VRM: A Failure-Aware Grid Resource Management
System

Lars-Olof Burchard*, César A. F. De Rosel, Hans-Ulrich Heiss*, Barry Linnert*, Jorg Schneider*

*{baron,heiss,linnert,komm }@Qcs.tu-berlin.de
Technische Universitaet Berlin, GERMANY

Abstract— For resource management in Grid envi-
ronments, advance reservations turned out to be very
useful and hence are supported by a variety of Grid
toolkits. However, failure recovery for such systems has
not yet received the attention it deserves. In this paper,
we address the problem of remapping reservations to
other resources, when the originally selected resource
fails. Instead of dealing with jobs already running,
which usually means checkpointing and migration, our
focus is on jobs that are scheduled on the failed resource
for a specific future period of time but not started
yet. The most critical factor when solving this prob-
lem is the estimation of the downtime. We avoid the
drawbacks of under- or overestimating the downtime
by a dynamic load-based approach that is evaluated
by extensive simulations in a Grid environment and
shows superior performance compared to estimation-
based approaches.

I. INTRODUCTION

Currently, Grid research moves its focus from the basic
infrastructure that enables the allocation of resources in
dynamic and distributed environments in a transparent
way to more advanced management systems that accept
and process complex jobs and workflows consisting of
numerous sub-tasks and, e.g., provide guarantees for the
completion of such jobs. In this context, the introduc-
tion of service level agreements (SLA) provides flexible
mechanisms for agreeing on the quality-of-service (QoS)
provided by various resources, including mechanisms for
negotiating SLAs [1]. The introduction of SLAs envolves
prices for resource usage and also implies fines that must
be paid when the assured QoS is not met. Depending
on the scenario, this may be, e.g., a missed deadline for
the completion of a sub-job in a workflow. Consequently,
the definition of SLAs demands for control over each job
and its required resources at any stage of the job’s life-
time from the request negotiation to the completion. An
example for a resource management framework covering
these aspects is the Virtual Resource Manager (VRM)
architecture described in [2].

A typical example for a complex workflow in a Grid
is depicted in Fig. 1. The workflow processed in the
distributed environment consists of five sub-tasks which
are executed one after another in order to produce the
final result, in this case the visualization of the data. This

fderose@inf.pucrs.br
PUCRS, Porto Alegre, BRASIL

0\ %y 1. satellite

& transmission
v 2)

J) 3. data processing,
(filtering, database access, etc.)
.

cmer

Internet
2. bulk transfer
(non real-time)

3. data processing

4. streaming (real-time)

5. post-processing, visualization

Fig. 1. Example: Grid application with time-dependent tasks.

includes network transmissions as well as computations on
two cluster computers.

One important aspect in this context is the behavior
of the management system in case of failures. While
current research mainly focused on recovery mechanisms
for those jobs that are already active, in advance reser-
vation environments it is also necessary to examine the
impact of failures to admitted but not yet started jobs
or sub-jobs. In contrast to the sophisticated and difficult
mechanisms needed to deal with failures for running jobs,
e.g., checkpointing and migration mechanisms, jobs not
yet started can be dealt with in a transparent manner by
remapping those affected jobs to alternative resources.

As previous work in this area showed it is necessary to
deal with these affected but not yet active jobs. Conse-
quently we enhanced the VRM as our prototype for next
generation Grid management systems with failure recovery
functionalities.

In this paper, we present the novel, load-based approach
that has been developed for our VRM framework and has
the advantage of adapting to the actual load situation and
remapping affected jobs accordingly. The adaptiveness is
an important feature as estimations of the failure duration
are unreliable.

The remainder of this document is organized as follows:
firstly, the general problem is described, including the
properties of the advance reservation environment and
the necessary assumptions and conditions to apply our

approach. Based on these general remarks, the VRM
framework is introduced as it is the target application for
the failure recovery mechanism. Following that, the load-
based approach for remapping jobs is presented. In Sec. V,
the strategies are evaluated using extensive simulations,
showing the superiority of our approach compared to
estimations. Before the paper is concluded with some final
remarks, related work important for this paper is outlined.

II. PROBLEM DEFINITION

In this section the general properties of advance reser-
vation systems are described as well as different aspects
related to the problem of remapping jobs in case of failures.

Although the VRM architecture is capable of handling
various kinds of resources at the same time, this work
takes only computing resources into account. Comparable
kinds of resources, e.g., storage space or bandwidth, can
be handled by this mechanism as well.

