
Lawrence Berkeley National Laboratory
LBL Publications

Title

Problems with using MPI 1.1 and 2.0 as compilation targets for parallel language
implementations

Permalink

https://escholarship.org/uc/item/7v6644bs

Journal

International Journal of High Performance Computing and Networking, 1(1-3)

ISSN

1740-0562

Authors

Bonachea, Dan
Duell, Jason

Publication Date

2005-08-08

DOI

10.1504/ijhpcn.2004.007569

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7v6644bs
https://escholarship.org
http://www.cdlib.org/

Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3, 2004 91

Copyright © 2004 Inderscience Enterprises Ltd.

Problems with using MPI
1.1 and 2.0 as compilation
targets for parallel language
implementations

Dan Bonachea* and Jason Duell
Computer Science Division,
University of California at Berkeley,
Berkeley, California, USA
E-mail: bonachea@cs.berkeley.edu E-mail: jcduell@lbl.gov
*Corresponding author

Abstract: MPI support is nearly ubiquitous on high-performance systems today and is
generally highly tuned for performance. It would thus seem to offer a convenient ‘portable
network assembly language’ to developers of parallel programming languages who wish to
target different network architectures. Unfortunately, neither the traditional MPI 1.1 API
nor the newer MPI 2.0 extensions for one-sided communication provide an adequate
compilation target for global address space languages, and this is likely to be the case for
many other parallel languages as well. Simulating one-sided communication under the MPI
1.1 API is too expensive, while the MPI 2.0 one-sided API imposes a number of significant
restrictions on memory access patterns that would need to be incorporated at the language
level, as a compiler cannot effectively hide them given current conflict and alias detection
algorithms.

Keywords: MPI one-sided; parallel languages; global address space; RMA; one-sided
communication.

Reference to this paper should be made as follows: Bonachea, D. and Duell, J. (2004)
‘Problems with using MPI 1.1 and 2.0 as compilation targets for parallel language
implementations’, Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3,
pp.91–99.

Biographical notes: Dan Bonachea received his BS (Computer Engineering) degree from
Ohio State in 1998, his MS (Computer Science) degree from UC Berkeley in 2000, and is
currently a doctoral candidate at UC Berkeley. His research focuses on parallel compiler
and runtime systems technology, with an emphasis on communication software for
supercomputing system-area networks. He has published papers in several conferences and
journals, and is an active member of the Unified Parallel C (UPC) language consortium.

Jason Duell is a member of the Future Technologies Group in the Computational Research
Division at Lawrence Berkeley National Laboratory. He is also a graduate student in
Computer Science at the University of California, Berkeley. His research focuses on
runtime and operating systems support for parallel computing.

1 INTRODUCTION

Global address-space (GAS) languages, such as Unified
Parallel C (UPC) (El-Ghazawi et al., 2003), Titanium
(Yelick et al., 1998), and Co-Array Fortran (Numrich and
Reid, 1998), are an emerging class of languages that seek to
give parallel application developers an alternative to the
traditional message-passing model. By providing the
illusion of a shared address space to a distributed program

(regardless of the underlying hardware), along with
programmatic awareness and control of memory layout
across processors, they promise to combine the performance
of message-passing systems with the convenience of shared
memory programming.

As researchers involved in developing portable
implementations of two of these languages (Berkeley UPC
(Chen et al., 2003) and Titanium (Yelick et al., 1998)), we
have invested (and continue to invest) substantial amounts

92 D. BONACHEA AND J. DUELL

of effort into porting our software to new network
architectures and programming interfaces.

Many other scientists and hardware vendors, upon
learning this, have asked us why we do not simply write our
language on top of MPI, to avoid this porting effort. As the
most common parallel programming interface on
contemporary supercomputing platforms, MPI has typically
been highly tuned for performance. It has also been
described by some of its developers as providing an
“assembly language for parallel processing” (Gropp, 2001).
Presumably, then, it ought to provide an efficient, portable
target for parallel language compilers.

Unfortunately for GAS language implementors, this is not
the case. This paper explains why both the traditional MPI
1.1 two-sided interface (MPI Forum, 1995) and the newer
MPI 2.0 (MPI Forum, 1998) one-sided interface
(hereafter referred to as MPI-RMA) are inadequate
compilation targets for global address space languages.
The two-sided communication model inherent in MPI 1.1
cannot support the one-sided communication requirements
of GAS languages as efficiently as lower-level APIs.
The newer one-sided MPI-RMA presents an interface that,
while undoubtedly of great use to many application
developers, presents a number of restrictions on memory
access patterns that would require conflict and alias analysis
that is beyond the reach of current compilers. The
difficulties presented by MPI-RMA as a compilation target
are not specific to GAS languages, and are likely to present
an obstacle to any parallel programming language, which
does not expose application developers to MPI-RMA’s
numerous restrictions on memory usage patterns.

