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Abstract: MPI support is nearly ubiquitous on high-performance systems today and is 
generally highly tuned for performance. It would thus seem to offer a convenient ‘portable 
network assembly language’ to developers of parallel programming languages who wish to 
target different network architectures. Unfortunately, neither the traditional MPI 1.1 API 
nor the newer MPI 2.0 extensions for one-sided communication provide an adequate 
compilation target for global address space languages, and this is likely to be the case for 
many other parallel languages as well. Simulating one-sided communication under the MPI 
1.1 API is too expensive, while the MPI 2.0 one-sided API imposes a number of significant 
restrictions on memory access patterns that would need to be incorporated at the language 
level, as a compiler cannot effectively hide them given current conflict and alias detection 
algorithms. 

Keywords: MPI one-sided; parallel languages; global address space; RMA; one-sided 
communication. 
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1 INTRODUCTION 

Global address-space (GAS) languages, such as Unified 
Parallel C (UPC) (El-Ghazawi et al., 2003), Titanium 
(Yelick et al., 1998), and Co-Array Fortran (Numrich and 
Reid, 1998), are an emerging class of languages that seek to 
give parallel application developers an alternative to the 
traditional message-passing model. By providing the 
illusion of a shared address space to a distributed program 

(regardless of the underlying hardware), along with 
programmatic awareness and control of memory layout 
across processors, they promise to combine the performance 
of message-passing systems with the convenience of shared 
memory programming. 

As researchers involved in developing portable 
implementations of two of these languages (Berkeley UPC 
(Chen et al., 2003) and Titanium (Yelick et al., 1998)), we 
have invested (and continue to invest) substantial amounts 
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of effort into porting our software to new network 
architectures and programming interfaces. 

Many other scientists and hardware vendors, upon 
learning this, have asked us why we do not simply write our 
language on top of MPI, to avoid this porting effort. As the 
most common parallel programming interface on 
contemporary supercomputing platforms, MPI has typically 
been highly tuned for performance. It has also been 
described by some of its developers as providing an 
“assembly language for parallel processing” (Gropp, 2001). 
Presumably, then, it ought to provide an efficient, portable 
target for parallel language compilers. 

Unfortunately for GAS language implementors, this is not 
the case. This paper explains why both the traditional MPI 
1.1 two-sided interface (MPI Forum, 1995) and the newer 
MPI 2.0 (MPI Forum, 1998) one-sided interface  
(hereafter referred to as MPI-RMA) are inadequate 
compilation targets for global address space languages.  
The two-sided communication model inherent in MPI 1.1 
cannot support the one-sided communication requirements 
of GAS languages as efficiently as lower-level APIs.  
The newer one-sided MPI-RMA presents an interface that, 
while undoubtedly of great use to many application 
developers, presents a number of restrictions on memory 
access patterns that would require conflict and alias analysis 
that is beyond the reach of current compilers. The 
difficulties presented by MPI-RMA as a compilation target 
are not specific to GAS languages, and are likely to present 
an obstacle to any parallel programming language, which 
does not expose application developers to MPI-RMA’s 
numerous restrictions on memory usage patterns. 

1.1 Global address space languages and their 
communication requirements 

The common characteristic of all GAS languages is that 
they provide programmers with a shared memory 
abstraction between all processors in an application 
(regardless of whether shared memory is actually supported 
natively in hardware), and that the programmer is given 
both knowledge and control of the layout of shared memory 
across processors. The shared memory model of GAS 
languages provides the programmer with a familiar interface 
in which any piece of shared memory can be accessed by 
any processor in an application via the normal data access 
mechanisms built into the language, i.e., by accessing an 
element of a shared array, dereferencing a pointer to shared 
data, or simply referencing the name of a shared variable. 
Of course, on many platforms, the access time for touching 
shared memory will depend heavily on the location of the 
data, and so GAS languages make the layout of shared 
memory explicit to the programmer, who is encouraged to 
write code that takes advantage of locality in order to 
achieve higher performance. 

This combination of a globally shared address space  
with locality information allows an incremental 
development model, in which serial or shared-memory 
codes can initially be naїvely ported to a distributed 

environment, profiled to isolate bottlenecks, and then 
gradually tuned to optimise performance. The compiler for a 
GAS language may also be able to hide some or all of the 
latency cost of remote accesses by scheduling unrelated 
computation (or more communication) during the interim 
imposed by network traffic. 

