shown in Figure 4. The unique ID is the
key to identify a VNF instance and is used along the
execution of the emulation execution by the orchestrator
to access the required VNFs as it executes tasks including
monitoring, deployment, and VNF lifecycle operations. The
other properties are used for VM configuration: memory
requirements (MEMORY), number of virtual CPUs (VCPU),
and network interfaces (MANAGEMENT MAC and
INTERFACES). The MANAGEMENT MAC corresponds
to a dedicated interface that is employed for the sole purpose
of sending and receiving data from the NIEP-Orchestration.
The INTERFACES property is used to connect the emulated
VNFs and hosts and contains the MAC address and the



On the Design and Development of Emulation Platforms for NFV-based Infrastructures

1 {
2 "type": "object",

3 "properties": {
4 "ID": {"type": "string"},
5 "MEMORY": {"type": "integer"},
6 "VCPU": {"type": "integer"},
7 "MANAGEMENT_MAC": {"type": "string"},
8 "INTERFACES": {"type": "array",

9 "items": {
10 "type": "object",

11 "properties": {
12 "MAC": {"type": "string"},
13 "ID": {"type": "string"}
14 }
15 }
16 }
17 }
18 }

Figure 4 VNF Simplified JSON Schema

virtual connection (i.e., network bridge) ID from which data
is received.

SFCs are also specified with a JSON file, Figure 5,
composed of five attributes that represent the Service
Function Chain. The attributes are as follows. The ID is
unique and is used to identify the SFC as a whole, thus
making possible to monitor and configure the lifecycle of
all the VNFs composing the service. The VNFS attribute
represents the set of VNFs that compose the SFC. The VNFS
contains the identifier of the VNF in the context of the SFC,
as well as a path for the VNF JSON file (created using the
schema presented in Figure 4). The VNFs are connected each
with a single Incoming Point (IP) and one or more Outgoing
Points (OP). The boundary nodes (IP/OP) represent the first
(IP) and last (OP) point of a service chain. Both IP and OP
are represented by an identifier and a virtual connection is
used for the connection of the elements of the SFC.

In the specification of a VNF in a SFC Descriptor, the
INTERFACE attribute is omitted and the CONNECTIONS
attribute is employed instead. The CONNECTIONS
attribute consists of four elements: Input Logical Link
(ILL), Output Logical Link (OLL), and the associated MAC
addresses (when necessary). The network traffic is delivered
to a VNF from an ILL and, after being processed, the traffic
is forwarded to the next VNF or to an OP (through an OLL
connection). The OLL and ILL elements are specified either
by an existing VNF ID or boundary node ID. In the case
of an existing VNF, one of its interfaces is employed (which
indicated in the corresponding MAC field). In the case of
boundary nodes, no MAC is defined because the sender and
receiver hosts are outside NIEP.

The complete topology is represented with a third schema,
shown in Figure 6. The five attributes of this description
carry information about VNFs and SFCs, plus the Mininet
emulated network infrastructure. The NIEP topology is
identified with a unique ID. A NIEP instance is responsible
for the execution of a topology, thus after the topology is
deployed the ID also represents the NIEP process itself.

The virtual functions and function chains of a given NIEP
topology are defined by the VNFS and SFCS properties.
These attributes specify the location of the corresponding
description files, created according to the schemas presented
above. Note that the VNFs used in an SFC specified with the
SFCS attribute should no be explicit in the VNFS attribute.
Whenever a duplicated request is required, no ID should be
replicated, (i.e., the internal SFC ID must be different from
the VNF ID).

The Mininet network is described within a JSON object
within the MININET attribute. This “sub-object” contains
four attributes, each specifying an operational element of the
emulation. The HOST attribute is an array that keeps virtual
host IDs; the SWITCHES attribute is an array with the IDs

1 {
2 "type": "object",

3 "properties": {
4 "ID": {"type": "string"},
5 "VNFS": {"type": "array",

6 "items": {
7 "type": "object",

8 "properties": {
9 "ID": {"type": "string"},

10 "PATH": {"type": "string"}
11 }
12 }
13 },
14 "IP": {"type": "object",

15 "properties": {
16 "ID": {"type": "string"},
17 "LINK": {"type": "string"}
18 }
19 },
20 "OPS": {"type": "array",

21 "items": {
22 "type": "object",

23 "properties": {
24 "ID": {"type": "string"},
25 "LINK": {"type": "string"}
26 }
27 }
28 },
29 "CONNECTIONS": {"type": "array",