1.1 Global address space languages and their
communication requirements

The common characteristic of all GAS languages is that
they provide programmers with a shared memory
abstraction between all processors in an application
(regardless of whether shared memory is actually supported
natively in hardware), and that the programmer is given
both knowledge and control of the layout of shared memory
across processors. The shared memory model of GAS
languages provides the programmer with a familiar interface
in which any piece of shared memory can be accessed by
any processor in an application via the normal data access
mechanisms built into the language, i.e., by accessing an
element of a shared array, dereferencing a pointer to shared
data, or simply referencing the name of a shared variable.
Of course, on many platforms, the access time for touching
shared memory will depend heavily on the location of the
data, and so GAS languages make the layout of shared
memory explicit to the programmer, who is encouraged to
write code that takes advantage of locality in order to
achieve higher performance.

This combination of a globally shared address space
with locality information allows an incremental
development model, in which serial or shared-memory
codes can initially be naїvely ported to a distributed

environment, profiled to isolate bottlenecks, and then
gradually tuned to optimise performance. The compiler for a
GAS language may also be able to hide some or all of the
latency cost of remote accesses by scheduling unrelated
computation (or more communication) during the interim
imposed by network traffic.

GAS languages have some differences in how they allow
shared memory to be allocated, and/or how they distinguish
shared and non-shared data. UPC and Co-Array Fortran
require the programmer to explicitly declare data objects to
be either shared or private (usage varies by application, but
typically the major data structures reside in shared space).
In Titanium, by contrast, all heap and static data can
potentially be accessed remotely (Hilfinger et al., 2001),
although a sophisticated compiler escape analysis
(Liblit et al., 2003) can detect which objects are potentially
‘shared’ (interesting applications typically have about
50–100% of the total bytes allocated judged to be
shared by the analysis). Dynamic allocation of shared
memory is required to be collective in Co-Array Fortran,
while it can also be achieved in UPC and Titanium
through purely local, non-collective operations. UPC
additionally allows shared objects to be allocated on remote
processes using a non-collective operation
(upc_global_alloc()) with no explicit cooperation from the
process allocating the data.

Remote data access in GAS languages naturally leads
to a one-sided communication pattern. In part, this is a
matter of providing a familiar and convenient interface
to programmers who are used to a shared-memory
programming model, but there is also an important class of
dynamic and irregular applications that we wish to
support, which have communication patterns that are
data-dependent and therefore statically unpredictable, and
hence are most naturally expressed using one-sided
operations.

In GAS languages, the ability to predict data access
patterns is further limited by the fact that all three of these
GAS languages allow accesses to shared objects with
affinity to the calling thread via ‘local’ pointers, and these
accesses are indistinguishable from accesses to purely local
(private) objects, i.e., the languages’ semantics provide no
explicit information about whether the memory being
accessed is potentially shared or not. In each language,
accesses to shared data that reside locally using ‘local’
pointers generally provide significantly better performance
than access through ‘global’ pointers. In fact, the
performance impact is so dramatic that most UPC
programmers specifically optimise for this case, and the
Titanium compiler includes a specialised analysis (Liblit
and Aiken, 2000) to automatically infer when such a
transformation is provably legal.

A result of these data dependent access patterns and
shared/local aliasing is that compilers for GAS languages
generally have no way to know a priori which
specific shared memory locations will be accessed remotely,
or when they will be accessed. They thus have no way to
statically check, for instance, if data accesses from

PROBLEMS WITH USING MPI 1.1 AND 2.0 AS COMPILATION TARGETS FOR PARALLEL LANGUAGE IMPLEMENTATIONS 93

different processors will conflict at runtime. This is exactly
analogous to the problem of static alias analysis in
sequential, pointer-based languages, but is complicated by
the existence of multiple independent threads of
control – for in-depth discussion, see Krishnamurthy and
Yelick (1996), Shasha and Snir (1988), and Midkiff and
Padua (1990).

Given these properties of GAS languages, they present the
following requirements for any underlying network
interface:

• The ability to perform (or at least simulate) one-sided
communication (i.e., where only the initiator is
explicitly involved and the communication proceeds
independent of any action taken by the remote threads).
While one-sided communication can be simulated by
the language runtime using an underlying two-sided
communication API, neither the user nor the compiler
may be exposed to any aspect of implementing message
receipts (or other bookkeeping) on the remote side of an
access.

• Good latency performance for small remote accesses.
Small messages are commonly used in initial
implementations of many GAS programs, and may be
unavoidable even in well-tuned applications in certain
problem domains. The performance of applications
written in global address space languages is thus often
very sensitive to network round-trip latency.

• The ability for the compiler to hide network latencies
by overlapping communication with computation
and/or other communication, through the use of
non-blocking remote accesses. This requires that the
software overhead involved in network traffic be less
than the latency of messages (and/or the gap between
how often the network interface will accept overlapping
messages), as overlapping is impossible if the host CPU
is busy throughout a messaging operation.

• Support for arbitrary access patterns to shared data.
This includes allowing concurrent remote accesses to
the same regions of shared memory from different
remote processors, as well as support for allowing
shared data to be accessed at arbitrary points in the
program via local pointers.

• Support for using or implementing collective
communication and synchronisation operations.
The rest of this paper shows that neither the MPI 1.1
nor the newer MPI-RMA interface supports all of these
characteristics adequately.