GAS languages have some differences in how they allow 
shared memory to be allocated, and/or how they distinguish 
shared and non-shared data. UPC and Co-Array Fortran 
require the programmer to explicitly declare data objects to 
be either shared or private (usage varies by application, but 
typically the major data structures reside in shared space).  
In Titanium, by contrast, all heap and static data can 
potentially be accessed remotely (Hilfinger et al., 2001), 
although a sophisticated compiler escape analysis  
(Liblit et al., 2003) can detect which objects are potentially 
‘shared’ (interesting applications typically have about  
50–100% of the total bytes allocated judged to be  
shared by the analysis). Dynamic allocation of shared 
memory is required to be collective in Co-Array Fortran, 
while it can also be achieved in UPC and Titanium  
through purely local, non-collective operations. UPC 
additionally allows shared objects to be allocated on remote 
processes using a non-collective operation 
(upc_global_alloc()) with no explicit cooperation from the 
process allocating the data. 

Remote data access in GAS languages naturally leads  
to a one-sided communication pattern. In part, this is a 
matter of providing a familiar and convenient interface  
to programmers who are used to a shared-memory 
programming model, but there is also an important class of 
dynamic and irregular applications that we wish to  
support, which have communication patterns that are  
data-dependent and therefore statically unpredictable, and 
hence are most naturally expressed using one-sided 
operations. 

In GAS languages, the ability to predict data access 
patterns is further limited by the fact that all three of these 
GAS languages allow accesses to shared objects with 
affinity to the calling thread via ‘local’ pointers, and these 
accesses are indistinguishable from accesses to purely local 
(private) objects, i.e., the languages’ semantics provide no 
explicit information about whether the memory being 
accessed is potentially shared or not. In each language, 
accesses to shared data that reside locally using ‘local’ 
pointers generally provide significantly better performance 
than access through ‘global’ pointers. In fact, the 
performance impact is so dramatic that most UPC 
programmers specifically optimise for this case, and the 
Titanium compiler includes a specialised analysis (Liblit 
and Aiken, 2000) to automatically infer when such a 
transformation is provably legal. 

A result of these data dependent access patterns and 
shared/local aliasing is that compilers for GAS languages 
generally have no way to know a priori which  
specific shared memory locations will be accessed remotely, 
or when they will be accessed. They thus have no way to 
statically check, for instance, if data accesses from  
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different processors will conflict at runtime. This is exactly 
analogous to the problem of static alias analysis in 
sequential, pointer-based languages, but is complicated by 
the existence of multiple independent threads of  
control – for in-depth discussion, see Krishnamurthy and 
Yelick (1996), Shasha and Snir (1988), and Midkiff and 
Padua (1990). 

Given these properties of GAS languages, they present the 
following requirements for any underlying network 
interface: 

• The ability to perform (or at least simulate) one-sided 
communication (i.e., where only the initiator is 
explicitly involved and the communication proceeds 
independent of any action taken by the remote threads). 
While one-sided communication can be simulated by 
the language runtime using an underlying two-sided 
communication API, neither the user nor the compiler 
may be exposed to any aspect of implementing message 
receipts (or other bookkeeping) on the remote side of an 
access. 

• Good latency performance for small remote accesses. 
Small messages are commonly used in initial 
implementations of many GAS programs, and may be 
unavoidable even in well-tuned applications in certain 
problem domains. The performance of applications 
written in global address space languages is thus often 
very sensitive to network round-trip latency. 

• The ability for the compiler to hide network latencies 
by overlapping communication with computation 
and/or other communication, through the use of  
non-blocking remote accesses. This requires that the 
software overhead involved in network traffic be less 
than the latency of messages (and/or the gap between 
how often the network interface will accept overlapping 
messages), as overlapping is impossible if the host CPU 
is busy throughout a messaging operation. 

• Support for arbitrary access patterns to shared data. 
This includes allowing concurrent remote accesses to 
the same regions of shared memory from different 
remote processors, as well as support for allowing 
shared data to be accessed at arbitrary points in the 
program via local pointers. 

