
1

Fast Indexing for Blocked Array Layouts to Reduce
Cache Misses

Evangelia Athanasaki and Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

e-mail: {valia, nkoziris}@cslab.ece.ntua.gr

Abstract— The increasing disparity between memory latency
and processor speed is a critical bottleneck in achieving high
performance. Recently, several studies have been conducted on
blocked data layouts, in conjunction with loop tiling to improve
locality of references. In this paper, we further reduce cache
misses, restructuring the memory layout of multi-dimensional
arrays, so that array elements are stored in a blocked way, exactly
as they are swept by the tiled instruction stream. A straight-
forward way is presented to easily translate multi-dimensional
indexing of arrays into their blocked memory layout using quick
and simple binary-mask operations. Actual experimental results
on three hardware platforms, using 5 different benchmarks
with various array sizes, illustrate that execution time is greatly
improved when combining tiled code with blocked array layouts
and binary, mask-based translation functions for fast indexing.
Finally, simulations verify that our enhanced performance is
due to the considerable reduction of cache misses in all levels
of memory hierarchy, and especially due to their concurrent
minimization, for the same tile size.

keywords: Cache Locality, Loop Tiling, Blocked Array
Layouts, Fast Indexing, Code Optimization.

I. INTRODUCTION

As microprocessors become increasingly fast, memory sys-
tem performance begins to determine overall performance [1],
since a large percentage of execution time is spent on memory
stalls, even with large on-chip caches. Computer architects
have been battling against this memory wall problem [2] by
designing even larger but slightly faster caches.

In order to overcome the disparity between cpu and cache
memory speeds, software techniques that exploit locality of
references for iterative codes are widely used. These tech-
niques can be categorized into control (code) transformations,
data transformations, combination of control and data trans-
formations, and, lately, transformations of the array layouts in
memory (non-linear, hybrid linear and non-linear).

As far as control transformations are considered, they
change loop iteration order and, thereby, data access order.
Loop permutation, loop reversal and loop skewing attempt to
restructure the control flow of the program to improve data
locality. Loop unrolling and software pipelining are exploiting
multiple registers and pipelined datapaths to improve temporal
locality [3]. Such transformations, when used in combination
with software-controlled prefetching [4], [5], [6], [7], help
tolerating memory latency, as long as prefetching happens
soon enough, but not too early so that prefetched data are

evicted prior to their use. Loop fusion and loop distribution can
indirectly improve reuse by enabling control transformations
that were previously not legal [8]. Loop tiling, widely used in
codes that include dense multidimensional arrays, operates on
submatrices (tiles), instead of entire rows or columns of arrays,
so that data loaded into the faster levels of memory hierarchy
are reused. In this context, tile size selection [9], [10] plays a
critical role, since an efficient execution requires elimination
of capacity and interference (both self and cross interference)
cache misses, along with avoiding underutilization of the
cache.

Locality analysis [11] allows compilers to identify and
quantify reuse and locality, and is used to guide the search
for the best sequence of transformations. Unimodular control
transformations, described in the most cited work of Wolf and
Lam [12], and compound transformations of McKinley et al
in [8], attempt to find the best combination of control trans-
formations which, when used with tiling, ensure the correct
computation order, while increasing locality of accesses to
cache memory.

In a data-centric approach [13], array unification maps
multiple arrays into a single array data space, in an interleaved
way, grouping together arrays accessed in successive itera-
tions, to reduce the number of conflict misses. Copying [14]
is a method for reducing the intra-tile and inter-tile interference
in the cache. However, it can not be used for free, as it
incurs instruction overhead and additional cache misses, while
data is copied from arrays to buffers. Padding [15], [16] is a
data alignment technique that involves the insertion of dummy
elements in a data structure for improving cache performance
by eliminating severe conflict misses.

Nevertheless, increasing the locality of references for a
group of arrays may affect the number of cache hits for other
referenced arrays. Combined loop and data transformations
were proposed in [17] and [18]. Cierniak and Li in [17] present
a cache locality optimization algorithm which combines both
loop (control) and linear array layout transformations. Another
unified, systematic method, presented by Kandemir et al in
[19], [20], [21], [18], aims at utilizing spatial reuse in order
to obtain good locality.

The previous approaches assumed linear array layouts.
Programming languages provide with multidimensional arrays
which are finally stored in a linear memory layout, either
column-wise or row-wise (canonical order). However, such

2

linear array memory layouts can produce unfavorable memory
access patterns, that cause interference misses and increase
memory system overhead. Wise et al in [22] and [23] used
quad-tree layouts in combination with level-order, either Ah-
nentafel or Morton, indexing. Quad-tree layouts seem to work
well with recursive algorithms due to their efficient element
indexing. Nevertheless, no locality gain can be obtained when
quad-tree layouts are applied to non-recursive codes. Accord-
ing to Lam et al in [24], quad-tree (recursive) layouts need
not to reach at the finest (element) level, since, if a tile is
small enough to totally fit in cache, it can be organized in
a canonical order, without any additional depth of recursion
for its layout. In this way, the quad-tree decomposition can be
pruned, well before reaching the element level and coexist
with tiles organized in a canonical manner, thus creating
hybrid layouts. Although quad-tree layouts are not efficient,
their indexing is fast enough to be adopted for non-recursive
layouts.

Hybrid quad-tree and canonical layouts were explored by
Chatterjee et al in [25] and [26]. In these papers, the implemen-
tation cost was quantified in terms of execution time. Although
they claimed for increasing execution-time performance, using
four-dimensional arrays, any gain obtained by data locality
due to blocked layouts seems to be counterbalanced by the
slowdown caused when referring to four-dimensional array
elements (in comparison to access time using two- or one-
dimensional arrays). Lin et al in [27] proposed that these four-
dimensional arrays should be converted to two-dimensional
ones, mapping array elements through Karnaugh representa-
tion scheme. However, indexing the right array elements still
requires for tedious time calculations.

In order to quantify the benefits of adopting nonlinear
layouts to reduce cache misses, there exist several different
approaches. In [28], Tseng considers all levels of memory
hierarchy to reduce L2 cache misses as well, rather than
reducing only L1 ones. He presents even fewer overall misses,
however performance improvements are rarely significant.
This is because L2 misses are not as many as L1 ones,
although much more cycles are lost per L2 miss. Targeting
only the L1 cache, nearly all locality benefits can be achieved.
In another approach, TLB misses should also be considered,
along with L1 & L2 misses. As problem sizes become larger,
TLB thrashing may occur ([29]), so that the overall perfor-
mance can be seriously degraded. In this context, TLB and
cache misses should be considered in concert. Park et al in [30]
analyze the TLB and cache performance for standard matrix
access patterns, when tiling is used together with block data
layouts. Such layouts with block size equal to the page size,
seem to minimize the number of TLB misses. Considering
both all levels of cache (L1 and L2) and TLB, a block size
selection algorithm calculates a range of optimal block sizes.

As related work has shown, the automatic application of
nonlinear layouts in real compilers is a really time tedious
task. It does not suffice to identify the optimal layout either
blocked or canonical one for each specific array. For blocked
layouts, we also need an automatic and quick way to generate
the mapping from the multidimensional iteration indices to
the correct location of the respective data element in the

linear memory. Blocked layouts are very promising, subject
to an efficient address computation method. Any method of
fast indexing for non-linear layouts will allow compilers to
introduce such layouts along with row or column-wise ones,
therefore further reducing memory misses.

In this paper, in order to facilitate the automatic generation
of tiled code that accesses blocked array layouts, we propose
a very quick and simple address calculation method of the
array indices. We can adopt any out of four different proposed
types of blocked layouts, and apply a dilated integer indexing,
similar to Morton-order arrays. Thus, we combine additional
data locality due to blocked layouts, with fast access per any
array element, since simple boolean operations are used to find
its right location in linear physical memory. Since array data
are now stored block-wise, we provide the instruction stream
with a straightforward indexing to access the correct elements.
Our method is very effective at reducing cache misses, since
the deployment of the array data in memory follows the exact
order of accesses by the tiled instruction code, achieved at
no extra runtime cost. Experimental results were conducted
using the Matrix Multiplication, LU-decomposition, SSYR2K
(Symmetric Rank 2k Update), SSYMM (Symmetric Matrix-
Matrix Operation) and STRMM (Product of Triangular and
Square Matrix) codes from BLAS3 routines. We ran two
types of experiments, actual execution of real codes and
simulation of memory and cache usage using SimpleScalar.
We compare our method with the ones proposed by Kandemir
in [18] and by Cierniak in [17], that propose control tiling and
arbitrary but linear layouts, and show how overall misses are
further reduced and thus final code performs faster. Comparing
with Chatterjee’s implementation, which uses non-linear four-
dimensional array layouts in combination with control trans-
formations, we prove that limiting cache misses is not enough,
if address computation for these layouts is not efficient.