2 MPI 1.1 AS A COMPILATION TARGET FOR GAS
LANGUAGES

The most widely available and portable software interface
for programming distributed memory machines today is that
provided by the MPI 1.1 specification, which has been
implemented and carefully tuned on most contemporary
high-performance parallel systems. As such, it presents a
very tempting compilation target for GAS languages, which

could potentially run on all such systems by simply
providing a single networking layer that runs on top of MPI.

Communication under MPI 1.1 is strictly two-sided: all
traffic takes the form of message sends, which require
matching receive operations to be explicitly issued on the
receiving side. While this does not neatly match
the GAS model of one-sided communication, it does not
disqualify MPI 1.1 from use by GAS languages.
Our group has implemented an MPI layer (home page.
http://www.cs.berkeley.edu/~bonachea/ammpi), which
transparently handles message receipt in the runtime by
periodically polling for new message receipts, thus
providing the illusion of a one-sided interface to both the
user and the compiler. We have used this MPI layer on a
number of platforms, including the IBM SP, the Cray T3E,
the SGI Origin 2000, Linux, and Compaq AlphaServer
systems using Quadrics network hardware, and Linux
clusters using Myrinet, Dolphin/SCI, and Ethernet
networks. This portable MPI layer has proven to be an
invaluable prototyping tool for quickly deploying our
systems on new architectures.

However, as Figure 1 shows, use of MPI 1.1
implementations does not come without a cost. This
microbenchmark data gathered by our group (and described
in detail in Bell et al. (2003)) demonstrate that the latency
and/or software overhead associated with small message
sends in MPI is typically much higher than when using
native network APIs. This difference is most pronounced on
the lowest-latency systems, which are the most likely targets
for GAS applications, with more than a factor of five
differences between MPI performance and that of some
native machine APIs.

Figure 1 Send and receive software overheads (os and or)
superimposed on the one-way end-to-end latency (EEL) for 8-byte
messages on various high-performance systems. For MPI on the
T3E and Myrinet, the sum of the overheads is greater than EEL,
and so os = S + V and or = R + V. For the other configurations
os = S and or = R

It should be noted that the MPI data in Figure 1
were gathered using non-blocking send and receive
calls, and that these calls tend to incur higher overhead than
their blocking counterparts in most MPI implementations
(Bell et al., 2003). It is unclear whether these non-blocking
overheads are unavoidable, or are simply the result of less
tuning by vendors: most MPI applications use blocking
functions, and vendor benchmarks generally report only

94 D. BONACHEA AND J. DUELL

numbers for blocking send/receive calls. Use of at least
some non-blocking calls is necessary when simulating
one-sided communication with a two-sided API, in order to
prevent deadlock (which could otherwise be caused trivially
by two processors sending a message to each other at the
same time). Non-blocking calls are also desirable in a GAS
language context, as compilers may be able to overlap
computation (and/or other network calls) within the interval
where the CPU would otherwise be blocked.

To more easily support porting our UPC and Titanium
implementations, we use a portable, high-performance
networking library called GASNet (Bonachea, 2002).
This is the layer, which provides the one-sided messaging
abstraction over MPI 1.1. Besides MPI 1.1, GASNet
has also been implemented directly over the native
APIs of a number of high-performance networks
(the IBM SP’s LAPI, Myrinet's GM, Quadrics’ elan, and
Infiniband). UPC and Titanium applications can switch the
underlying network used with a simple recompilation, and
this gives us the opportunity to directly compare the
performance of a single application run using MPI 1.1 for
communication with its timing when run over a lower-level
network API. Figures 2, 3 and 5 show the difference in
performance between a set of UPC applications running on
an Compaq AlphaServer system with a Quadrics
interconnect: a naively-written version and a
bulk-synchronous version of the NAS Parallel Benchmarks
(Bailey et al., 1994) Conjugate Gradient, and a
bulk-synchronous implementation of the NAS Multigrid
benchmark. Figures 4 and 6 show the same bulk CG and
MG codes running on an x86-Linux Myrinet cluster.
Finally, Figure 7 shows the performance of the MG
benchmark on an IBM SP Power3. The applications were
compiled with the Berkeley UPC Compiler v1.0beta
(Chen et al., 2003) to use either MPI-1.1 or the lower-level
vendor-specific networking layer for communication. For
comparison purposes, on the Compaq system we also show
the performance for the same applications when compiled
with the 2.1-003 version of the Compaq UPC compiler
(http://www.tru64unix.compaq.com/upc/), which compiles
executables to use the vendor-specific elan API (data for
Compaq UPC are omitted for higher numbers of nodes due
to a recently discovered performance bug that is still
pending). In all cases, the network and system hardware
being used is identical – the only difference is the runtime
system and communication software in use.