• Support for using or implementing collective 
communication and synchronisation operations.  
The rest of this paper shows that neither the MPI 1.1 
nor the newer MPI-RMA interface supports all of these 
characteristics adequately. 

2 MPI 1.1 AS A COMPILATION TARGET FOR GAS 
LANGUAGES 

The most widely available and portable software interface 
for programming distributed memory machines today is that 
provided by the MPI 1.1 specification, which has been 
implemented and carefully tuned on most contemporary 
high-performance parallel systems. As such, it presents a 
very tempting compilation target for GAS languages, which 

could potentially run on all such systems by simply 
providing a single networking layer that runs on top of MPI. 

Communication under MPI 1.1 is strictly two-sided: all 
traffic takes the form of message sends, which require 
matching receive operations to be explicitly issued on the 
receiving side. While this does not neatly match  
the GAS model of one-sided communication, it does not 
disqualify MPI 1.1 from use by GAS languages.  
Our group has implemented an MPI layer (home page. 
http://www.cs.berkeley.edu/~bonachea/ammpi), which 
transparently handles message receipt in the runtime by 
periodically polling for new message receipts, thus 
providing the illusion of a one-sided interface to both the 
user and the compiler. We have used this MPI layer on a 
number of platforms, including the IBM SP, the Cray T3E, 
the SGI Origin 2000, Linux, and Compaq AlphaServer 
systems using Quadrics network hardware, and Linux 
clusters using Myrinet, Dolphin/SCI, and Ethernet 
networks. This portable MPI layer has proven to be an 
invaluable prototyping tool for quickly deploying our 
systems on new architectures. 

However, as Figure 1 shows, use of MPI 1.1 
implementations does not come without a cost. This 
microbenchmark data gathered by our group (and described 
in detail in Bell et al. (2003)) demonstrate that the latency 
and/or software overhead associated with small message 
sends in MPI is typically much higher than when using 
native network APIs. This difference is most pronounced on 
the lowest-latency systems, which are the most likely targets 
for GAS applications, with more than a factor of five 
differences between MPI performance and that of some 
native machine APIs. 

 
Figure 1   Send and receive software overheads (os and or) 
superimposed on the one-way end-to-end latency (EEL) for 8-byte 
messages on various high-performance systems. For MPI on the 
T3E and Myrinet, the sum of the overheads is greater than EEL, 
and so os = S + V and or = R + V. For the other configurations 
os = S and or = R 

It should be noted that the MPI data in Figure 1  
were gathered using non-blocking send and receive  
calls, and that these calls tend to incur higher overhead than 
their blocking counterparts in most MPI implementations 
(Bell et al., 2003). It is unclear whether these non-blocking 
overheads are unavoidable, or are simply the result of less 
tuning by vendors: most MPI applications use blocking 
functions, and vendor benchmarks generally report only 
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numbers for blocking send/receive calls. Use of at least 
some non-blocking calls is necessary when simulating  
one-sided communication with a two-sided API, in order to 
prevent deadlock (which could otherwise be caused trivially 
by two processors sending a message to each other at the 
same time). Non-blocking calls are also desirable in a GAS 
language context, as compilers may be able to overlap 
computation (and/or other network calls) within the interval 
where the CPU would otherwise be blocked. 

To more easily support porting our UPC and Titanium 
implementations, we use a portable, high-performance 
networking library called GASNet (Bonachea, 2002).  
This is the layer, which provides the one-sided messaging 
abstraction over MPI 1.1. Besides MPI 1.1, GASNet  
has also been implemented directly over the native  
APIs of a number of high-performance networks  
(the IBM SP’s LAPI, Myrinet's GM, Quadrics’ elan, and 
Infiniband). UPC and Titanium applications can switch the 
underlying network used with a simple recompilation, and 
this gives us the opportunity to directly compare the 
performance of a single application run using MPI 1.1 for 
communication with its timing when run over a lower-level 
network API. Figures 2, 3 and 5 show the difference in 
performance between a set of UPC applications running on 
an Compaq AlphaServer system with a Quadrics 
interconnect: a naively-written version and a  
bulk-synchronous version of the NAS Parallel Benchmarks 
(Bailey et al., 1994) Conjugate Gradient, and a  
bulk-synchronous implementation of the NAS Multigrid 
benchmark. Figures 4 and 6 show the same bulk CG and 
MG codes running on an x86-Linux Myrinet cluster. 
Finally, Figure 7 shows the performance of the MG 
benchmark on an IBM SP Power3. The applications were 
compiled with the Berkeley UPC Compiler v1.0beta  
(Chen et al., 2003) to use either MPI-1.1 or the lower-level 
vendor-specific networking layer for communication. For 
comparison purposes, on the Compaq system we also show 
the performance for the same applications when compiled 
with the 2.1-003 version of the Compaq UPC compiler 
(http://www.tru64unix.compaq.com/upc/), which compiles 
executables to use the vendor-specific elan API (data for 
Compaq UPC are omitted for higher numbers of nodes due 
to a recently discovered performance bug that is still 
pending). In all cases, the network and system hardware 
being used is identical – the only difference is the runtime 
system and communication software in use. 