The remainder of the paper is organized as follows: Section
2 briefly discusses the problem of data locality using as
example the typical matrix multiplication algorithm. Section
3 reviews definitions related to Morton ordering. Section 4
presents blocked data layouts and our efficient array indexing.
Section 5 illustrates execution and simulation comparisons
with so far presented methods, with results showing that
our algorithm reduces cache misses and improves overall
performance. Finally, concluding remarks are presented in
Section 6.

II. THE PROBLEM: IMPROVING CACHE LOCALITY FOR

ARRAY COMPUTATIONS

In this section, we elaborate on the necessity for both
control (loop) and data transformations, to fully exploit data
locality. We present, stepwise, all optimization phases to
improve locality of references with the aid of the typical matrix
multiplication kernel.

Loop Transformations: Figure 1a shows the typical, un-
optimized version of the matrix multiplication code. Tiling
(figure 1b) restructures the execution order, such that the
number of intermediate iterations and, thus, data fetched
between reuses, are reduced. Thus, useful data are not evicted

3

for (jj=0; jj<N; jj+=step)

 for (kk=0; kk<N; kk+=step)

 for (i=0; i<N; i++)

 for (j=jj; (j<N && j<jj+step); j++)

 for (k=kk; (k<N && k<kk+step); k++)

C[i,j]+=A[i,k]*B[k,j];

for (ii=0; ii<N; ii+=step)

 for (kk=0; kk<N; kk+=step)

 for (jj=0; jj<N; jj+=step)

 for (i=ii; (i<N && i<ii+step); i++)

 for (k=kk; (k<N && k<kk+step); k++)

 for (j=jj; (j<N && j<jj+step); j++)

Czz[i
m
+j

m
]+=Azz[i

m
+k

m
]*Bzz[k

m
+j

m
];

(b) tiled code (d) tiling and blocked array layout

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 for (k=0; k<N; k++)

 C[i,j]+=A[i,k]*B[k,j];

(a) unoptimized version

for (kk=0; kk<N; kk+=step)

 for (jj=0; jj<N; jj+=step)

 for (i=0; i<N; i++)

 for (k=kk; (k<N && k<kk+step); k++)

 for (j=jj; (j<N && j<jj+step); j++)

 Cr[i,j]+=Ar[i,k]*Br[k,j];

(c) loop and data transformation

Fig. 1. Matrix multiplication

from the register file or the cache before being reused. The
tile size (step) should be selected accordingly, to allow reused
data to fit in the specific memory hierarchy level (i.e. L1, L2,
etc), that was selected to be optimized.

Unified Loop and linear Data Transformations: Since,
loop transformations alone can not result in the best possible
data locality, a unified approach that utilizes both control
and data transformations becomes necessary. In figure 1b,
loop k scans different rows of B. Given a row-order array
layout, spatial reuse can not be exploited for B along the
innermost loop k. Focusing on self-spatial reuse [18] (since
self-temporal reuse can be considered as a subcase of self-
spatial, while group spatial reuses are rare), the transformed
code takes the form of figure 1c, which has proved to give the
best performance, so far. Firstly, we fixed the layout of the
LHS (Left Hand Side) array, namely array C, because, in every
iteration the elements of this array are both read and written,
while the elements of arrays A and B are only read. Choosing
j to be the innermost loop, the fastest changing dimension of
array C[i, j] should be controlled by this index, namely C
should be stored by rows (Cr). Similarly, array B[k, j] should
also be stored by rows (Br). Finally, placing loops in ikj order
is preferable, because we exploit self-temporal reuse in the
second innermost loop for array C. Thus, A[i, k] should also
be stored by rows (Ar).

Unified Loop and non-linear Data Transformations: In
order to evaluate the merit of non-linear data transformations,
let us consider the code shown in figure 1d. We assume that the
elements of all three arrays are stored exactly as they are swept
by the program (we call this layout ZZ-order, as extensively
presented in the following section). The loop ordering remains
the same as in figure 1c, except that, tiling is also applied in
loop i, so as to have homomorphic shaped tiles in all three
arrays. This simplifies the computations needed to find the
location for each array element.

III. MORTON ORDER (RECURSIVE) ARRAY LAYOUTS

In the sequel, in order to capture the notion of Morton order
[31], i.e. a recursive storage order of arrays, the basic elements

of the dilated integer algebra are presented. Morton defined
a way to index two-dimensional arrays and pointed out the
conversion to and from cartesian indexing available through
bit interleaving (figure 2).

The following definitions are used only for two-dimensional
arrays but can be easily generalized for d-dimensional ones.
(A d-dimensional array is represented as a 2d-ary tree).

Definition 3.1: The integer
−→
b =

∑w−1
k=0 4k is the constant

0x55555555 and is called evenBits. Similarly,
←−
b = 2�b is the

constant 0xaaaaaaaa and is called oddBits.
The hexadecimal evenBits = 0x55555555 has all even

bits set and all odd bits cleared. Likewise, oddBits =
evenBits << 1 has the value 0xaaaaaaaa.

Definition 3.2: The even-dilated representation of j =∑w−1
k=0 jk 2k is

∑w−1
k=0 jk4k, denoted

−→
j . The odd-dilated rep-

resentation of i =
∑w−1

k=0 ik 2k is 2−→i and is denoted
←−
i .

Theorem 3.1: The Morton index for the < i, j >th element
of a matrix is

←−
i ∨ −→j , or

←−
i +−→j .

Thus, the loop with range

for (i=0; i < N; i++) ...

will be modified to

for(im=0; im < Nm; im=(im − evenBits)&evenBits) ...

where im = −→i and Nm = −→N
Let us consider a cartesian row index i with its significant

bits “dilated” so that they occupy the digits set in oddBits and
a cartesian index j been dilated so its significant bits occupy
those set in evenBits. If array A is stored in Morton order,
then element [i, j] can be accessed as A[i + j], regardless of
the size of array.

When using a dilated integer representation for the indexing
of an array, if an index is only used as a column index, then
its dilation is odd. Otherwise it is even-dilated. If used in both
roles, then, doubling its even-dilated value, produces the odd-
dilation, as needed.

So, after i and j are translated to their images,
←−
i and

−→
j ,

the code of matrix multiplication will be as follows:

#define evenIncrement(i)(i = ((i− evenBits)&evenBits))
#define oddIncrement(i)(i = ((i− oddBits)&oddBits))

for (i=0; i < colsOdd; oddIncrement(i))
for (j=0; j < rowsEven; evenIncrement(j))

for (k=0; k < rowsAEven; evenIncrement(k))
C[i + j]+ = A[i + k] ∗B[2 ∗ k + j];

where rowsEven, colsOdd and rowsAEven are the
bounds of arrays when transformed in dilated integers. Notice
that k is used both as column and as row index. Therefore, it
is translated to

−→
k and for the column indexing of array B,

2 ∗ k is used, which represents
←−
k .

IV. BLOCKED ARRAY LAYOUTS

In this section we introduce the non-linear, blocked array
layout transformation. Since the performance of the proposed
methods in [17], [18], [12] is better when tiling is applied,
perhaps we could achieve even better locality, if also, array
data are stored neither column-wise nor row-wise, but follow
a blocked layout. Such layouts were used by Chatterjee et al
in [25], [26], in order to obtain better interaction with cache

4

0

15

47

32

63

48

95

80

79

64

31

16

96

111

112

175

207

160

159

144

143

128

127

176

191

192 208

223

240

255

224

239

0

2

8

10

4

6

12

14

1

3

9

11

5

7

13

15 0

0 1 2 3

4 5 6 70 1 2 3 8 9 10 11 12 13 14 15

j = 0 0 1 1 0 0 1 1 2 2 3 3 2 2 3 3

i = 0 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3

linear array

indices:

i

4i+0
4i+1 4i+2

4i+3

Fig. 2. Morton-order layout of a 4×4 matrix, and Morton indexing of the order-4 quadtree

memories. According to [25], a 2-dimensional m×n array can
be viewed as a �m

tR
�×� n

tC
� array of tR×tC tiles. Equivalently,

the original 2-dimensional array space (i, j) is mapped into a
4-dimensional space (ti, tj , fi, fj). The proposed layout for
the space LF : (fi, fj) of the tile offsets is a canonical
one, namely column-major or row-major, according to the
access order of array elements by the program code. The
transformation function for the space LT : (ti, tj) of the tile
co-ordinates can be either canonical or follow the Morton
ordering. However, referring to 4-dimensional arrays comes
up with long assembly codes, thus, repetitive load and add
instructions, which, as seen in experimental results, are too
time consuming and, thus, degrade total performance.