30 "items": {
31 "type": "object",

32 "properties": {
33 "OLL": {"type": "string"},
34 "ILL": {"type": "string"},
35 "OLL_MAC": {"type": "string"},
36 "ILL_MAC": {"type": "string"}
37 }
38 }
39 }
40 }
41 }

Figure 5 SFC Simplified JSON Schema

of switches; The other two attributes, CONTROLLERS and
OVSWITCHES, refer to the OpenFlow SDN network. The
CONTROLLERS attribute contains a list of controllers; each
object of this list consists of the ID, controller IP address
and the PORT the controller uses to communicate. The
configuration and initialization of the OpenFlow controller
are out of the scope of NIEP, which is controller-agnostic,
even though POX [KSG14] is used as default. The last
attribute OVSWITCHES is another object array, which
specifies the IDs and connections of OpenFlow switches. Any
ID employed in the system must be unique.

Finally, the CONNECTIONS attribute is used to
specify the interconnections of Mininet components among
themselves and with VNFs and SFCs. The CONNECTION
JSON object has two mandatory components: IN/OUT and
OUT/IN. The IN/OUTIFACE and OUT/INIFACE indicate
the virtual interface where the VNF will set up a connection.
In the context of SFCs, the connection is specified in terms
of its VNFs, typically one connection is defined for input and
one for output. The connections between the VNFs of an SFC
are specified in the SFC description file.

5 Case Study and Experimental Evaluation

In this section, we describe a case study executed to
obtain empirical results to evaluate the effectiveness of
NIEP. First, in Subsection 5.1, the case study described.
Next, in Subsection 5.2, results are presented and discussed.
Finally, a qualitative evaluation is discussed in Subsection
5.3. The main objective of these experiments is to investigate



V. Fulber-Garcia et al.

1 {
2 "type": "object",

3 "properties": {
4 "ID": {"type": "string"},
5 "VNFS": {"type": "array",

6 "items": {"type": "string"}
7 },
8 "SFCS": {"type": "array",

9 "items": {"type": "string"}
10 },
11 "MININET": {
12 "type": "object",

13 "properties": {
14 "HOSTS": {"type": "array",

15 "items": {
16 "type": "object",

17 "properties": {
18 "ID": {"type": "string"},
19 "IP": {"type": "string"}
20 }
21 }
22 },
23 "SWITCHES": {"type": "array",

24 "items": {"type": "string"}
25 },
26 "CONTROLLERS": {"type": "array",

27 "items": {
28 "type": "object",

29 "properties": {
30 "ID": {"type": "string"},
31 "IP": {"type": "string"},
32 "PORT": {"type": "string"}
33 }
34 }
35 },
36 "OVSWITCHES": {"type": "array",

37 "items": {
38 "type": "object",

39 "properties": {
40 "ID": {"type": "string"},
41 "CONTROLLER": {"type": "

string"}
42 }
43 }
44 }
45 }
46 },
47 "CONNECTIONS": {"type": "array",

48 "items": {
49 "type": "object",

50 "properties": {
51 "IN/OUT": {"type": "string"},
52 "OUT/IN": {"type": "string"},
53 "IN/OUTIFACE": {"type": "string"}

,

54 "OUT/INIFACE": {"type": "string"}
55 }
56 }
57 }
58 }
59 }

Figure 6 Topology Simplified JSON Schema

whether our platform can efficiently and effectively emulate
heterogeneous NFV scenarios deployed on different network
topologies. We also assess whether/how NIEP meets the
requirements defined in Section 3.

5.1 Case Study: Description

The experimental setup defined is composed of two locations:
the Customer Premises (CP) and an Internet Service
Provider (ISP), as shown in Fig. 7. In the CP, a Mininet host
acting as a client is connected to a VNF with limited resources
(1 core, 192MB RAM) running a static router to emulate
Customer Premises Equipment (CPE) connected to an ISP.
At the ISP side, a VNF with more resources (2 cores, 2GB
RAM) running a firewall is connected to a Mininet topology
with a virtual OpenFlow switch (OpenVSwitch), which in
turn is connected to an SDN Controller and a host acting as
an application server.

Four different configurations were used to evaluate how
the number of customers connected to the ISP impacts the
performance of NIEP. We varied the number of CPEs from

2, 4, 8 and 16. In addition, a second configuration was tested,
in which two VNFs implementing a firewall were deployed on
the ISP side with the purpose of balancing the load imposed
by the CPEs.