A. Properties of the Advance Reservation Environment

request

allocated resources
a— of admitted requests

]

Bt

available
resources

slot time

|

book-ahead interval

Fig. 2. Advance reservations: status about future utilization

Advance reservations are requests for a certain amount
of resources during a specified period of time. In general,
a reservation can be made for a fixed period of time in the
future, called book-ahead interval (tga, see Fig. 2). The
book-ahead interval is divided into slots of fixed size, e.g.,
minutes, and reservations can be issued for a consecutive
number of slots [3]. The time between issuing a request
and the start time of the request is called reservation
time r. The finishing time or duration for a given request
must be specified to ensure reliable admission control, i.e.,
to determine whether or not sufficient resources can be
guaranteed for the requested period. As depicted in Fig. 2,
this approach requires to keep the status of each resource,
i.e., information about future requests which are already
admitted, for the whole book-ahead interval.

In this environment, failure recovery not only has to
handle already active jobs, but also those which are ad-
mitted but not yet started, so-called inactive jobs. This
means that the affected inactive jobs have to be remapped
in advance to another matching resource. As the timing
parameters start and stop time were specified during the
admission, e.g., as part of a service level agreement (SLA),
jobs can only be moved to another resource but not shifted
in the temporal dimension.

The general benefits of remapping in advance are shown
in [4] where estimations of the failure duration were used.
As the end of the failure is usually unknown, it is not

easy to decide which active jobs on the resource have to
be taken into account for remapping. This paper presents
a downtime independent approach to decide this question
basing on the actual load situation.

B. Implications of the Environment

In order to implement failure recovery mechanisms in
the advance reservation environment, it is necessary to
consider the types of available resources, i.e., resource
heterogeneity or homogeneity play an important role.
Whenever identical hardware and software infrastructure
is available, including a wide range of properties such as
processor type, cache sizes, operating system version, or
libraries, mapping an inactive job to another resource is
relatively simple. It may be even possible to migrate a
running job, e.g., with support from checkpointing mech-
anisms, some systems provide libraries for that purpose
[5].

However, in a heterogeneous environment the same
task is more complex and difficult, even mapping inactive
jobs to a different resource, e.g., a cluster, may have
consequences on the run-time of the respective processes
and hence, must be considered. For example, mapping a
job from a 2 GHz processor to a 1 GHz processor will
increase the overall execution time. In such an environ-
ment, the migration of running jobs is even more difficult.
Consequently, in the context of this study active jobs
are considered to be not remappable. For many resource
types, such as cluster systems or parallel computers, such
functionality lacks completely or has to be implemented
explicitly by the application. However, this assumption is
not crucial for the usage of our approach or the success of
the remapping strategy itself.

Furthermore, we consider a homogeneous environment
with resources of at least very similar hardware and
software infrastructure which allows jobs to be executed
on any of the available resources. Because of the known
problems with multisite applications, we assume in the fol-
lowing that jobs cannot be split among several resources.
An example for an actual application environment of our
approach is given in the following section.

III. GRID ENVIRONMENT

The approach presented here has been developed in the
context of the Virtual Resource Manager (VRM) described
in [2]. Since the VRM supports QoS by means of SLAs,
failure recovery is an essential feature. To meet SLAs in
terms of, e.g., guaranteed completion times for complex
compute jobs, the VRM needs to have complete control
over the resources and the jobs during run-time (run-time
responsibility). In the following, we briefly describe the
architecture of the VRM as the environment of our failure
recovery mechanism.

The Administrative Domain Controller (ADC) consti-
tutes the central management component of the VRM
architecture (see Fig. 3). The ADC is responsible for
establishing so called Administrative Domains (AD) which

consist of a number of underlying local resources and their
local Resource Management Systems (RMS). These man-
agement systems may control arbitrary types of resources,
e.g., cluster systems, parallel computers, or networks and
are connected to the ADC by Active Interfaces. Such an
Active Interface is also available to connect to another
ADC responsible for a subdomain.

‘ The Grid

Administrative Domain

‘ Administrative Domain Controller ‘

I I I

Active
Interface

Active
Interface

Active
Interface

Administrative Domain

‘ RMS ‘ ‘ RMS ‘

‘ Administrative Domain Controller

] i i

Active ‘ Active ‘

Active

Interface Interface Interface

Fig. 3. Hierarchical Administrative Domain Structure

The failure recovery mechanism proposed in this paper
will be situated in the ADC component. Once any of
the underlying compute resources fails partly or entirely,
the jobs allocated to the failed resource are mapped onto
alternative resources within the same domain according
to our strategy. Partial failures, e.g., of one or more nodes
within a cluster computer, may also require the recovery
mechanism to act, as the total capacity of a resource
may be exhausted. Within the VRM, inactive jobs can
be transparently mapped without further notification to
the users which is a major advantage compared to other
Grid resource management systems such as Globus [3].