A. Different Proposed Types of Blocked Layouts

We expand the notion of blocked layouts, storing array
elements exactly in the same order as they are accessed when
loop iterations are executed. This storage layout is presented in
figure 3 for an 8×8 array which is split into tiles of size 4×4.
The grey line shows the order by which the successive program
iterations sweep the array data, while numbering illustrates the
order, data are actually stored. We split arrays in tiles of the
same size as those used by the program that scans the elements
of the array. We denote the transformation of this example as
“ZZ”, because the inner of the tiles is scanned row-wise (in
a Z-like order) and the shift from one tile to another is Z-
like as well. The first letter (Z) of transformation denotes the
shift from one tile to another, while the second indicates the
sweeping within a tile. The sweeping of array data in ZZ-order
is done using the first portion of code shown below:

“ZZ sweeping” for (ii=0; ii < N; ii+=step)
for (jj=0; jj < N; jj+=step)

for (i=ii; (i < ii + step && i < N); i++)
for (j = jj; (j < jj+step && j < N); j++)

A[i, j]=...;

In a similar way, the other three types of transformations
are shown in figures 4, 5 and 6. For example, according to
the “NN” transformation, both the sweeping of the array data
within a tile and the shift from one tile to another are done
columnwise (N-like order). The respective codes are found
below.

“NZ sweeping” for (jj=0; jj < N; jj+=step)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

N

step

s
te
p

N

j

i

00

11

01

10

Fig. 3. ZZ-transformation

for (ii=0; ii < N; ii+=step)
for (i = ii; (i < ii + step && i < N); i++)

for (j = jj; (j < jj + step && j < N); j++)
A[i, j]=...;

‘NN sweeping” for (ii=0; ii < N; ii+=step)
for (jj=0; jj < N; jj+=step)

for (i = ii; (i < ii + step && i < N); i++)
for (j = jj; (j < jj + step && j < N); j++)

A[j, i]=...;

“ZN sweeping” for (jj=0; jj < N; jj+=step)
for (ii=0; ii < N; ii+=step)

for (i = ii; (i < ii + step && i < N); i++)
for (j = jj; (j < jj+step && j < N); j++)

A[j, i]=...;

Since compilers support only linear layouts (either column-
order or row-order) and not blocked array layouts, sweeping
the array data when stored in one of the four aforementioned
ways, can be done using one-dimensional arrays and indexing
them through dilated integers. Morton indexing [23] cannot
be applied, since it is applicable only when we have a fully
recursive tiling scheme, whereas, in our case, tiling is applied
only once (1-level tiling). Thus, instead of oddBits and
evenBits, we introduce binary masks.

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

N

step

s
te
p

N

00

1101

10

j

i

Fig. 4. NZ-transformation

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

32 36 40 44

33 37 41 45

34 38 42 46

35 39 43 47

16 20 24 28

17 21 25 29

18 22 26 30

19 23 27 31

48 52 56 60

49 53 57 61

50 53 58 62

51 55 59 63

N

step

s
te
p

N

00

1101

10

i

j

Fig. 5. NN-transformation

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

32 36 40 44

33 37 41 45

34 38 42 46

35 39 43 47

16 20 24 28

17 21 25 29

18 22 26 30

19 23 27 31

48 52 56 60

49 53 57 61

50 53 58 62

51 55 59 63

N

step

s
te
p

N

i

j

00 01

10 11

Fig. 6. ZN-transformation

B. Mask Theory for Fast Address Computation

The form of the introduced masks, used to calculate the
address of an element A[i, j], for an array of size Nc × Nr

and tile size stepc × stepr, is illustrated in table I.
The number of subsequent 0 and 1’s that consist every part

of each mask is defined by the functions mx = log(stepx)
and tx = log

(
Nx

stepx

)
, where step is a power of 2. If N is not

a power of 2, we round up by allocating the just larger array
with N = 2n and padding the empty elements with arbitrary
values. Such padding does not aggravate the execution time,
since padded elements are not scanned by the algorithm. Row-
wise scanning (Z-like order), requires for a mask of the form
0-1 for row indices, while the respective one for columns is 1-
0. The opposite stands for the case of column element scanning
(N-like order).

Similar to quad-tree indexing, every array element A[i, j]
can be found in the one-dimensional array in the position
[im + jm] = [im|jm], where im, jm are generated by i, j,
when appropriately masked.

C. Implementation

Let us store elements of array A[i, j] in an one-dimensional
memory space, in the same order as they are swept by the
instruction stream of a tiled code, similar to ZZ-sweeping of
section IV-A. Such storage order is illustrated in figures 7
and 8, where array A is of size 32×32, tiled in blocks of size
8× 8.

To access any element of an array stored according to a
blocked layout, loop indices that control the element locations
should take non-successive values. In our example (ZZ layout),
the right values for indices that control columns and rows of
the first tile (as shown in figure 8) are:

row index : 0 1 2 3 4 5 6 7
column index : 0 8 16 24 32 40 48 52

These are the storage locations of the first column and the
first row elements (figure 8). To find the storage location of an
arbitrary element, e.g. A[4, 6] (5-th row and 7-th column), we
can just add 6+32=38 (we selected the 5-th column index (=32)
and the 7-th row index (=6)). Location #38 is the requested

one. For an element that belongs in the 3-rd row of tiles and in
the 4-th column of tiles, which is tile #11(=3+8, as shown in
figure 7), the element position will have 1011<2>(= 11<10>)
as prefix.

The appropriate binary masks for the automatic calculation
of such non-linear indices are given by the forms of section IV-
B. For our example (32×32 array with 8×8 tiles), the masks

are:
for the row index : 0011000111

for the column index : 1100111000
If values 0-31 of linear indices (which are the values given

to row and column indices according to standard compiler
array handling), are filtered, using these masks, the desired
values will arise (figure 9).

As shown in figure 9, element A[20, 30] which belongs to
tile #11<10>, is stored in position:

“20”+“30”=10 00 100 000 + 00 11 000 110 = 1011 100
110 = 742<10>, which has indeed 1011<2> as prefix.

D. Example: Matrix Multiplication

According to Kandemir et al in [18], the best data locality
is achieved when the code has the following form:

for (ii=0; ii < 32; ii+=8)
for (kk=0; kk < 32; kk+=8)

for (jj=0; jj < 32; jj+=8)
for (i = ii; (i < ii+8 && i < 32); i++)

for (k = kk; (k < kk+8 && k < 32); k++)
for (j = jj; (j < jj+8 && j < 32); j++)

C[i, j]+=A[i, k]*B[k, j];

We use a modified version of [18] (as explained in sec-
tion II), with a nested loop of depth 6, instead of depth 5,
since the implementation of our mask theory is simpler in
this case. All three arrays A,B,C are scanned according to
ZZ-sweeping.

In the nested code of our example, the three inner loops
(i, j, k) control the sweeping within the tiles. The 6 least
significant digits of the masks are adequate to sweep all
iterations within these loops, as shown in figures 8 and 9.
The three outer loops (ii, kk, jj) control the shifting from one
tile to another, and the 4 most significant digits of the masks
can define the movement from a tile to its neighboring one.

6

ZZ transformation
row index �→ 00..0 11..1 00..0 11..1
column index �→ 11..1 00..0 11..1 00..0

← tc → ← tr → ← mc → ← mr →

NZ transformation
11..1 00..0 00..0 11..1
00..0 11..1 11..1 00..0
← tr → ← tc → ← mc → ← mr →

NN transformation
row index �→ 11..1 00..0 11..1 00..0
column index �→ 00..0 11..1 00..0 11..1

← tr → ← tc → ← mr → ← mc →
most significant set←↩ ↪→ least significant set

depends on the shift←↩ ↪→ depends on the inner
from one tile to another of tiles

ZN transformation
00..0 11..1 11..1 00..0
11..1 00..0 00..0 11..1
← tc → ← tr → ← mr → ← mc →

most significant set←↩ ↪→ least significant set

TABLE I

BINARY MASKS FOR INDEXING THE FOUR DIFFERENT TYPES OF BLOCKED LAYOUTS

00 01 10 11

01

10

11
tile number =

= 10 | 11

or

add the masked values

1000+0011=1011

= 11
<10>

Concatenate

the 2 binary

tile
 numbers

linear tile indexing : 0 , 1 , 2 , 3

lin
e
a
r

ti
le

 i
n
d
e
x
in

g
 :

 0
 ,

 1
 ,

 2
 ,

 3

0

63

.
.
.