 
Figure 2   Performance for a naїvely (fine-grained) UPC 
implementation of NAS conjugate gradient using different network 
APIs/compilers on a Compaq AlphaServer 

 
Figure 3   Performance for a bulk-synchronous UPC 
implementation of NAS Conjugate Gradient using different 
network APIs/compilers on a Compaq AlphaServer 

 
Figure 4   Performance for a bulk-synchronous UPC 
implementation of NAS conjugate gradient using different network 
APIs with the Berkeley UPC compiler over Myrinet/GM 

 
Figure 5   Performance for a bulk-synchronous UPC 
implementation of NAS multigrid using different networks 
APIs/compilers on a Compaq AlphaServer 

 
Figure 6   Performance for a bulk-synchronous UPC 
implementation of NAS multigrid using different network APIs with 
the Berkeley UPC compiler over Myrinet/GM 
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Figure 7   Performance for a bulk-synchronous UPC 
implementation of NAS multigrid using different network APIs with 
the Berkeley UPC compiler on an IBM SP 

The results show that the MPI 1.1-based GASNet layer is 
significantly outperformed by those based directly over  
one-sided networking APIs. The communication costs of the 
bulk-synchronous CG code are dominated by bulk put 
operations (average 56KB each) and some small (8 byte) 
gets, whereas the MG code is dominated by bulk get 
operations (average 100KB each) and some small (8 byte) 
gets. For the two bulk-synchronous benchmarks, the 
performance gap is less a function of any inherent 
difference between the MPI bandwidth and that of the 
lower-level API (the two tend to be similar on each system), 
than of the cost of providing the illusion of one-sided 
communication under MPI 1.1. 

Currently, our GASNet-MPI implementation works by 
having each host post a set of non-blocking receive calls in 
advance, so that a buffer is generally immediately available 
for any incoming message. This allows a remote processor 
to complete a message send before the target processor may 
even be aware that the message has arrived. This buffering 
strategy requires that the message be copied twice (once on 
the source node, to add a header specifying the destination 
address, and once at the target node, to move the data from 
the buffer to the final destination). 

The GASNet-MPI implementation could probably provide 
better performance for large messages if it used the initial 
receive buffer to inform the target CPU to set up a receive 
call that placed the data directly into the destination 
memory, thus avoiding buffering. However, this would still 
be inherently slower than the elan-based direct RDMA 
version: the transaction would incur an additional 
rendezvous (in the form of a set of MPI messages) to set up 
the direct receive call (and likely an additional network 
round trip as MPI did its own internal rendezvous), followed 
by the direct RMA transfer, and then a final MPI message 
from the destination processor informing the initiator that 
the message had completed (MPI does not provide built-in 
notification of remote completion, but it is required for GAS 
language semantics, which sometimes need to guarantee 
target completion for remote writes). The transaction would 
also need to wait initially for the remote processor to poll 
the network to see the initial setup message. For messages 
of a sufficiently large size, however, these costs ought to be 
amortised to the point where the MPI layer’s peak  
bandwidth performance might asymptotically approach that 

of the elan layer (when the remote node is well attentive to 
the network). It unclear what the crossover message size 
would be for this sort of algorithm, however, and it would 
need to be tuned for each different type of network  
(and possibly on a per-machine basis), thus lessening the 
portability benefit of using MPI. 