The experiments were executed on the following system.
The CP instances were executed on an Intel Core i7-
6700k@4.00GHz server, with 8GB RAM DDR4, 4 cores, and
running CentOS 7. The ISP, in turn, was executed on an
Intel Xeon E3-1220v6@3.00GHz, 8GB RAM DDR4, 4 cores,
running Ubuntu 14.04. The hosts were connected on a 1Gbps
Ethernet network. We employed the KVM hypervisor to
deploy both the Mininet VM and VNFs in both hosts.

5.2 Results

Each experiment was repeated 30 times, results are presented
with a confidence interval of 99%. NIEP can be used
to emulate multiple NFV scenarios, providing fine-grained
control over several configuration parameters. The network
topology can be easily changed, for example, to test different
network paths, or to add, remove, and reconfigure hosts, or
also to change link properties. The boot time is an important
metric to be evaluated since it can impact the time it takes
to evaluate a configuration.

The NIEP components were instrumented to send the
boot time to a centralized server. The longest boot time
corresponds to the VNFs on the CP side, as their number
grows this increases the load on the processor. At the same
time, the number of VNFs running on the processor used to
emulate the ISP does not change as a single experiment is
executed, it only changes from one experiment to another.
The VNFs are instantiated at the same time, and Mininet is
started before that. Thus, the boot time is the time Mininet
takes to initialize plus the average boot time of the VNFs of
the CP side. To make it clear, this is the time it takes for the
entire emulation setup to be ready to execute. Results are
shown in Figure 8.

In the second experiment, two VNFs implementing
firewalls were deployed instead of a single one. Because of
this, the boot time is slightly higher on the CPs VNFs, as
they need to do some additional configuration to send traffic
to the two different firewalls. The exception is when two CP
instances are deployed (as shown in the first two bars of
Figure 3) – the first setup takes 529 ms plus/minus 3 ms,
and the second setup 2 takes 532 ms plus/minus of 2.8 ms.
This happens because with only two CP instances there are
still free processor cores left that are used exclusively by the
hypervisor and operating system to execute tasks related to
the configuration and deployment of virtual machines.

The evaluation of the performance of NIEP under
heavy load allows the identification of bottlenecks caused
by different factors on the emulation, due for instance to
CPU and memory limitations. Thus if for example, physical
resources are not sufficient, this would be reflected in the low
throughput between the CPs and the ISP, due to the limited
packet processing capacity. In this case, the throughput gets
much lower than link speed (1Gbps). iperf [TQD+05] was
employed in the experiments; all CPs send traffic at the
same time to the server running at the ISP side. The values
obtained from each CP in each experiment were aggregated
since CPs share the same 1Gbps link with which they are
connected to the ISP.

As shown in Figure 9, in all experiments executed for both
setups the bottleneck was always the link between the CPs
and the ISP. In this way, increasing the number of instances
does not affect link throughput. We can conclude that NIEP
scales well as required.



On the Design and Development of Emulation Platforms for NFV-based Infrastructures

Figure 7 Experimental Evaluation: Environment

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 4 8 16

T
im

e
 (

m
s
)

Instances

Setup 1
Setup 2

Figure 8 NIEP evaluation: average boot time.

5.3 Discussion

Regarding the scalability, NIEP proved to be able to
emulate complex scenarios, with increasing numbers of
hosts, switches, and VNFs, as well as the overall topology.
The good scalability can be explained because in NIEP
the VNFs do not run within Mininet. Instead, the VNFs
are connected through external bridges, which allow their
execution remotely. On the other hand, although EsCAPE
can also simulate complex scenarios, VNFs are deployed on
the same host, since containers are defined within Mininet
and connections must be established locally.

Different from Mininet, the topologies NIEP employs are
defined at a high level with JSON, which simplifies the
process for deploying the infrastructure. Users can define, in
addition to hosts, switches, and controllers, different types of
VNFs, different amounts of resources that are allocated for
the VNFs, and the connections among them, including the
capacity of creating SFCs.

The use of hypervisor-based virtualization for deploying
VNFs enables the emulation of heterogeneous network
infrastructures since a VNF can be directly deployed on any
server and operating system running a compatible hypervisor
(e.g., KVM, Xen, and VirtualBox) without requiring any
change to the VNF source code. This can be a serious

 0

 200

 400

 600

 800

 1000

2 4 8 16

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

Instances

Setup 1
Setup 2

Figure 9 NIEP evaluation: throughput.

limitation for the use of the other platforms discussed in
Section 2.2, which rely on container-based virtualization.

Finally, NIEP is more secure that the other platforms
as NIEP is based on VMs while the others are based on
containers which have more vulnerabilities.