128

191

.
.
.

192

255

.
.
.

256

319

.
.
.

320

383

.
.
.

384

447

.
.
.

448

511

.
.
.

512

575

.
.
.

576

639

.
.
.

640

703

.
.
.

768

831

.
.
.

832

895

.
.
.

896

959

.
.
.

960

1023

.
.
.

64

127

.
.
.

0 1 2 3

8

tile number =

= 8 + 3 = 11

Add th
e 2

m
asked ti

le

num
bers

4 5 6 7

9 10

12 13 14 15

Row index (masked) values : 0 , 1 , 2 , 3

C
o
lu

m
n
 i
n
d
e
x
 (

m
a
s
k
e
d
)

v
a
lu

e
s
 :
 0

 ,
 4

 ,
 8

 ,
 1

2

0

63

.
.
.

128

191

.
.
.

192

255

.
.
.

256

319

.
.
.

320

383

.
.
.

384

447

.
.
.

448

511

.
.
.

512

575

.
.
.

576

639

.
.
.

640

703

.
.
.

768

831

.
.
.

832

895

.
.
.

896

959

.
.
.

960

1023

.
.
.

64

127

.
.
.

Fig. 7. Indexing Tiles (calculations using binary and decimal indices)

6
<
1
0
>
 =

 1
1
0
<
2
>

m
a
s
k
e
d
 :

0
0
0
1
1
0
<
2
>
 =

 6
<
1
0
>

0

63

.
.

.

128

191

.
.

.

192

255

.
.

.

256

319

.
.

.

320

383

.
.

.

384

447

.
.

.

448

511

.
.

.

512

575

.
.

.

576

639

.
.

.

640

703

.
.

.

704

767

.
.

.

768

831

.
.

.

832

895

.
.

.

896

959

.
.

.

960

1023

.
.

.

64

127

.
.

.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 50 61 62 63

38

Binary indexing :

concatenate the 2 linear indices

100|110 = 38
<10>

or

add the masked representations of

the binary indices

100000 + 000110 = 100110 = 38
<10>

C
o
lu

m
n
 i
n
d
e
x
 v

a
lu

e
s
 :

0

1

2

3

4

5

6

7

4
<10>

 = 100
<2>

masked representation :

100000
<2>

 = 32
<10>

 0 1 2 3 4 5 6 7

: Row index values

0

63

.
.
.

128

191

.
.
.

192

255

.
.
.

256

319

.
.
.

320

383

.
.
.

384

447

.
.
.

448

511

.
.
.

512

575

.
.
.

576

639

.
.
.

640

703

.
.
.

704

767

.
.
.

768

831

.
.
.

832

895

.
.
.

896

959

.
.
.

960

1023

.
.
.

64

127

.
.
.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 50 61 62 63

Decimal non-linear indexing :

32 + 6 = 38

Row index values : 0 , 1 , … , 7

C
o
lu

m
n
 i
n
d
e
x
 v

a
lu

e
s
 :

 0
 ,
 8

 ,
 1

6
 ,

 …
 ,

 5
6

Fig. 8. Indexing the inner of Tiles (calculations using binary and decimal indices)

Thus, i takes values in the range of xxx000 where x = (0
or 1) and ii takes values in the range of xx00000000, so
i|ii = xx00xxx000 gives the desired values for the columns
of matrix A and C. Similarly, j takes values in the range
of 000xxx and jj in the range of 00xx000000, so j|jj =

00xx000xxx are the desired values for rows of B and C.
Index k, does not control the same dimension in the arrays
in which it is involved, as shown in table II. So, for array
A, the proper mask is a row one, namely kA ∈ 000xxx
and kkA ∈ 00xx000000. On the other hand, the mask for

7

masked values masked values

00 xx 000 xxx xx 00 xxx 0001100111000

0 = 00000
<2>

4 = 00100
<2>

1 = 00001
<2>

20 = 10100
<2>

00 00 000 000
<2>

= 0

00 00 001 000
<2>

= 8

00 00 100 000
<2>

= 32

10 00 100 000
<2>

= 544

0011 000111

0 = 00000
<2>

1 = 00001
<2>

7 = 00111
<2>

6 = 00110
<2>

00 00 000 000
<2>

= 0

00 00 000 001
<2>

= 1

00 00 000 110
<2>

= 6

00 00 000 111
<2>

= 7

row index column index

which tile inner of tile which tile inner of tile

linear values
masking

linear values
masking

31 = 11111
<2>

00 11 000 111
<2>

= 199

30 = 11110
<2>

00 11 000 110
<2>

= 198

… … … … … … … … ...

… … … … … … … … ...

… … … … … … … … ...

31 = 11111
<2>

30 = 11110
<2>

11 00 111 000
<2>

= 824

11 00 110 000
<2>

= 816

… … … … … … … … ...

… … … … … … … … ...

8 = 01000
<2>

00 01 000 000
<2>

= 64

Fig. 9. Conversion of the linear values of row and column indices to dilated ones using masks

indices : control of array(s) appropriate mask
i, ii : columns A & C column mask (1100111000)
j, jj : rows B & C row mask (0011000111)
k, kk : columns B column mask (for kB , kkB)
k, kk : rows A row mask (for kA, kkA)

TABLE II

INDEXING OF ARRAY DIMENSIONS

array B is a column one. Thus, kB ∈ xxx000 and kkB ∈
xx00000000. Note that kB = kA << logstep and kkB =
kkA << log

(
N

step

)
.

In our example,
ibound=column mask=1100111000<2> = 824,
iiincrement = 1000000<2> = 64 = 8× 8 << N

step
,

iincrement = 1000<2> = 8 = step

and ireturn = min{column mask, ii|111000<2>}.
for(ii=0; ii < ibound; ii+=iiincrement) {

itilebound=(ii|imask)+1;
ireturn=(ibound < itilebound?ibound : itilebound);
for(kk=0; kk < kjbound; kk+=kkjjincrement) {

ktilebound=(kk|kjmask)+1;
kreturn=(kjbound < ktilebound?kjbound : ktilebound);
kkB=kk << logNxy;
for(jj=0; jj < kjbound; jj+=kkjjincrement) {

jtilebound=(jj|kjmask)+1;
jreturn=(kjbound < jtilebound?kjbound : jtilebound);
for(i=ii; i < ireturn; i+=iincrement)

for(k=kk; k < kreturn; k+ = kjincrement) {
kB=(k & (step 1))<< logstep;
ktB=kkB|kB;
xA=i|k;
for(j=jj; j < jreturn; j+=kjincrement)

C[i|j]+=A[xA] ∗B[ktB|j];
}

}
}

}

E. The Algorithm to select the Optimal Layout per Array

In order to succeed in finding the best possible transfor-
mation which maximizes performance, we present a method,
based on the algorithm presented in [18], adjusted to allow for
blocked array layouts. Notice that our algorithm finds the best
data layout of each array, taking into account all its instances

throughout the whole program (instances of the same array in
different loop nests are also included). This way, no replicates
of an array are needed.

Figure 10 gives a graphic representation of the following
algorithm. As easily derived from the three loops of the flow
chart, the worst case complexity is O(A · r ·D), where A is
the number of different array references, r is the number of
dimensions each array reference contains and D is the loop
depth (before tiling is being applied).

• Create a matrix R of size r × l, where r = number
of different array references and l = nested loop depth
(before tiling is applied). Columns of R are ordered
from left to right, according to the loop nest order (from
the outermost to the innermost loop). If there are two
identical references to an array, there is no need for an
extra line. We can just add an indication to the row
representing this array, thus putting double priority to its
optimization. For the example of matrix multiplication

i k j

R =

⎡
⎣

1 0 1
1 1 0
0 1 1

⎤
⎦

C**
A
B

Notice that the Left Hand Side (LHS) array of an expres-
sion (for our example this is array C) is more important,
because in every such access, the referred element is both
read and written.
Each column of R represents one of the loop indices. So,
in each row, array elements are set when the correspond-
ing loop controls one of its dimensions. Otherwise array
elements are reset.