The performance of the naively-written CG benchmark 
(which uses an average message size of only 8 bytes) is less 
ambiguous. For applications that use small messages, elan 
provides a significant speedup, allowing the application to 
run more than four times faster. Clearly, the communication 
performance obtained by directly targeting the native 
network API is more suitable than a solution layered on 
MPI for supporting an incremental programming model for 
parallel applications and for inherently fine-grained 
applications 

It is unclear if MPI 1.1 will ever be able to provide GAS 
languages with the same performance as native network 
APIs for small- and medium-sized one-sided messages. The 
popularity of MPI has meant that vendors are willing to 
expend considerable effort tuning their implementations, 
and certain trends are promising, such as the offloading of 
some of MPI’s message-passing logic onto dedicated 
network co-processors. Although such co-processors are not 
likely to improve end-to-end message latency, they might 
lower the host CPU’s software overheads to levels 
comparable to that of lower-level network APIs, which 
might in turn allow a UPC implementation to hide the 
latency by performing unrelated work in the interim. 

3 MPI-RMA AS A COMPILATION TARGET FOR GAS 
LANGUAGES 

The most recent version of the MPI specification (MPI 2.0) 
extends MPI 1.1 with a number of new features. In 
particular, Chapter 6 of the specification (MPI Forum, 1998) 
adds support for ‘one-sided communications’ (also called 
‘Remote Memory Access (RMA)’). This extension 
supplements the traditional two-sided MPI communication 
model with a one-sided interface that can take advantage of 
the capabilities of RMA network hardware, in the hope of 
lowering latency and software overhead costs for 
applications written using a shared-memory-like paradigm. 

On the surface, MPI-RMA thus seems like a natural fit for 
GAS languages. However, the rest of this document 
explains why MPI-RMA unfortunately does not meet the 
requirements laid out in Section 1.1 for implementing global 
address space languages. Essentially, the strong restrictions 
placed on memory access patterns by the API and the 
weakness of its semantic guarantees make it unusable for 
GAS language implementation purposes. It is our  
sincere hope that the observations presented here regarding 
the problematic semantic aspects of the interface can serve 
as a guide during future revisions of the MPI-RMA 
specification – in Section 5 we provide some initial ideas for 
improving the semantics to better meet the needs of the 
GAS language community. 
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It is important to note that we are interested in writing 
portable code, and are therefore not concerned with the 
behaviour of particular implementations of MPI-RMA 
(which may happen to relax some of these constraints, 
and/or have well-defined semantics for conditions the 
specification labels as erroneous), but rather with the 
guarantees provided by any MPI-RMA implementation 
(including one which aggressively exploits the intentionally 
under-specified aspects of the API). 

3.1 Basics of the MPI-RMA API 

The semantics of MPI-RMA are fairly complex. Here we 
present only an overview of its usage, then proceed to  
discuss those aspects of the API that affect GAS language 
implementations. The reader may consult the MPI 2.0 
specification (MPI Forum, 1998) for full details – the 
subsequent discussion includes references to the sections in 
the specification relevant to each major semantic issue. 

The MPI-RMA API revolves around the use of abstract 
objects called ‘windows’, which intuitively specify regions 
of a process’s memory that have been made available for 
remote operations by other MPI processes. Windows are 
created using a collective operation (MPI_Win_create) 
called by all processes within a ‘communicator’ (a group of 
processes in MPI terminology), which specifies a base 
address and length (which may be different on each 
process), and is permitted to span very large areas (e.g., the 
entire virtual address space). All three one-sided RMA 
operations (MPI_Put, MPI_Get, MPI_Accumulate) take a 
reference to such a window, an offset into the window, and 
a rank integer to indicate which process is the remote target. 
All one-sided operations are implicitly non-blocking and 
must be synchronised using one of the synchronisation 
methods described below. 

3.2 Active target vs. passive target 

There are 2 primary ‘modes’ in which the one-sided API 
can be used, named ‘active target’ and ‘passive target’. The 
primary semantic distinction is whether or not cooperation 
is required by the remote node in order to complete a remote 
memory access. All RMA operations on a window must 
take place within a synchronisation ‘epoch’ (with a start and 
end point defined by explicit synchronisation calls), and 
operations are not guaranteed to be complete until the end of 
such an epoch. The active and passive target modes differ in 
which process makes these synchronisation calls. 