Figure 2 Performance for a naїvely (fine-grained) UPC
implementation of NAS conjugate gradient using different network
APIs/compilers on a Compaq AlphaServer

Figure 3 Performance for a bulk-synchronous UPC
implementation of NAS Conjugate Gradient using different
network APIs/compilers on a Compaq AlphaServer

Figure 4 Performance for a bulk-synchronous UPC
implementation of NAS conjugate gradient using different network
APIs with the Berkeley UPC compiler over Myrinet/GM

Figure 5 Performance for a bulk-synchronous UPC
implementation of NAS multigrid using different networks
APIs/compilers on a Compaq AlphaServer

Figure 6 Performance for a bulk-synchronous UPC
implementation of NAS multigrid using different network APIs with
the Berkeley UPC compiler over Myrinet/GM

PROBLEMS WITH USING MPI 1.1 AND 2.0 AS COMPILATION TARGETS FOR PARALLEL LANGUAGE IMPLEMENTATIONS 95

Figure 7 Performance for a bulk-synchronous UPC
implementation of NAS multigrid using different network APIs with
the Berkeley UPC compiler on an IBM SP

The results show that the MPI 1.1-based GASNet layer is
significantly outperformed by those based directly over
one-sided networking APIs. The communication costs of the
bulk-synchronous CG code are dominated by bulk put
operations (average 56KB each) and some small (8 byte)
gets, whereas the MG code is dominated by bulk get
operations (average 100KB each) and some small (8 byte)
gets. For the two bulk-synchronous benchmarks, the
performance gap is less a function of any inherent
difference between the MPI bandwidth and that of the
lower-level API (the two tend to be similar on each system),
than of the cost of providing the illusion of one-sided
communication under MPI 1.1.

Currently, our GASNet-MPI implementation works by
having each host post a set of non-blocking receive calls in
advance, so that a buffer is generally immediately available
for any incoming message. This allows a remote processor
to complete a message send before the target processor may
even be aware that the message has arrived. This buffering
strategy requires that the message be copied twice (once on
the source node, to add a header specifying the destination
address, and once at the target node, to move the data from
the buffer to the final destination).

The GASNet-MPI implementation could probably provide
better performance for large messages if it used the initial
receive buffer to inform the target CPU to set up a receive
call that placed the data directly into the destination
memory, thus avoiding buffering. However, this would still
be inherently slower than the elan-based direct RDMA
version: the transaction would incur an additional
rendezvous (in the form of a set of MPI messages) to set up
the direct receive call (and likely an additional network
round trip as MPI did its own internal rendezvous), followed
by the direct RMA transfer, and then a final MPI message
from the destination processor informing the initiator that
the message had completed (MPI does not provide built-in
notification of remote completion, but it is required for GAS
language semantics, which sometimes need to guarantee
target completion for remote writes). The transaction would
also need to wait initially for the remote processor to poll
the network to see the initial setup message. For messages
of a sufficiently large size, however, these costs ought to be
amortised to the point where the MPI layer’s peak
bandwidth performance might asymptotically approach that

of the elan layer (when the remote node is well attentive to
the network). It unclear what the crossover message size
would be for this sort of algorithm, however, and it would
need to be tuned for each different type of network
(and possibly on a per-machine basis), thus lessening the
portability benefit of using MPI.

The performance of the naively-written CG benchmark
(which uses an average message size of only 8 bytes) is less
ambiguous. For applications that use small messages, elan
provides a significant speedup, allowing the application to
run more than four times faster. Clearly, the communication
performance obtained by directly targeting the native
network API is more suitable than a solution layered on
MPI for supporting an incremental programming model for
parallel applications and for inherently fine-grained
applications

It is unclear if MPI 1.1 will ever be able to provide GAS
languages with the same performance as native network
APIs for small- and medium-sized one-sided messages. The
popularity of MPI has meant that vendors are willing to
expend considerable effort tuning their implementations,
and certain trends are promising, such as the offloading of
some of MPI’s message-passing logic onto dedicated
network co-processors. Although such co-processors are not
likely to improve end-to-end message latency, they might
lower the host CPU’s software overheads to levels
comparable to that of lower-level network APIs, which
might in turn allow a UPC implementation to hide the
latency by performing unrelated work in the interim.

3 MPI-RMA AS A COMPILATION TARGET FOR GAS
LANGUAGES

The most recent version of the MPI specification (MPI 2.0)
extends MPI 1.1 with a number of new features. In
particular, Chapter 6 of the specification (MPI Forum, 1998)
adds support for ‘one-sided communications’ (also called
‘Remote Memory Access (RMA)’). This extension
supplements the traditional two-sided MPI communication
model with a one-sided interface that can take advantage of
the capabilities of RMA network hardware, in the hope of
lowering latency and software overhead costs for
applications written using a shared-memory-like paradigm.

On the surface, MPI-RMA thus seems like a natural fit for
GAS languages. However, the rest of this document
explains why MPI-RMA unfortunately does not meet the
requirements laid out in Section 1.1 for implementing global
address space languages. Essentially, the strong restrictions
placed on memory access patterns by the API and the
weakness of its semantic guarantees make it unusable for
GAS language implementation purposes. It is our
sincere hope that the observations presented here regarding
the problematic semantic aspects of the interface can serve
as a guide during future revisions of the MPI-RMA
specification – in Section 5 we provide some initial ideas for
improving the semantics to better meet the needs of the
GAS language community.