• Optimize first the layout of the array with the greatest
number of references in the loop body. (In our example
this is array C). The applied loop transformations should
be such that one of the indices that control an array
dimension of it, is brought in the innermost position of
the nested loop. Thus, the C row of R should come to
the form (x, . . . , x, 1), where x = 0 or 1. To achieve
this, swapping of columns can be involved. The chosen
index has to be the only element of the stated dimension
and should not appear in any other dimension of C.

8

Choose the most weighty unoptimized reference to an array

Pick an index of this array reference

Can you put this index in the m-th depth loop nest

position without changing any predefined ordering or

data dependencies?

Store the array so that the chosen dimension is the fastest changing

m=n

Have you

checked all

indices?

m:=m-1

m==0?

Make an arbitrary placement

yes

no

no

yes

yes

no

Start

Are all array references

optimized?

End

yes

no

Fig. 10. Flow Chart of the proposed optimization algorithm

Thus, the reference to array C should have the form:
C[∗, . . . , ∗, iin, ∗, . . . , ∗], where iin is the innermost index
of the transformed code and controls the y-th dimension
of C, while * indicates terms independent of iin.
After that, in order to exploit spatial locality for this
reference, array C should be stored in memory such that
the y-th dimension is the fastest changing dimension.
Notice that all possible values for y should be checked.

• Then, fix the remaining references to arrays by priority
order. Our goal is to bring as many R-rows in the form
(x, . . . , x, 1) as possible. If the z-th dimension of array
A, is controlled by index iin only (namely A is in the
form A[∗, . . . , ∗, iin, ∗, . . . , ∗]), then store A such that its
fastest changing dimension is the z-th one.
If there is no such dimension for A, then we should try
to transform the reference so that it is brought to the
form A[∗, . . . , ∗, f(iin−1), ∗, . . . , ∗], where f(iin−1) is a
function of the second innermost loop iin−1 and other
indices except iin, and ∗ indicates a term independent
of both iin−1 and iin. Thus, the R-row for A would
be (x, . . . , x, 1, 0) and the spatial locality along iin−1

is exploited. If no such transformation is possible, the
transformed loop index iin−2 is tried and so on. If all
loop indices are tried unsuccessfully, then the order of
loop indices is set arbitrarily, taking into account the data
dependencies.

• After a complete loop transformation and a respective
memory layout are found, they are stored, and the next

alternative solution is tried. Among all feasible solutions,
the one which exploits spatial locality in the innermost
loop for the maximum number of array references, is
selected.

• When the nested loop has been completely reordered, we
then apply tiling. In this stage, the complete layout type is
defined. For each one of the array references, the dimen-
sion which was defined to be the fastest changing, should
remain the same for the tiled version of the program code,
as far as the storage of the elements within each tile is
concerned. This means, that for two-dimensional arrays,
if the form of the reference is C[∗, iin], the storing order
inside the tile should be row-major, thus, we should use
the xZ-order (namely ZZ- or NZ-order) blocked array
layout. If the form of the reference is C[iin, ∗], the
storing order inside the tile should be column major,
thus, we should use the xN-order (namely ZN- or NN-
order) blocked array layout. The shifting from one tile
to another, and therefore the first letter of the applied
transformation, is defined by the type of tiling we will
choose. For the two dimensional example, if no tiling is
applied to the dimension marked as * then we will have
a NZ or ZN transformation, respectively. Otherwise, if
for a nested loop of depth n: (i1, i2, . . . , in) the tiled
form is: (ii1, ii2, . . . , iin, i1, i2, . . . , in) (where iix is the
index that controls the shifting from one tile to the
other of dimension ix), then the layout should be ZZ
or NN respectively. In most cases, applying tiling in all

9

dimensions brings uniformity in the tile shapes and sizes
that arrays are split, and as a result, fewer computations
for finding the position of desired elements are needed.
The size of tiles depends on the capacity of the cache
level we want to exploit.

V. EXPERIMENTAL RESULTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBalt
tiled1D
tiled2D

L4d
Lmo

Fig. 11. Execution times for matrix multiplication (-xO0, UltraSPARC)

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBalt
tiled1D
tiled2D

L4d
Lmo

Fig. 12. Execution times for matrix multiplication (-fast, UltraSPARC)

A. Execution Environment

In this section we present experimental results using
5 benchmarks: Matrix Multiplication, LU-decomposition,
SSYR2K (Symmetric Rank 2k Udate), SSYMM (Symmetric
Matrix-Matrix Operation) and STRMM (Product of Triangular
and square Matrix). There are two types of experiments: actual
execution times of optimized codes using non-linear layouts
and simulations using the SimpleScalar toolkit [32]. Firstly, the
experiments were performed on three platforms with different
architectural characteristics: a Sun Enterprise 450 machine,
an SGI/Cray Origin2000 multiprocessor, and an Athlon XP
2600+ PC. The Sun Enterprise has UltraSPARC II CPUs at
400MHz, each with a 16 KB 2-way set associative on-chip
instruction L1 cache, a 16 KB direct-mapped on-chip data L1
cache, with 32 bytes cache line size and 8 cycles L1 miss

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
tiled1D
tiled2D

L4d
Lmo

Fig. 13. Execution times for matrix multiplication (-fast, SGI Origin)

latency, a direct-mapped L2 external cache of 4 MB, with 64
bytes cache line size and 84 cycles L2 miss latency, and a
64-entry data TLB with 8 KB page size and 51 cycles miss
penalty. The SGI Origin has MIPS R10000 processors, each
of which operating at 250MHz and has a 32 KB 2-way set
associative on-chip instruction L1 cache, with 32 bytes line
size. It also has a 32 KB 2-way set associative on-chip data
L1 cache, with 64 bytes line size, a 4 MB 2-way set associative
unified external cache, with 128 bytes cache line size and a 64-
entry TLB, with 16 KB page size. The latency of the L1 data
cache, L2 cache and TLB is 6, 100 and 57 cycles respectively.

We used the Workshop cc compiler 5.0, first without any
optimization flags (cc -xO0), in order to study the clear effect
of different data layouts, avoiding any possible interference in
the results due to any compiler optimizations. We then used
the highest optimization level (-fast -xtarget=native), which in-
cludes memory alignment, loop unrolling, software pipelining
and other floating point optimizations. The experiments were
executed for various array dimensions (N) ranging from 16
to 2048 elements, and tile sizes (step) ranging from 16 to
N elements, to show the merit of our cache miss reduction
method both on data sets that fit and do not fit in cache.

The Athlon XP CPU operates at 2,083GHz and has an
128KB, 2-way set associative on-chip L1 cache (64KB+64KB
for data+instructions) with 64bytes line size and 3 cycles miss
penalty. The unified L2 cache is also on-chip, with 64bytes
line size, it is 16-way set associative, 256KB in capacity
and has 20 cycles miss penalty. There are also two levels of
TLBs: Instruction TLB has 24 entries in L1 and 256 entries
in L2, while data TLB has 40 entries in L1 (with 3 cycles
miss penalty and 4KB page size) and 256 entries in L2. In
Athlon XP the gcc (version 3.3.4-13) compiler has been used,
firstly without any optimization flags (gcc -O0) and then, at
the highest optimization level (-O3).

We implemented 5 different versions per benchmark: our
method, that is Blocked array Layouts using our Mask theory
for fast address computation (MBaLt), LMO (Lmo) and L4D

(L4d) both from Chatterjee [25], and the method [18] by
Kandemir using both 2-dimensional arrays (tiled2D) and 1-
dimensional arrays (tiled1D). Measured execution times do

10

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
tiled1D
tiled2D

L4d

Fig. 14. Execution times for LU-decomposition (-xO0, UltraSPARC)

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt_hand_opt

tiled1D
tiled2D

L4d

Fig. 15. Execution times for LU-decomposition (-fast, UltraSPARC)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

tiled
MBaLt
tiled1D

L4d
non-tiled

Fig. 16. Execution times for LU-decomposition (-fast, SGI Origin)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand_opt

tiled1D
tiled1D hand_opt

L4d

Fig. 17. Execution times for LU-decomposition for larger arrays and hand
optimized codes (-fast, SGI Origin)

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
tiled2D

L4d

Fig. 18. Execution times for SSYR2K (-xO0, UltraSPARC)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt-hand_opt

tiled2D
tiled2D-fine

tiled2D-hand_opt
L4d

Fig. 19. Execution times for SSYR2K (-fast, UltraSPARC)

not include runtime layout conversions from linear to blocked
ones, because a single layout for all instances of each specific
array is selected, which optimizes all possible references for
the array.