6 Conclusion and Future Work

The Network Function Virtualization (NFV) paradigm
replaces traditional middleboxes with virtual functions that
are executed on general purpose hardware. NFV brings
multiple advantages in terms of cost and flexibility, but it also
brings new challenges. In this work, we presented NIEP, an
NFV Infrastructure Emulation Platform to emulate VNFs.
Emulation platforms provide a realistic alternative to execute
VNFs. This NIEP allows VNFs to be tested and evaluated
before they are deployed in production networks. Most
existing NFV emulation platforms are based on containers
or process virtualization. Furthermore, they do not provide
native support for the distribution of the emulation, which
should be based on processes running and communicating on
different machines. Thus the emulation is limited to a single
machine, which has obvious scalability limitations.



V. Fulber-Garcia et al.

NIEP is based on Click-on-OSv and Mininet. NIEP is
based on VMs, which provides higher security guarantees
that containers. NIEP allows the emulation of different NFV
scenarios and VNF design and evaluation, supporting the
emulation of heterogeneous infrastructures and scenarios.
The evaluation of the performance of NIEP included the
boot time and the throughput of VMs running CP and ISP
sites. The results show that the boot time of VNFs increases
almost linearly, indicating almost no impact of NIEP on VNF
instantiation. Moreover, increasing the number of VNFs does
not reduce throughput.

Future work includes the design of a user-friendly web
interface for network operators, allowing information about
VNFs and their operation to be obtained with a REST API.
Furthermore, it is important to extend the tool to support
different VNF technologies, such as nginx and BRO.

Acknowledgements

This research was performed partially within the project
“Federated Ecosystem for Offering, Distribution, and
Execution of Virtual Network Functions” (GT-FENDE).
The authors would like to thank Rede Nacional de Ensino
e Pesquisa (RNP), for their support to the GT-FENDE
project.

References

[BCV+18] Carlos Jsus Bernardos, Luis M. Contreras,
Ishan Vaishnavi, Robert Szabo, Xi Li,
Francesco Paolucci, Andrea Sgambelluri,
Barbara Martini, Luca Valcarenghi,
Giada Landi, Dmitriy Andrushko, and
Alain Mourad. Multi-domain Network
Virtualization. Internet-Draft draft-
bernardos-nfvrg-multidomain-04, Internet
Engineering Task Force, March 2018. Work
in Progress.

[BHK07] Ingmar Baumgart, Bernhard Heep, and
Stephan Krause. Oversim: A flexible overlay
network simulation framework. In IEEE
Global Internet Symposium, 2007, pages 79–
84. IEEE, 2007.

[CS03] Mark Carson and Darrin Santay. Nist
net: a linux-based network emulation tool.
ACM SIGCOMM Computer Communication
Review, 33(3):111–126, 2003.

[CW+12] M Chiosi, S Wright, et al. Network functions
virtualisation (nfv). ETSI NFV ISG, White
Paper, 1, 2012.

[dCMGC+17] Leonardo da Cruz Marcuzzo, Vinicius F
Garcia, Vitor Cunha, Daniel Corujo, Joao P
Barraca, Rui L Aguiar, Alberto E Schaeffer-
Filho, Lisandro Z Granville, and Carlos RP
dos Santos. Click-on-osv: A platform for
running click-based middleboxes. In Integrated
Network and Service Management (IM), 2017
IFIP/IEEE Symposium on, pages 885–886.
IEEE, 2017.

[GMUJ16] J. Garay, J. Matias, J. Unzilla, and E. Jacob.
Service description in the nfv revolution:
Trends, challenges and a way forward.
IEEE Communications Magazine, 54(3):68–
74, March 2016.

[Han06] M. Handley. Why the internet only just works.
BT Technology Journal, 24(3):119–129, July
2006.

[HGJL15] Bo Han, V. Gopalakrishnan, Lusheng Ji,
and Seungjoon Lee. Network function
virtualization: Challenges and opportunities
for innovations. IEEE Communications
Magazine, 53(2), 2015.

[HP15] Joel Halpern and Carlos Pignataro. Service
function chaining (sfc) architecture. RFC
7665, 2015.

[ISH10] M. Imran, A. M. Said, and H. Hasbullah. A
survey of simulators, emulators and testbeds
for wireless sensor networks. In 2010
International Symposium on Information
Technology, volume 2, pages 897–902, June
2010.

[KDP+16] Holger Karl, Sevil Dräxler, Manuel Peuster,
Alex Galis, Michael Bredel, Aurora Ramos,
Josep Martrat, Muhammad Shuaib Siddiqui,
Steven Van Rossem, Wouter Tavernier, et al.
Devops for network function virtualisation:
an architectural approach. Transactions on
Emerging Telecommunications Technologies,
27(9):1206–1215, 2016.