The framework of the VRM provides control over not
only compute resources, but also any other resource re-
quired for the remapping of jobs, i.e., also interconnection
networks. For example, remapping a compute job with
large amounts of input data requires a appreciable amount
of time which must be considered and network transmis-
sions must be planned accordingly which may include the
reservation of network bandwidth. Allocation of network
bandwidth is often available in dedicated networks for high
performance Grid environments, e.g., LambdaGrids [6].

A. Using Batch Jobs to Improve the Performance

Batch jobs are frequently used also in planning based
systems [7]. These jobs are not provided with fixed start
and stop times but will be placed in a queue and are
processed as soon as sufficient capacities are available. In
our environment, such batch jobs can be placed on a failed
resource behind the computed remapping interval as long

as the failure persists. The resource management system
then places batch jobs onto the currently failed resource
and once the remapping interval is extended or the failure
persists beyond their anticipated start time, the batch jobs
are simply postponed. Otherwise, they can be started.
The rationale behind this approach is that no timing
guarantees are given for batch jobs and thus, postponing
these jobs is less costly compared to terminating planned
jobs.

B. Discovery of Additional Resources

In case no sufficient resources are available or the ac-
cumulation of free resources does not satisfy the addi-
tional requirements arising with the remapping of jobs
to different computing systems, the VRM is capable of
searching for free resources in a peer-to-peer like network
of other VRMs. For this purpose, knowledge about the
job properties and requirements is essential. The problem
of discovering suitable resources in another administrative
domain or computing environment can be handled using,
e.g., ontology-driven resource discovery as presented in
[8]. Interfaces to other resource management systems, e.g.,
Globus, are also conceivable. As the VRM starts the search
for alternative resources within its local domain, time-
intensive search for suitable resources is only necessary
when the local capacities are exhausted.

IV. LoAaD-BASED REMAPPING ALGORITHM

In this section, our load-based remapping approach used
in the VRM is presented.

A. Remapping Strategies

In case a failure of a specific resource, e.g., a cluster, is
noticed, the management system has to face two different
tasks to minimize the impact of the failure. First, the
management system has to determine all jobs that have
to be taken into account for remapping and, as a second
step, these jobs have to be remapped to other resources.

In order to remap the set of chosen jobs, the task is to
maximize the success of the remapping according to some
optimization criterion, e.g., the amount of successfully
remapped jobs. Other optimization criteria are conceivable
as well although not targeted in this paper, e.g., minimiz-
ing fines to be paid for terminated jobs.

Because the reservations are fixed in time it is not
possible to shift the jobs to the future on the local system
or alternative resources.

Finding feasible alternative resources for a specified set
of jobs is a classical bin packing problem, but in the
spatial dimension not in the temporal one [9]. Therefore, a
simplified algorithm has to be used to solve the generally
NP-hard problem online during the failure recovery.

Different strategies for remapping a set of affected jobs
were evaluated in [4]. As it was shown, the difference
among the individual strategies is rather small. This
means, it may be possible to select a strategy that matches
additional constraints, such as preferring long book-ahead
times leading to FCF'S strategy as used in this paper.

B. Downtime-Independent Remapping

Former work showed, that predictions of the actual
downtime are critical, as the downtime cannot be ac-
curately anticipated [4]. In the case of underestimating
the downtime the number of terminated jobs increases
drastically. The mechanism integrated in the VRM does
not rely on predictions and is independent of the actual
downtime. The general approach used in the VRM is to
identify and remap jobs which are unlikely to be safely
remapped at any later point in time. For that purpose,
in each time slot throughout the duration of the failure
a remapping interval is calculated. The length of this
remapping interval, computed as described in the following
sections, is independent of the actual downtime, which is
unknown to the Grid resource management system.

As described before, we do not deal with the mechanisms
to recover already active jobs on the broken resource. So
we assume, that either an adequate migration mechanism
is available that handles all jobs that are already running,
or-which is more likely-thus running jobs are simply
terminated.

All remaining jobs using the broken resource within
the remapping interval are considered for remapping. The
management system searches for another resource with
sufficient free capacities for every job. If the remapping is
not successful, the job remains on the failed system until
its start time since the failure may have ended until then,
otherwise the job will be terminated. All other jobs are
not remapped, even if they are assigned to the currently
broken resource.

The failed resource is blocked for the remapping interval
only. This means, new reservations for time slots after the
remapping interval may be booked on the currently broken
resource and are remapped later if necessary.

Situation £ 1

current time £ 1

capacit

=
e Ji3 12

110 3

J11 |

time

remapping interval

v
downtime

Situation t2

current time £ o

capacit

| ey

‘\M@§

Jin

remapping imer\jal

v
downtime

@ processed . terminated D remapped new job D remains on resource

Fig. 4. Examples for the usage of the remapping interval during
a resource downtime for two different time slots ¢1 (above) and to
(below).