Transformations needed to optimize the various versions of

the benchmark codes (MBaLt, tiled, Lmo, L4d) were applied
by hand. Moreover, constants needed for accessing arrays
stored in blocked layouts (such as column masks, bounds
of arrays, tilebounds, and so on - see section IV-D), are
calculated through in-line library functions. All tested versions

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Fig. 20. Execution times for SSYMM (-xO0, UltraSPARC)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Fig. 21. Execution times for SSYMM (-fast, UltraSPARC)

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Fig. 22. Execution times for SSYMM (-O0, Athlon XP)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Fig. 23. Total execution results in SSYMM (-O3, Athlon XP)

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Fig. 24. Execution times for STRMM (-xO0, UltraSPARC)

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Fig. 25. Execution times for STRMM (-fast, UltraSPARC)

of benchmarks are exhaustively optimized according to sec-
tion IV-E (all possible transformations are applied). For each
separate benchmark (Matrix Mul, LU, SSYR2K, SSYMM,
STRMM), the only difference, in the various versions tested,
is the applied data layout. Best data layout selection in the
MBaLt version is determined by considering the specific loop

ordering and the priority of array references (step 5 of the
flow chart). Both factors are determined from earlier steps
of our algorithm. So, almost no extra time would be spent
by a compiler for determining the optimal block layout. The
most time consuming part of our algorithm (O(A · r ·D)) is
unavoidable no matter what sort of layout (linear or not) is

12

used. Adding block layout selection does not incur any extra
complexity. Only constant calculations for the MBaLt versions
could add some time delay. However, such constants are
calculated just once, which, in any case, takes negligible time,
compared to thousands of iterations of real array computations.

B. Execution Time Measurements

As far as the Matrix Multiplication benchmark is con-
cerned, we compared our method (MBaLt) having selected
the best tile size that achieves maximum performance, with
the ones proposed in the literature [18], where the respec-
tive optimal tile size has been selected as well. Optimal
tile sizes are chosen experimentally, by making execution
time measurements for various tile sizes. It is observed
that tiles should fit in L1 cache and especially for blocked
layouts step =

√
L1 cache capacity. In figure 11, the ex-

ecution time of our method is almost 25% less than the
one achieved using the optimal code from Kandemir et al
for 2-dimensional arrays (tiled2D). Since current compilers
do not support non-linear (blocked) array layouts, we used
one-dimensional arrays throughout the implementation of our
method (MBaLt). Storing elements in one-dimensional ar-
rays, while two-dimensional ones are needed, required extra
computations to find the desired array elements. Thus, a fair
comparison should be done with one-dimensional arrays arrays
of the tiled version (tiled1D). In this case, MBaLt over-exceeds
in performance by 60%. Both Chatterjee’s implementations
(LMO (Lmo) and L4D (L4d)) perform worse than tiled2D.
Notice that the L4D array layout is in practice the same as
MBaLt, except for data are indexed through four-dimensional
arrays instead of one-dimensional ones used in our approach.
However, the performance degradation is due to the much
more complicated memory location calculation scheme when
dealing with four-dimensional arrays.

Using the -fast optimization level (figure 12), MBaLt gives
a gentle slope curve as execution times increase smoothly
when array sizes increase, due to independence on conflict
misses. The tiled version of the benchmark, (especially in LU-
decomposition and SSYR2K), is prone to such unpredictable
types of misses, since steep fluctuations occur in the perfor-
mance graph for specific matrix sizes. Furthermore, comparing
figures 11 and 12, we conclude that the simpler the initial
code is, the better optimization the -fast level can bring. Thus,
standard compiler options are not enough when optimizing
complex codes. Applying even more optimizations by hand
(e.g. loop unrolling and data prefetching) in conjunction with
-fast optimization level, proves to be the best technique for
achieving top performance (see hand-optimized performance
of MBaLt: MBaLt-hand opt in figure 17). Extreme perfor-
mance degradation for specific array sizes is possible due to
self-conflict misses that take place when successive tile lines
map to exactly identical cache locations.

Although the MBalt code is larger in terms of instruction
lines (1.5 more instruction code lines, as seen in the example
code of section IV-D), it takes less to execute, since boolean
operations are used for address computations. Furthermore,
array padding, which is necessary for rounding up array sizes

in order to become a power of 2, does not affect performance,
since execution time increases regularly, proportionally to the
actual array sizes. The reader can verify that no sharp peaks
occur in the execution time graphs. Delving into the assembly
code, one-dimensional arrays are more efficiently implemented
than greater dimension ones, since they require for fewer
memory references to find the array elements. On the other
hand, finding the storage location of an array element in non-
linear layouts usually needs a lot of computations, to find
the right location. Consequently, what we achieved with the
proposed method is handling one-dimensional arrays without
introducing any additional delays due to complicated address
computations.

The above results are also verified with the LU-
decomposition, SSYR2K, SSYMM and STRMM benchmarks
(figures 14 - 25). Additionally, we noticed that in LU-
decomposition, the use of blocked array layouts in combina-
tion with our fast indexing (MBaLt version), not only provides
with an average of 15% reduction in execution times (when
no optimization is applied: figure 14) compared to the tiled
version (tiled2D), but also smoothes any steep peaks that
come up due to conflict misses in the simple tiled code.
This reduction is even bigger (can reach even 30%) with -fast
flag. After observing that tiled1D (in the matrix multiplication
benchmark and LU-decomposition) outperforms MBaLt when
-fast optimization (in SGI Origin platform) is applied for
arrays smaller than 2048 × 2048, we conducted experiments
with larger ones (sizes bigger than 2048 × 2048). Figure 17
illustrates that MBaLt in this case, for large matrices, is much
more efficient also using -fast optimization level.

In the SSYR2K benchmark (figures 18 and 19), we searched
for the best tile size among a wide range of values (not only for
values of power of 2), when linear layouts are used (tiled2D-
fine). We notice that, in all previous tiled codes experiments
were using tile sizes equal to a power of 2, in order to be
in accordance with the MBaLt implementation. The fact that
graphs for tiled and tiled-fine are practically identical, proves
that no delay is introduced when tile sizes are a power of 2.

Finally, as far as different tile sizes are considered, MBaLt
versions perform better for tile sizes, that keep data mainly
in L1 cache. Successive tile lines are mapped in sequential
cache lines. As a result, conflict misses are minimized and
optimal tile sizes are fixed for any array size. On the other
hand, tile sizes that give minimum execution times in the tiled
versions (tiled1D and tiled2D) are difficult to predict. Conflict
misses can, in this case, severely degrade performance. To
avoid conflict misses, complex cache alignment analysis is
required or else an exhaustive search of all possible tile sizes.

C. Simulation results

In order to verify the results of measured execution times,
we applied the binary codes of matrix-multiplication (MBaLt,
Kand2D), LU-decomposition (MBaLt, tiled) and SSYR2K
(MBaLt, tiled) to the SimpleScalar 2.0 toolkit, simulating both
the cache characteristics of the Sun Enterprise 450 and the SGI
Origin machines. We measured the data L1 (dl1), unified L2
(ul2) cache and data TLB (dtlb) misses, for various values

13

Misses in D-L1 cache, L2 cache and TLB

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

16 32 64 128 256 384 512 640 768 896 1024

dimension of matrices

n
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s
(M

B
aL

t/
ti

le
d

 v
er

si
o

n
)

dtlb
ul2
dl1

Fig. 26. Matrix Multiplication: misses (normalized values: MBaLt/tiled
version) in all levels of Memory Hierarchy (UltraSPARC)

N D-L1 (%) L2 (%) D-TLB (%) total
16 -4,66 -8,74 0,00 -8,24
32 95,75 -6,59 13,33 66,14
64 -161,52 -3,22 8,33 -118,07
128 -29,80 -0,93 3,33 -27,70
256 62,15 -0,10 16,31 60,93
384 -27,92 -75,26 -13,98 -28,80
512 81,72 0,06 98,81 81,83
640 49,24 -187,69 22,30 45,43
768 78,05 -74,55 92,81 76,97
896 55,72 -52,06 41,67 53,62
1024 95,85 77,27 98,82 95,73

average: 26,78 -30,16 34,70 27,08

TABLE III

IMPROVEMENT ACHIEVED IN TERMS OF MISSES IN THE MBALT VS. TILED

VERSION OF MATRIX MULTIPLICATION FOR EACH LEVEL OF MEMORY

HIERARCHY (ULTRASPARC)

for N , ranging from 16 to 1024, and various values for step,
ranging from 8 to N , at the standard optimization level.