96 D. BONACHEA AND J. DUELL

It is important to note that we are interested in writing
portable code, and are therefore not concerned with the
behaviour of particular implementations of MPI-RMA
(which may happen to relax some of these constraints,
and/or have well-defined semantics for conditions the
specification labels as erroneous), but rather with the
guarantees provided by any MPI-RMA implementation
(including one which aggressively exploits the intentionally
under-specified aspects of the API).

3.1 Basics of the MPI-RMA API

The semantics of MPI-RMA are fairly complex. Here we
present only an overview of its usage, then proceed to
discuss those aspects of the API that affect GAS language
implementations. The reader may consult the MPI 2.0
specification (MPI Forum, 1998) for full details – the
subsequent discussion includes references to the sections in
the specification relevant to each major semantic issue.

The MPI-RMA API revolves around the use of abstract
objects called ‘windows’, which intuitively specify regions
of a process’s memory that have been made available for
remote operations by other MPI processes. Windows are
created using a collective operation (MPI_Win_create)
called by all processes within a ‘communicator’ (a group of
processes in MPI terminology), which specifies a base
address and length (which may be different on each
process), and is permitted to span very large areas (e.g., the
entire virtual address space). All three one-sided RMA
operations (MPI_Put, MPI_Get, MPI_Accumulate) take a
reference to such a window, an offset into the window, and
a rank integer to indicate which process is the remote target.
All one-sided operations are implicitly non-blocking and
must be synchronised using one of the synchronisation
methods described below.

3.2 Active target vs. passive target

There are 2 primary ‘modes’ in which the one-sided API
can be used, named ‘active target’ and ‘passive target’. The
primary semantic distinction is whether or not cooperation
is required by the remote node in order to complete a remote
memory access. All RMA operations on a window must
take place within a synchronisation ‘epoch’ (with a start and
end point defined by explicit synchronisation calls), and
operations are not guaranteed to be complete until the end of
such an epoch. The active and passive target modes differ in
which process makes these synchronisation calls.

Active target operation requires synchronisation functions
to be called on both the origin process (the one making the
RMA get/put accesses) and the target process (the one
hosting the memory in the referenced window). The origin
process calls MPI_Win_start/MPI_Win_complete to
begin/end the synchronisation epoch, and the target process
must cooperate by calling MPI_Win_post/MPI_Win_wait to
acknowledge the beginning/end of the epoch (there is also a
collective MPI_Win_fence operation which can be
substituted for one or more of these calls). In any case, this
required cooperation effectively destroys the possibility of

implementing the truly one-sided operations that we wish to
provide in GAS languages using active-target mode RMA.

Passive-target operation provides more lenient
synchronisation. In passive-target operation, only the
originating process calls synchronisation functions
(MPI_Win_lock/MPI_Win_unlock) to start/end the access
epoch. As with active target, all RMA accesses must take
place within such an epoch and are not guaranteed to
complete until the MPI_Win_unlock call completes. There
are two forms of MPI_Win_lock – shared and exclusive.
MPI_Win_lock (exclusive) enforces mutual exclusion on
the window and the RMA operations performed within the
epoch – i.e., it conceptually blocks until it can start an
exclusive access epoch to the window, and no other
processes may enter a shared or exclusive access epoch for
that window until the process with exclusive access unlocks
(the semantics are actually slightly weaker than this, but the
intuition is correct). MPI_Win_lock (shared) allows other
concurrent shared epochs from other processes. The
specification recommends the use of exclusive epochs
when executing any local or RMA update operations
on the memory encompassed by the window to ensure
well-defined semantics (Section 6.4.3, p.131).

3.3 Restrictions on the use of passive-target RMA

The interface described thus far for passive-target RMA
seems reasonable; however unfortunately there are a large
number of restrictions on how it may be legally used. Here
are some of the most important restrictions:

1 Window creation is a collective operation – all
processes that intend to use a window for RMA
(including all intended origin and target processes)
must participate in the creation of that window
(Section 6.2.1, p.110).

2 Implementors may restrict the use of passive-target
RMA operations to only work on memory allocated
using the ‘special’ memory allocator MPI_Alloc_mem
(Section 6.4.3, p.131). This prevents the use of
passive-target RMA on static data and forces all
globally visible objects to be allocated using this
‘special’ allocation call (no guarantees are made about
how much memory can be allocated using this call, and
some implementations may restrict it to a small number
of pinnable pages).

3 It is erroneous to have concurrent conflicting RMA
get/put (or local load/store) accesses to the same
memory location (Section 6.3, p.113).

4 The memory spanned by a window may not
concurrently be updated by a remote RMA operation
and a local store operation (i.e., within a single access
epoch), even if these two updates access different
(i.e., non-overlapping) locations in the window
(Section 6.3, p.113).

5 Multiple windows are permitted to include overlapping
memory regions; however, it is erroneous to use
concurrent operations to distinct overlapping windows
(Section 6.2.1, p.111).

PROBLEMS WITH USING MPI 1.1 AND 2.0 AS COMPILATION TARGETS FOR PARALLEL LANGUAGE IMPLEMENTATIONS 97

6 RMA operations on a given window are only permitted
to access the memory of single process during an access
epoch (Section 6.4.3, p.131).