Active target operation requires synchronisation functions 
to be called on both the origin process (the one making the 
RMA get/put accesses) and the target process (the one 
hosting the memory in the referenced window). The origin 
process calls MPI_Win_start/MPI_Win_complete to 
begin/end the synchronisation epoch, and the target process 
must cooperate by calling MPI_Win_post/MPI_Win_wait to 
acknowledge the beginning/end of the epoch (there is also a 
collective MPI_Win_fence operation which can be 
substituted for one or more of these calls). In any case, this 
required cooperation effectively destroys the possibility of 

implementing the truly one-sided operations that we wish to 
provide in GAS languages using active-target mode RMA. 

Passive-target operation provides more lenient 
synchronisation. In passive-target operation, only the 
originating process calls synchronisation functions 
(MPI_Win_lock/MPI_Win_unlock) to start/end the access 
epoch. As with active target, all RMA accesses must take 
place within such an epoch and are not guaranteed to 
complete until the MPI_Win_unlock call completes. There 
are two forms of MPI_Win_lock – shared and exclusive. 
MPI_Win_lock (exclusive) enforces mutual exclusion on 
the window and the RMA operations performed within the 
epoch – i.e., it conceptually blocks until it can start an 
exclusive access epoch to the window, and no other 
processes may enter a shared or exclusive access epoch for 
that window until the process with exclusive access unlocks 
(the semantics are actually slightly weaker than this, but the 
intuition is correct). MPI_Win_lock (shared) allows other 
concurrent shared epochs from other processes. The 
specification recommends the use of exclusive epochs  
when executing any local or RMA update operations  
on the memory encompassed by the window to ensure  
well-defined semantics (Section 6.4.3, p.131). 

3.3 Restrictions on the use of passive-target RMA 

The interface described thus far for passive-target RMA 
seems reasonable; however unfortunately there are a large 
number of restrictions on how it may be legally used. Here 
are some of the most important restrictions: 

1 Window creation is a collective operation – all 
processes that intend to use a window for RMA 
(including all intended origin and target processes) 
must participate in the creation of that window  
(Section 6.2.1, p.110). 

2 Implementors may restrict the use of passive-target 
RMA operations to only work on memory allocated 
using the ‘special’ memory allocator MPI_Alloc_mem 
(Section 6.4.3, p.131). This prevents the use of  
passive-target RMA on static data and forces all 
globally visible objects to be allocated using this 
‘special’ allocation call (no guarantees are made about 
how much memory can be allocated using this call, and 
some implementations may restrict it to a small number 
of pinnable pages). 

3 It is erroneous to have concurrent conflicting RMA 
get/put (or local load/store) accesses to the same 
memory location (Section 6.3, p.113). 

4 The memory spanned by a window may not 
concurrently be updated by a remote RMA operation 
and a local store operation (i.e., within a single access 
epoch), even if these two updates access different  
(i.e., non-overlapping) locations in the window  
(Section 6.3, p.113). 

5 Multiple windows are permitted to include overlapping 
memory regions; however, it is erroneous to use 
concurrent operations to distinct overlapping windows 
(Section 6.2.1, p.111). 
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6 RMA operations on a given window are only permitted 
to access the memory of single process during an access 
epoch (Section 6.4.3, p.131). 

3.4 Implications of the MPI 2.0 semantics 

We now investigate the implications of the above 
restrictions on our effort to implement remote accesses in a 
GAS language. 

Restriction #1 implies that a GAS language 
implementation cannot use a separate window per shared 
object, because that would require a collective operation for 
the allocation of shared objects, and shared object allocation 
in GAS languages is often required to be a purely  
non-collective, local operation. In order to support  
non-collective allocation, many or all shared objects would 
need to be coalesced within a single window. But while 
arbitrarily large regions (like the entire virtual address 
space) can be mapped within a single window, this approach 
would severely limit concurrency due to restriction #4.  
The same shared object can be mapped into several 
windows, but due to restriction #5 this approach is probably 
not useful. 

Restriction #2 implies that all potentially shared objects 
must be allocated using MPI_Alloc_mem(). This restriction 
alone may be enough to make MPI-RMA unsuitable for 
many GAS languages, unless MPI implementations permit 
large amounts of memory to be allocated using this function 
(recall that a significant fraction of all data allocated by 
GAS programs is typically accessed remotely at some point 
in program execution). 