The normalized values presented in tables and fig-
ures of this section are calculated through the fraction
value in the MBaLt version

value in the tiled version . Percentage improvement in MBaLt
is (tiled performance)−(MBaLt performance)

tiled performance · 100%.
The results show that dl1 misses are reduced in matrix

multiplication for tiles of size 64 × 64, because at this tile
size, data of a whole tile for each one of the three arrays
fits in the L1 cache. For the same reason, for step = 2048,
ul2 misses increase sharply, compared to ul2 misses when
step = 1024. The minimum value fluctuates with the problem
size, because it depends on conflict misses which can not
be easily foreseen, and thus avoided. Figure 26 shows the
ratio of MBaLt misses vs. Kand2D misses for all memory
hierarchy levels of the UltraSPARC architecture, for different
array sizes. In all cases, when total height is less than 3,
MBaLt has better cache performance, in all levels of memory
hierarchy. The analytic formula used to calculate the height
of bars in figures 26 to 29 is

(
m1M

m1t
+ m2M

m2t
+ mT M

mT t

)
, where

m1 = number of D-L1 misses, m2 = number of L2 misses,
mT = number of TLB misses, while the 2nd subscript letter
stands for M = MBaLt version and t = tiled version. The
most weighty factor of memory performance is L1 cache

Misses in D-L1 cache, L2 cache and TLB

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

64 25
6

51
2

76
8

10
24

12
80

15
36

17
92

20
48

23
04

25
60

dimension of matrices

n
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s
(M

B
aL

t/
ti

le
d

 v
er

si
o

n
)

dtlb

ul2

dl1

Fig. 27. LU-decomposition: misses (normalized values: MBaLt/tiled version)
in all levels of Memory Hierarchy (UltraSPARC)

N D-L1 (%) L2 (%) D-TLB (%) total
16 -8,63 -47,20 -25,00 -42,21
32 -6,29 -44,11 -11,11 -38,29
64 82,36 -30,29 -8,33 31,68
128 61,09 -14,47 -4,17 54,16
256 52,92 -4,47 -1,39 51,67
384 20,34 -76,18 81,75 19,65
512 92,26 -1,11 97,85 92,22
640 18,03 -156,85 98,10 29,72
768 46,99 -79,33 98,65 53,35
896 17,58 -32,80 98,93 35,17
1024 92,53 96,77 100,00 99,11
1152 16,96 -109,56 99,08 34,46
1280 46,04 -36,46 99,20 54,02
1536 91,51 18,07 99,32 91,19
1664 16,74 30,35 99,36 41,45
1792 45,78 34,19 99,39 56,92
1920 17,02 37,78 99,42 43,00
2048 93,55 99,89 100,00 99,56
2176 16,82 35,62 99,39 43,39
2304 45,48 37,83 99,40 57,62
2432 16,76 39,78 99,39 44,19
2560 91,37 -89,05 100,00 99,35
2688 16,61 43,38 99,37 45,12

average: 41,65 -9,95 75,74 47,30

TABLE IV

IMPROVEMENT ACHIEVED IN TERMS OF MISSES IN THE MBALT VERSION

OF LU-DECOMPOSITION FOR EACH LEVEL OF MEMORY HIERARCHY

(ULTRASPARC PLATFORM)

behaviour, as it can bring an extremely large number of misses.
Thus, improvement in real time execution is achieved when
the white bar of figures 26 to 29 is lower than 1, even if
L2 and TLB misses increase. In any case, no L2 cache or
TLB thrashing occurs (no major increase in the number of
misses occurs), because we have to restrain the tile size so
that L1 cache misses do not increase excessively. The total %
improvement of memory hierarchy performance in MBaLt vs.
tiled versions is tables III, IV (last column), is given by the
formula: (m1t−m1M)·p1+(m2t−m2M)·p2+(mT t−mT M)·pT

m1t·p1+m2t·p2+mT t·pT
, where

p1 = D-L1 miss penalty, p2 = L2 miss penalty and pT =
TLB miss penalty in clock cycles. The reduction of misses
in %, achieved in the MBaLt code, is shown in table III.
Negative percentage means that misses increase in MBaLt.
Such values are met mainly in L2 cache. However, data L1

14

Misses in D-L1 cache, L2 cache and TLB

0

1

2

3

4

5

6

7

32 64 12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

1.
79

2
1.

92
0
2.

04
8

dimension of matrices

n
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s
(M

B
aL

t/
ti

le
d

 v
er

si
o

n
)

dtlb
ul2
dl1

Fig. 28. LU-decomposition: misses (normalized values: MBaLt/tiled version)
in all levels of Memory Hierarchy (SGI Origin)

Misses in D-L1 cache, L2 cache and TLB

0

0,5

1

1,5

2

2,5

3

3,5

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

dimension of matrices

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s
(M

B
aL

t/
ti

le
d

 v
er

si
o

n
)

dtlb

ul2

dl1

Fig. 29. SSYR2K: misses (normalized values: MBaLt/tiled version) in all
levels of Memory Hierarchy (UltraSPARC)

cache misses are 2 orders of magnitude more than that of L2
cache. So, although a L1 miss has much less performance cost
(latency) than a L2 one, the total percentage (calculated by
taking into consideration the latency of each memory level),
gives an average of 27% miss improvement, and an even
better result as array dimension grow bigger. As a matter of
fact, small array sizes have no need of data layout or any
other optimization, because the working set, in this case, can
totally fit even in the higher (faster) level of cache hierarchy.
Complicated transformations can be efficient when cache and
TLB misses really degrade performance, which happens for
large array sizes. For such large array sizes (N > 512) MBaLt
achieves to decrease misses in all memory levels significantly.
The average miss improvement is over 70%.

Furthermore, we observed that among the various tile sizes
used in the matrix multiplication benchmark, in MBaLt code,
the TLB misses remain within the same order of magnitude
for all tile sizes. On the contrary, in Kand2D code, the best
tile size (step) for TLB misses does not match to the one that
minimizes the data L1 misses, while for other values of step,
TLB misses increase rapidly.

The results are quite similar for the rest of the benchmarks.
In the LU-decomposition benchmark, for example, the TLB
misses of the masked version are almost zero compared to
those that occur in the tiled version of the code, so, in
figures 27 and 28, the TLB misses are, for the most array sizes,

not worth mentioning. Figure 29 displays significantly reduced
data L1 cache misses in MBaLt version. As already mentioned,
L1 cache misses are the dominant factor on performance,
because they are some orders of magnitude larger than misses
in other memory levels.

Finally, notice that for the problematic array sizes (sizes
equal to some power of 2 and N2 > cache capacity) MBaLt
achieves a major reduction of misses in all memory levels.
Blocked data layouts manage an efficient placement of array
elements, mapping elements accessed by nearby iterations
to adjacent, but not identical cache lines. Otherwise, linear
layouts, when array dimensions are equal to some power of
2, align successive rows to exactly the same cache line, thus,
bringing many conflicts.

VI. CONCLUSION

Low locality of references, thus poor performance in al-
gorithms which contain multidimensional arrays, is due to
incompatibility of canonical array layouts with the pattern
of memory accesses from tiled codes. In this paper, we have
examined the effectiveness of blocked array layouts using 5
benchmarks and have provided with a fast addressing scheme
that uses simple binary masks, accomplished at low cost.
Experimental results illustrate the efficiency of the proposed
fast address computation method. Simulations prove that per-
formance improvement is due to excessive reduction, mainly
of data L1 cache misses and additionally of TLB ones.

ACKNOWLEDGMENTS

We wish to express our profound gratitude to the anonymous
reviewers for their suggestions, which considerably increased
the clarity and quality of the original manuscript.

REFERENCES

[1] D. Patterson and J.Hennessy, Computer Architecture. A Quantitative
Approach, 3rd ed. San Francisco, CA: Morgan Kaufmann Pub., 2002,
pp. 373–504.

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” Computer Architecture News, vol. 23, no. 1, pp. 20–24,
1995.