3.4 Implications of the MPI 2.0 semantics

We now investigate the implications of the above
restrictions on our effort to implement remote accesses in a
GAS language.

Restriction #1 implies that a GAS language
implementation cannot use a separate window per shared
object, because that would require a collective operation for
the allocation of shared objects, and shared object allocation
in GAS languages is often required to be a purely
non-collective, local operation. In order to support
non-collective allocation, many or all shared objects would
need to be coalesced within a single window. But while
arbitrarily large regions (like the entire virtual address
space) can be mapped within a single window, this approach
would severely limit concurrency due to restriction #4.
The same shared object can be mapped into several
windows, but due to restriction #5 this approach is probably
not useful.

Restriction #2 implies that all potentially shared objects
must be allocated using MPI_Alloc_mem(). This restriction
alone may be enough to make MPI-RMA unsuitable for
many GAS languages, unless MPI implementations permit
large amounts of memory to be allocated using this function
(recall that a significant fraction of all data allocated by
GAS programs is typically accessed remotely at some point
in program execution).

Restriction #6 means that an implementation would
probably need at least one separate window for each target
process, as otherwise RMA operations from one process to
different target processes would be unnecessarily serialised.
This may present scalability problems for applications using
a large number of nodes, depending on how windows are
implemented.

The underlying concept addressed by restriction #3 is
fundamental to shared-memory programming and is nothing
new. GAS languages generally specify that conflicting
accesses to a single memory location will store an undefined
result to the location (for conflicting writes) or return an
undefined value (for the read in a read-write conflict).
However, the MPI restriction is unfortunately much
stronger – it says such conflicting accesses are erroneous,
which implies that any resulting behaviour after such a
violation is possible (e.g., the MPI implementation would be
within its rights to consider this a fatal error). Unfortunately,
it is not feasible to statically detect all such conflicting
accesses (from different processes) in user-provided code
without application-specific information (or perhaps even
with it). Using a great deal of compiler analysis, a
conservative superset of the conflicting accesses could be
generated, but in a weakly typed language such as UPC, this
is likely to include most of the accesses. It is impossible to
detect such conflicts at runtime without global
communication. In truth, the compiler analysis required

simply to decide that it is safe for a single process to include
any other RMA accesses within the same epoch as an RMA
put or accumulate is non-trivial, although this problem is an
issue of sequential alias analysis that is considerably better
understood. MPI_Win_lock (exclusive) can be used to
conservatively prevent concurrent conflicting accesses from
distinct processes (by wrapping every RMA Put within its
own exclusive epoch). However, because this locks the
entire window and serialises all access epochs to that
window, this would drastically reduce the concurrency of
accesses to distinct (i.e., non-conflicting) memory locations
that happen to reside within the same window (which would
be very bad if the entire shared memory resided in a single
window). This also effectively nullifies the ability to
perform non-blocking puts. Another option that might help
is to replace all RMA puts with RMA accumulate
operations where the reduction operation is
‘MPI_REPLACE’ – this has the same semantics as an RMA
put, but conflicting accumulate operations have
well-defined semantics (they behave as if the conflicting
accumulates happened in some serial order) – however,
conflicting RMA gets and local loads to the same data
would still be erroneous within the access epoch; hence, an
untenable amount of conflict analysis would still be
required.

Restriction #4 is particularly onerous for GAS language
implementations. It prevents the local process from making
any changes to memory that lies within a window during a
remote access epoch to that window, even to different
(i.e., non-conflicting) memory locations. This implies some
form of synchronisation between the origin and target
process when accessing these locations, which implies truly
one-sided communication is not possible. The MPI spec
recommends the local process perform all updates to the
local memory that falls within a window inside an exclusive
epoch on that window. Because every access to a
language-level local pointer in UPC and Titanium is
potentially an access to a shared memory location
residing locally, in the absence of other information every
local store operation would need to be wrapped within an
exclusive access epoch (possibly prefixed with a check of
whether the accessed location resides in a window).
Similarly, every local load that could potentially conflict
with a remote RMA put or accumulate to that location
would need to be wrapped within a shared access epoch.
The performance implications of adding such overheads to
what should be simple local memory load/store instructions
are staggering. Note that it is not sufficient for the local
process to simply maintain a permanent epoch on its own
window, because this would prevent remote RMA
operations on that window from making progress. Finally,
restriction #4 also implies that the entire virtual address
space of a process cannot be included in a window, because
this would include private memory that is constantly
changing, such as the program stack.

The combination of these effects makes the MPI-RMA
effectively unusable by GAS language implementations: it
is extremely unlikely that a layer could be written on top of

98 D. BONACHEA AND J. DUELL

MPI-RMA that would provide an efficient implementation
of GAS language communication semantics. Given that
adherence to some of the MPI-RMA restrictions involves
such difficult compiler problems as conflict and alias
analysis, it likely that many other parallel languages would
also find MPI-RMA a difficult interface to target. It seems
likely that only languages that effectively expose most of
MPI-RMA’s restrictions and programming disciplines to the
user at the language level would find MPI-RMA a useful
compilation target – however, users are unlikely to tolerate
such rigid usability restrictions in any parallel language that
exposes a shared-memory-like paradigm.