[KMC+00] Eddie Kohler, Robert Morris, Benjie Chen,
John Jannotti, and M Frans Kaashoek. The
click modular router. ACM Transactions on
Computer Systems (TOCS), 18(3):263–297,
2000.

[KSG14] Sukhveer Kaur, Japinder Singh, and
Navtej Singh Ghumman. Network
programmability using pox controller.
In ICCCS International Conference on
Communication, Computing & Systems,
IEEE, volume 138, 2014.

[LHM10] Bob Lantz, Brandon Heller, and Nick
McKeown. A network in a laptop: rapid
prototyping for software-defined networks.
In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks,
page 19. ACM, 2010.

[LLF+15] K. Lu, S. Liu, F. Feisullin, M. Ersue, and
Y. Cheng. Network function virtualization:
opportunities and challenges. IEEE
NETWORK, 29(3):4–5, May 2015.

[MBD16] A. A. Mohallel, J. M. Bass, and
A. Dehghantaha. Experimenting with
docker: Linux container and base os attack
surfaces. In 2016 International Conference on
Information Society (i-Society), pages 17–21,
Oct 2016.

[MKJK99] Robert Morris, Eddie Kohler, John Jannotti,
and M. Frans Kaashoek. The click modular
router. ACM SIGOPS Operating Systems
Review, 33(5):217–231, 1999.

[MKK15] R. Morabito, J. Kjllman, and M. Komu.
Hypervisors vs. lightweight virtualization:
A performance comparison. In 2015
IEEE International Conference on Cloud
Engineering, pages 386–393, March 2015.



On the Design and Development of Emulation Platforms for NFV-based Infrastructures

[MSG+16] Rashid Mijumbi, Joan Serrat, Juan-Luis
Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba. Network function
virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys &
Tutorials, 18(1):236–262, 2016.

[NFV13] GS NFV. 001: Network functions
virtualisation (nfv); use cases, v 1.1. 1. ETSI,
December, 2013.

[PKvR16] M. Peuster, H. Karl, and S. van Rossem.
Medicine: Rapid prototyping of production-
ready network services in multi-pop
environments. In 2016 IEEE Conference
on Network Function Virtualization and
Software Defined Networks (NFV-SDN),
pages 148–153, Nov 2016.

[PPK+15] Ben Pfaff, Justin Pettit, Teemu Koponen,
Ethan J Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe
Stringer, Pravin Shelar, et al. The design and
implementation of open vswitch. In NSDI,
pages 117–130, 2015.

[SCS+15] Balázs Sonkoly, János Czentye, Robert Szabo,
Dávid Jocha, János Elek, Sahel Sahhaf,
Wouter Tavernier, and Fulvio Risso. Multi-
domain service orchestration over networks
and clouds: A unified approach. In Proceedings
of the 2015 ACM Conference on Special
Interest Group on Data Communication,
SIGCOMM ’15, pages 377–378, New York,
NY, USA, 2015. ACM.

[SFMH+13] Alberto Schaeffer-Filho, Andreas Mauthe,
David Hutchison, Paul Smith, Yue Yu, and

Michael Fry. Preset: A toolset for the
evaluation of network resilience strategies. In
Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium
on, pages 202–209. IEEE, 2013.

[SVZ+14] D. Salopek, V. Vasi, M. Zec, M. Mikuc,
M. Vaarevi, and V. Konar. A network
testbed for commercial telecommunications
product testing. In 2014 22nd International
Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages
372–377, Sept 2014.

[Tea12] Mininet Team. Mininet: An instant virtual
network on your laptop (or other pc), 2012.

[TQD+05] Ajay Tirumala, Feng Qin, Jon Dugan,
Jim Ferguson, and Kevin Gibbs. Iperf:
The tcp/udp bandwidth measurement tool.
http://iperf.fr, 2005.

[VH08] András Varga and Rudolf Hornig. An
overview of the omnet++ simulation
environment. In Proceedings of the 1st
international conference on Simulation
tools and techniques for communications,
networks and systems & workshops, page 60.
ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering), 2008.

[WDS+14] Philip Wette, Martin Draxler, Arne Schwabe,
Felix Wallaschek, Mohammad Hassan
Zahraee, and Holger Karl. Maxinet:
Distributed emulation of software-defined
networks. In Networking Conference, 2014
IFIP, pages 1–9. IEEE, 2014.