Restriction #6 means that an implementation would 
probably need at least one separate window for each target 
process, as otherwise RMA operations from one process to 
different target processes would be unnecessarily serialised. 
This may present scalability problems for applications using 
a large number of nodes, depending on how windows are 
implemented. 

The underlying concept addressed by restriction #3 is 
fundamental to shared-memory programming and is nothing 
new. GAS languages generally specify that conflicting 
accesses to a single memory location will store an undefined 
result to the location (for conflicting writes) or return an 
undefined value (for the read in a read-write conflict). 
However, the MPI restriction is unfortunately much  
stronger – it says such conflicting accesses are erroneous, 
which implies that any resulting behaviour after such a 
violation is possible (e.g., the MPI implementation would be 
within its rights to consider this a fatal error). Unfortunately, 
it is not feasible to statically detect all such conflicting 
accesses (from different processes) in user-provided code 
without application-specific information (or perhaps even 
with it). Using a great deal of compiler analysis, a 
conservative superset of the conflicting accesses could be 
generated, but in a weakly typed language such as UPC, this 
is likely to include most of the accesses. It is impossible to 
detect such conflicts at runtime without global 
communication. In truth, the compiler analysis required 

simply to decide that it is safe for a single process to include 
any other RMA accesses within the same epoch as an RMA 
put or accumulate is non-trivial, although this problem is an 
issue of sequential alias analysis that is considerably better 
understood. MPI_Win_lock (exclusive) can be used to 
conservatively prevent concurrent conflicting accesses from 
distinct processes (by wrapping every RMA Put within its 
own exclusive epoch). However, because this locks the 
entire window and serialises all access epochs to that 
window, this would drastically reduce the concurrency of 
accesses to distinct (i.e., non-conflicting) memory locations 
that happen to reside within the same window (which would  
be very bad if the entire shared memory resided in a single 
window). This also effectively nullifies the ability to 
perform non-blocking puts. Another option that might help 
is to replace all RMA puts with RMA accumulate 
operations where the reduction operation is 
‘MPI_REPLACE’ – this has the same semantics as an RMA 
put, but conflicting accumulate operations have  
well-defined semantics (they behave as if the conflicting 
accumulates happened in some serial order) – however, 
conflicting RMA gets and local loads to the same data 
would still be erroneous within the access epoch; hence, an 
untenable amount of conflict analysis would still be 
required. 

Restriction #4 is particularly onerous for GAS language 
implementations. It prevents the local process from making 
any changes to memory that lies within a window during a 
remote access epoch to that window, even to different  
(i.e., non-conflicting) memory locations. This implies some 
form of synchronisation between the origin and target 
process when accessing these locations, which implies truly 
one-sided communication is not possible. The MPI spec 
recommends the local process perform all updates to the 
local memory that falls within a window inside an exclusive 
epoch on that window. Because every access to a  
language-level local pointer in UPC and Titanium is 
potentially an access to a shared memory location  
residing locally, in the absence of other information every 
local store operation would need to be wrapped within an 
exclusive access epoch (possibly prefixed with a check of 
whether the accessed location resides in a window). 
Similarly, every local load that could potentially conflict 
with a remote RMA put or accumulate to that location 
would need to be wrapped within a shared access epoch. 
The performance implications of adding such overheads to 
what should be simple local memory load/store instructions 
are staggering. Note that it is not sufficient for the local 
process to simply maintain a permanent epoch on its own 
window, because this would prevent remote RMA 
operations on that window from making progress. Finally, 
restriction #4 also implies that the entire virtual address 
space of a process cannot be included in a window, because 
this would include private memory that is constantly 
changing, such as the program stack. 

The combination of these effects makes the MPI-RMA 
effectively unusable by GAS language implementations: it 
is extremely unlikely that a layer could be written on top of 
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MPI-RMA that would provide an efficient implementation 
of GAS language communication semantics. Given that 
adherence to some of the MPI-RMA restrictions involves 
such difficult compiler problems as conflict and alias 
analysis, it likely that many other parallel languages would 
also find MPI-RMA a difficult interface to target. It seems 
likely that only languages that effectively expose most of 
MPI-RMA’s restrictions and programming disciplines to the 
user at the language level would find MPI-RMA a useful 
compilation target – however, users are unlikely to tolerate 
such rigid usability restrictions in any parallel language that 
exposes a shared-memory-like paradigm. 