4 RELATED WORK

A number of papers on MPI-RMA performance are
available. Luecke and Hu (2002) evaluated MPI-RMA
performance on the Cray SV1, and Luecke et al. (2002)
compared MPI-RMA performance to that of the
vendor-supplied SHMEM libraries on the Cray T3E and
SGI Origin 2000 architectures, finding that the SHMEM
interface significantly outperformed the MPI-RMA
implementation available at the time. Traff et al. (2000)
examined the performance of MPI-RMA on NEC SX-5
system, and found its data transfer performance to be similar
to that of the MPI 1.0 two-sided API. Matthey and
Hansen (2000) report that a production molecular dynamics
simulation code ran 10–70% faster on an Origin 2000
system after being converted from MPI-1 to MPI-RMA.

Our strategy of implementing one-sided, asynchronous
messaging on top of MPI 1.1 is not a new one. Dobbelaere
and Chrisochoides (2001) report implementing a custom
one-sided communication layer over MPI 1, and Booth and
Mourao (2000) discuss implementing the MPI-RMA API
itself over MPI 1.1.

It appears from Smith (1995) that the MPI-RMA
pioneers decided early on to require a separate set of
allocation functions to allocate data that can be accessed by
passive-target one-sided operations. For an alternative
approach that allows the entire virtual memory space to be
accessed by RDMA (even for the tricky case of
pinning-based networks such as Myrinet), see the
description of lazy registration/pinning methods in Bell and
Bonachea (2002).

Gropp (2001) reviews some of the reasons for MPI’s
enduring success in the parallel computing community.

5 CONCLUSION

We have shown that despite having certain desirable
characteristics, neither the MPI 1.1 interface nor the more
recent MPI 2.0 RMA extensions make an attractive
compilation target for Global Address Space languages.
MPI 1.1, despite its wide availability and often highly
tuned performance, imposes too many overheads with its
two-sided messaging paradigm for GAS languages,

particularly those in which small message performance is
important. The newer MPI-RMA API imposes too many
semantic restrictions to be a useful portable compilation
target, at least for parallel languages that allow aliasing, data
conflicts, and/or the illusion of a single, arbitrarily
accessible shared address space.

The fact that MPI-RMA makes a poor compilation target
for at least certain classes of parallel languages does not
mean that the API is not useful to application programmers,
who are capable of globally structuring their application to
abide by the specification’s semantic restrictions. The
purpose of this paper, in short, is not to malign MPI-RMA,
but rather to explain why it is not suitable as a portable
communication layer for implementing parallel languages
such as Titanium, UPC, and Co-Array Fortran.

We sincerely hope that the MPI-RMA interface can be
revised in future versions of the MPI specification to relax
some of the problematic semantic restrictions described in
this paper. Perhaps with some careful changes made to
accommodate the requirements of parallel high-performance
language implementors, it would become more useful as a
portable compilation target for these languages. One
possible approach is to introduce a third mode of operation
in MPI-RMA to complement active mode and passive mode
that discards the current problematic semantic restrictions
and provides a high-performance RMA interface similar to
the one in GASNet (Bonachea, 2002) or ARMCI
(Nieplocha and Carpenter, 1999). Our experience with these
layers indicates such an interface could be implemented
efficiently on a wide range of communication networks and
would successfully expose the high-performance
capabilities of the network hardware without crippling the
client with unreasonable semantic restrictions. However,
any remaining portability concerns could easily be
addressed by making the new interface an optional
component that need not be provided by all MPI
implementations. We believe the inclusion of such an option
within a future revision of the MPI specification would
largely solve the portability issues in implementing GAS
languages and encourage communication innovation by
allowing network vendors to more usefully expose the
one-sided RMA capabilities of their hardware.

REFERENCES

Bailey, D., Barszc, E., Barton, J., Browning, D., Carter, R.,
Dagum, L., Fatoohi, R., Fineberg, S., Frederickson, P.,
Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.
and Weeratunga, S. (1994) ‘The NAS parallel
benchmarks’, Tech Report RNR-94-007, RNR, March,
http: //www.nas.nasa.gov/Software/NPB/.

Bell, C. and Bonachea, D. (2002) ‘A new DMA registration
strategy for pinning-based high performance networks’,
Workshop Communication Architecture for Clusters (CAC03)
of IPDPS’03, Nice, France.

Bell, C., Bonachea, D., Cote, Y. and Duell, J. (2003)
‘An evaluation of current high-performance networks’, in
Hargrove, P., Husbands, P., Iancu, C., Welcome, M. and
Yelick, K. (Eds.): IPDPS 2003, http://upc.lbl.gov.

PROBLEMS WITH USING MPI 1.1 AND 2.0 AS COMPILATION TARGETS FOR PARALLEL LANGUAGE IMPLEMENTATIONS 99

Bonachea, D. (2002) ‘GASNet specification, v1.1’, Tech
Report UCB/CSD-02-1207, October, UC Berkeley,
http://sunsite.berkeley.edu/TechRepPages/CSD-02-1207.