[3] M. Jimenez, “Multilevel tiling for non-rectangular iteration spaces,”
Ph.D. dissertation, Universitat Politecnica de Catalunya, May 1999.

[4] A. Aggarwal, “Software caching vs. prefetching,” in Proceedings of the
third international symposium on Memory management. ACM Press,
2002, pp. 157–162.

[5] A.-H. A. Badawy, A. Aggarwal, D. Yeung, and C.-W. Tseng, “Evaluating
the impact of memory system performance on software prefetching
and locality optimizations,” in Proceedings of the 15th international
conference on Supercomputing. ACM Press, 2001, pp. 486–500.

[6] C.-K. Luk and T. C. Mowry, “Automatic compiler-inserted prefetch-
ing for pointer-based applications,” IEEE Transactions on Computers,
vol. 48, no. 2, pp. 134–141, 1999.

[7] T. Mowry and A. Gupta, “Tolerating latency through software-controlled
prefetching in shared-memory multiprocessors,” Journal of Parallel and
Distributed Computing, vol. 12, no. 2, pp. 87–106, 1991.

[8] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving Data Locality
with Loop Transformations,” ACM Transactions on Programming Lan-
guages and Systems, vol. 18, no. 04, pp. 424–453, July 1996.

[9] S. Coleman and K. S. McKinley, “Tile size selection using cache
organization and data layout,” in Proceedings of the ACM SIGPLAN
1995 conference on Programming language design and implementation.
ACM Press, 1995, pp. 279–290.

[10] J. Chame and S. Moon, “A Tile Selection Algorithm for Data Locality
and Cache Interference,” in Proc. of the 13th ACM Int. Conf. on
Supercomputing (ICS ’99), Rhodes, Greece, June 1999.

15

[11] S. Ghosh, M. Martonosi, and S. Malik, “Precise miss analysis for
program transformations with caches of arbitrary associativity,” in
Proceedings of the Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
VIII). ACM Press, Oct 1998, pp. 228–239.

[12] M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algorithm,” in
Proc. of the ACM SIGPLAN ’91 Conference on Programming Language
Design and Implementation, Toronto, Ontario, Canada, June 1991, pp.
30–44.

[13] M. T. Kandemir, “Array Unification: A Locality Optimization Tech-
nique,” in Proc. of the International Conference on Compiler Construc-
tion (CC’01), ETAPS’2001, Genova, Italy, Apr 2001, pp. 259–273.

[14] O. Temam, E. D. Granston, and W. Jalby, “To copy or not to copy: a
compile-time technique for assessing when data copying should be used
to eliminate cache conflicts,” in Proceedings of the 1993 ACM/IEEE
conference on Supercomputing. ACM Press, 1993, pp. 410–419.

[15] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau, “Augmenting
loop tiling with data alignment for improved cache performance,” IEEE
Trans. Comput., vol. 48, no. 2, pp. 142–149, 1999.

[16] G. Rivera and C.-W. Tseng, “Data Transformations for Eliminating
Conflict Misses,” in Proc. of the 1998 ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (PLDI’98), Montreal,
Canada, June 1998.

[17] M. Cierniak and W. Li, “Unifying Data and Control Transformations for
Distributed Shared-Memory Machines,” in Proc. of the ACM SIGPLAN,
La Jolla, California, USA, 1995.

[18] M. Kandemir, J. Ramanujam, and A. Choudhary, “Improving Cache
Locality by a Combinaion of Loop and Data Transformations,” IEEE
Transactions on Computers, vol. 48, no. 2, pp. 159–167, Feb 1999.

[19] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam,
“A Linear Algebra Framework for Automatic Determination of Optimal
Data Layouts,” IEEE Transactions on Parallel and Distributed Systems,
vol. 10, no. 2, Feb 1999.

[20] M. Kandemir, J. Ramanujam, and A. Choudhary, “A Compiler Al-
gorithm for Optimizing Locality in Loop Nests,” in Proc. of the
International Conference on Supercomputing (ICS), Vienna, Austria,
July 1997, pp. 269–276.

[21] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee, “A
Layout-conscious Iteration Space Transformation Technique,” IEEE
Transactions on Computers (TC), vol. 50, no. 12, pp. 1321–1336, Dec
2001.

[22] D. S. Wise, G. A. Alexander, J. D. Frens, and Y. Gu, “Language Support
for Morton-order Matrices,” in Proc. of the 2001 ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming (PPOPP’01), Utah,
USA, June 2001.

[23] D. S. Wise and J. D. Frens, “Morton-order Matrices Deserve Compilers’
Support,” CS Dept., Indiana University,” TR533, Nov 1999.

[24] M. S. Lam, E. E. Rotheberg, and M. E. Wolf, “The Cache Performance
and Optimizations of Blocked Algorithms,” in Proc. of the 1991 ACM
SIGMOD Int. Conf. on Management of Data, Denver, Colorado, May
1991.

[25] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi,
“Nonlinear Array Layouts for Hierarchical Memory Systems,” in 13th
ACM Int. Conf. on Supercomputing (ICS ’99), Rhodes, Greece, June
1999.

[26] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi, “Re-
cursive Array Layouts and Fast Parallel Matrix Multiplication,” in 11th
ACM Symp. on Parallel Algorithms and Architectures (SPAA ’99), Saint
Malo, France, June 1999.

[27] C.-Y. Lin, J.-S. Liu, and Y.-C. Chung, “Efficient Representation Scheme
for Multidimensional Array Operations,” IEEE Transactions on Comput-
ers, vol. 51, no. 03, pp. 327–345, Mar 2002.

[28] G. Rivera and C.-W. Tseng, “Locality Optimizations for Multi-Level
Caches,” in Proc. of the ACM/IEEE SC’99 Conference, Portland, OR,
Nov 1999.

[29] N. Park, B. Hong, and V. Prasanna, “Analysis of Memory Hierarchy
Performance of Block Data Layout,” in Int. Conf. on Parallel Processing
(ICPP 2002), Vancouver, Canada, Aug 2002.

[30] ——, “Tiling, Block Data Layout, and Memory Hierarchy Performance,”
IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 07,
pp. 640–654, July 2003.

[31] D. S. Wise, “Ahnentafel Indexing into Morton-ordered Arrays, or Matrix
Locality for Free,” in 1st Euro-Par 2000 Int. Workshop on Cluster
Computing, Munich, Germany, June 2001, pp. 774–783.

[32] A. R. Lebeck and D. A. Wood, “Cache Profiling and the SPEC
Benchmarks: A Case Study,” IEEE Computer, vol. 27, no. 10, pp. 15–26,
1994.

Evangelia Athanasaki received her Diploma in
Electrical and Computer Engineering from the Na-
tional Technical University of Athens in 2002. She
is currently a PhD candidate in the School of Elec-
trical and Computer Engineering, National Technical
University of Athens. Her research interests include
Computer Architecture and High Performance Com-
puting. She is a student member of the IEEE.

Nectarios Koziris received his Diploma in Electrical
Engineering from the National Technical University
of Athens (NTUA) and his Ph.D. in Computer
Engineering from NTUA (1997). He joined the
Computer Science Department, School of Electrical
and Computer Engineering at the National Technical
University of Athens in 1998, where he currently
serves as an Assistant Professor. His research in-
terests include Computer Architecture, Parallel Pro-
cessing, Parallel Architectures (OS and Compiler
Support, Loop Compilation Techniques, Automatic

Algorithm Mapping and Partitioning) and Communication Architectures for
Clusters. He has published more than 60 research papers in international
refereed journals and in the proceedings of international conferences and
workshops. He has also published two Greek textbooks “Mapping Algorithms
into Parallel Processing Architectures”, and “Computer Architecture and
Operating Systems”. Nectarios Koziris is a recipient of the IEEE IPDPS
2001 best paper award for the paper “Minimising Completion Time for
Loop Tiling with Computation and Communication Overlapping” (held at
San Francisco, California). He is reviewer in International Journals and
Conferences. He served as a Program Committee member in HiPC-2002 and
CAC03 (organized with IPDPS03) Conferences, Program Committee co-Chair
for both the ACM SAC 2003 and 2004 Symposiums on Applied Computing-
Special Track on Parallel, Distributed Systems and Networking. He conducted
research in several EU and national Research Programmes. He is a member of
IEEE Computer Society, member of IEEE-CS TCPP and TCCA (Technical
Committees on Parallel Processing and Computer Architecture), ACM and
organized the Greek IEEE Chapter Computer Society.