4 RELATED WORK 

A number of papers on MPI-RMA performance are 
available. Luecke and Hu (2002) evaluated MPI-RMA 
performance on the Cray SV1, and Luecke et al. (2002) 
compared MPI-RMA performance to that of the  
vendor-supplied SHMEM libraries on the Cray T3E and 
SGI Origin 2000 architectures, finding that the SHMEM 
interface significantly outperformed the MPI-RMA 
implementation available at the time. Traff et al. (2000) 
examined the performance of MPI-RMA on NEC SX-5 
system, and found its data transfer performance to be similar 
to that of the MPI 1.0 two-sided API. Matthey and  
Hansen (2000) report that a production molecular dynamics 
simulation code ran 10–70% faster on an Origin 2000 
system after being converted from MPI-1 to MPI-RMA. 

Our strategy of implementing one-sided, asynchronous 
messaging on top of MPI 1.1 is not a new one. Dobbelaere 
and Chrisochoides (2001) report implementing a custom 
one-sided communication layer over MPI 1, and Booth and 
Mourao (2000) discuss implementing the MPI-RMA API 
itself over MPI 1.1. 

It appears from Smith (1995) that the MPI-RMA  
pioneers decided early on to require a separate set of 
allocation functions to allocate data that can be accessed by 
passive-target one-sided operations. For an alternative 
approach that allows the entire virtual memory space to be 
accessed by RDMA (even for the tricky case of  
pinning-based networks such as Myrinet), see the 
description of lazy registration/pinning methods in Bell and 
Bonachea (2002). 

Gropp (2001) reviews some of the reasons for MPI’s 
enduring success in the parallel computing community. 

5 CONCLUSION 

We have shown that despite having certain desirable 
characteristics, neither the MPI 1.1 interface nor the more 
recent MPI 2.0 RMA extensions make an attractive 
compilation target for Global Address Space languages. 
MPI 1.1, despite its wide availability and often highly  
tuned performance, imposes too many overheads with its 
two-sided messaging paradigm for GAS languages, 

particularly those in which small message performance is 
important. The newer MPI-RMA API imposes too many 
semantic restrictions to be a useful portable compilation 
target, at least for parallel languages that allow aliasing, data 
conflicts, and/or the illusion of a single, arbitrarily 
accessible shared address space. 

The fact that MPI-RMA makes a poor compilation target 
for at least certain classes of parallel languages does not 
mean that the API is not useful to application programmers, 
who are capable of globally structuring their application to 
abide by the specification’s semantic restrictions. The 
purpose of this paper, in short, is not to malign MPI-RMA, 
but rather to explain why it is not suitable as a portable 
communication layer for implementing parallel languages 
such as Titanium, UPC, and Co-Array Fortran. 

We sincerely hope that the MPI-RMA interface can be 
revised in future versions of the MPI specification to relax 
some of the problematic semantic restrictions described in 
this paper. Perhaps with some careful changes made to 
accommodate the requirements of parallel high-performance 
language implementors, it would become more useful as a 
portable compilation target for these languages. One 
possible approach is to introduce a third mode of operation 
in MPI-RMA to complement active mode and passive mode 
that discards the current problematic semantic restrictions 
and provides a high-performance RMA interface similar to 
the one in GASNet (Bonachea, 2002) or ARMCI 
(Nieplocha and Carpenter, 1999). Our experience with these 
layers indicates such an interface could be implemented 
efficiently on a wide range of communication networks and 
would successfully expose the high-performance 
capabilities of the network hardware without crippling the 
client with unreasonable semantic restrictions. However, 
any remaining portability concerns could easily be 
addressed by making the new interface an optional 
component that need not be provided by all MPI 
implementations. We believe the inclusion of such an option 
within a future revision of the MPI specification would 
largely solve the portability issues in implementing GAS 
languages and encourage communication innovation by 
allowing network vendors to more usefully expose the  
one-sided RMA capabilities of their hardware. 
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