Booth, S. and Mourao, F.E. (2000) ‘Single sided MPI
implementations for SUN MPI’, Proceedings of the
ACM/IEEE Supercomputing Conference.

Chen, W., Bonachea, D., Duell, J., Husbands, P., Iancu, C. and
Yelick, K. (2003) ‘A performance analysis of the Berkeley
UPC compiler’, 17th Annual International Conference on
Supercomputing (ICS), http://upc.lbl.gov.

Dobbelaere, J. and Chrisochoides, N. (2001) One-sided
communication over MPI-1, http://citeseer.nj.nec.com/
dobbelaere01onesided.html.

El-Ghazawi, T.A., Carlson, W.W. and Draper, J.M. (2003) UPC
Specification, v1.1, March, http://upc.gwu.edu.

Gropp, W.D. (2001) ‘Learning from the success of MPI’,
International Conference on High Performance Computing,
HiPC 2001, August.

Hilfinger, P., Bonachea, D., Gay, D., Graham, S., Liblit, B.,
Pike, G. and Yelick, K. (2001) ‘Titanium language reference
manual’, Tech Report UCB/CSD-01-1163, November, UC
Berkeley.

Krishnamurthy, A. and Yelick, K. (1996) ‘Analyses and
optimisations for shared address space programs’, Journal of
Parallel and Distributed Computing, Vol. 38, No. 2, pp.130–144.

Liblit, B. and Aiken, A. (2000) ‘Type systems for distributed data
structures’, Conference Record of POPL ’00: The 27th ACM
SIGPLANSIGACT Symposium on Principles of Programming
Languages, January 19–21, Boston, Massachusetts.

Liblit, B., Aiken, A. and Yelick, K. (2003) ‘Type systems for
distributed data sharing’, SAS ’03: The 10th International
Static Analysis Symposium, Lecture Notes in Computer
Science, San Diego, California, June 11–13, Springer-Verlag.

Luecke, G.R. and Hu, W. (2002) ‘Evaluating the performance of
MPI-2 one-sided routines on a Cray SV1’, Technical Report,
December 21.

Luecke, G.R., Spanoyannis, S. and Kraeva, M. (2002) ‘The
performance and scalability of SHMEM and MPI-2 one-sided
routines on a SGI Origin 2000 and a Cray T3E-600’, Journal
of Performance Evaluation & Modeling of Computer Systems
(PEMCS), December.

Matthey, T. and Hansen, J. (2000) ‘Evaluation of MPI’s
one-sided communication mechanism for short-range
molecular dynamics on the Origin 2000’, Proceedings of
PARA2000, The Fifth International Workshop on Applied
Parallel Computing.

Midkiff, S.P. and Padua, D.A. (1990) ‘Issues in the optimization of
parallel programs’, Proceedings of the 1990 International
Conference on Parallel Processing.

MPI Forum (1995) ‘MPI: a message-passing interface
standard’, v1.1. Technical Report, University of Tennessee,
Knoxville, June 12, http://www. mpi-forum.org/docs/mpi-11.ps.

MPI Forum (1998) ‘MPI–2: a message-passing interface standard’,
International Journal of High Performance Computing
Applications, Vol. 12, pp.1–299, http://www.mpi-forum.org/
docs/mpi-20.ps.

Nieplocha, J. and Carpenter, B. (1999) ‘ARMCI: a portable remote
memory copy library for distributed array libraries and
compiler run-time systems’, Proceedings of the 3rd Workshop
on Runtime Systems for Parallel Programming (RTSPP) of
International Parallel Processing Symposium IPPS/SPDP ‘99,
San Juan, Puerto Rico, April.

Numrich, R. and Reid, J. (1998) ‘Co-array Fortran for parallel
programming’, ACM Fortran Forum, Vol. 17, No. 2, pp.1–31.

Shasha, D. and Snir, M. (1988) ‘Efficient and correct execution of
parallel programs that share memory’, ACM Transactions on
Programming Languages and Systems, April, Vol. 10, No. 2,
pp.282–312.

Smith, A.G. (1995) ‘Using MPI 2 one sided communications on
Cray T3D’, Tech Report, EPCC, The University of Edinburgh,
December, http://citeseer.nj.nec.com/88176.html.

Traff, J., Ritzdorf, H. and Hempel, R. (2000) ‘The implementation
of MPI–2 one-sided communication for the NEC SX’,
Proceedings of the ACM/IEEE Supercomputing Conference.

Yelick, K., Semenzato, L. and Pike G. et al. (1998) ‘Titanium:
A high performance Java dialect’, ACM 1998 Workshop on
Java for High-Performance Network Computing, February,
http://titanium.cs.berkeley.edu.

IBM Corporation (2003) LAPI Programming Guide, IBM
Technical Report SA22-7936-00.

WEBSITES

AMMPI home page, http://www.cs.berkeley.edu/~bonachea/ammpi.
Compaq UPC compiler, http://www.tru64unix.compaq.com/upc/.
Elan Programmer’s Manual, http://www.quadrics.com.
GM Reference Manual, Myricom, Inc., http://www.myri.com/

scs/GM/doc/refman.pdf.
Infiniband Trade Association Home Page, http://

www.infinibandta.org.