Fig. 4 is an illustration of the approach based on the
remapping interval. For the first situation at ¢, this means
that the dark gray jobs are handled by the failure recovery
for active jobs (in the simplest case just terminated) as
they were active when the failure occurred. The light gray
jobs are considered for remapping and will be assigned
to other resources if possible. The white jobs stay on the
broken resource also if they reside within the—currently
unknown—downtime. The time slots after the remapping
interval are even available for new jobs.

Due to the recalculation of the remapping interval in
each of the following time slots, more and more jobs
mapped to the broken resource will be remapped. Jobs
submitted after the failure occurs are also remapped if
they are within the remapping interval, as can be seen
in the second situation at ¢ in Fig. 4. Since the downtime
is unknown to the management system, also those jobs are
remapped that will start after the downtime (J16). This
remapping and the recalculation of the remapping interval
is done until the resource is recovered.

C. Objectives for the Remapping Interval

The main requirement is that the remapping interval
must be sufficiently long, such that any job affected by a
failure can be safely remapped with high probability.

On the other hand, all jobs that would start after the
downtime but had been remapped, block free capacity on
other resources. As by a longer remapping interval the
broken resource is also blocked for a longer period no new
jobs are accepted and mapped on the meanwhile recovered
resource for this duration. Both effects combined reduce
the number of accepted jobs, especially, for the time after
the breakdown of the resource has ended. Therefore, it is
necessary to determine the remapping interval as short as
possible.

D. Definitions

Before we give a formal description of the calculation of
the remapping interval some notations are introduced.

As we assume that all resources consist of comparable
nodes, the resource usage of jobs, the load and the capacity
of the resources is measured in number of nodes. Most
values will be normalized by the total number of nodes
¢ of all resources within the Grid. For other kinds of
resources our algorithm is also applicable if an adequate
measurement is given.

The load situation in the Grid of a time slot ty is
described by the load profile Iy, (t), with t € N, which is
defined as the normalized total number of allocated nodes
on all resources for each future time slot tg + ¢.

The capacity lost due to the breakdown of a resource is
denoted by ¢* while the load profile consisting only of jobs
allocated to the broken resource is denoted by I} (t). Using
this definition, the load profile of the not affected jobs can
be defined as Iy, (t) = Iy, (t) — I, (t). Accordingly, the set of
jobs admitted to the system is denoted by J, whereas the

set of jobs allocated to the broken resource is denoted by
J*, and the set of unaffected jobs by J = J\J*.

The booking behavior is described by the average book-
ing profile. The booking profile by, (t), with ¢t € N, of a time
slot t,, denotes the normalized number of booked nodes per
future time slot t; 4+ ¢ of all incoming reservations during
this time slot. The average computed over all previous
booking profiles is denoted by the average booking profile
b(t). These profiles are illustrated in Fig. 5.

E. Calculation of the Remapping Interval

For the calculation of the remapping interval ¢, the load
situation in the Grid is taken into account.

For each time slot # this calculation has to be repeated.
Initially, ¢g is the moment the failure occurs, but later
on the calculation is repeated for each time slot until the
resource recovers.

threshold 77

capacity

average booking profile b

lAtoyC

to + in,¢

remapping interval

Fig. 5. Determination of the remapping interval based on the
combination of the weighted current load profile and the average
booking profile.

First, a weighted combined profile Zto,c(t) is created for
the current time slot ¢ty based on the current load profile of
the unaffected jobs Iy, (t) combined with the weighted load
profile of the affected jobs (- I} (t) (with ¢ > 1) and with
the average booking profile b(t). This profile is some kind
of expectation of the load after this time slot, as it sums up
the currently booked load and the average incoming load
during one time slot. Weighting the load of the affected
jobs higher than the load of the unaffected jobs results in
a narrower profile for small or underloaded resources and
in a higher profile in case a heavily loaded, large resource
is broken. A threshold n with) € [0,1] is used to determine
the remapping interval [to,to + iy,c(to)] on the base of
the weighted combined profile. The remapping interval is
defined by the time after which all values of the weighted
combined profile are lower than 7 (see Fig. 5):

inc(to) = { flnin{i|W>i D> lto,c(t)} if > 1
lAt07C(t) = Zto (t) + Clzo (t) + B(t)

otherwise

The length of the remapping interval has the lower
bound of 1 to ensure, that at least all jobs which are sup-
posed to start within the current time slot are remapped;
otherwise they will fail. An algorithmic overview of this
calculation is given in Fig. 6.

resource failed at tg
// terminate all active jobs
for each job j € J* do
if j.start <ty do
terminate j
while resource down do
// calculate the profiles
init Iy,
for each job j € J* do
for each t € [j.start, j.stop] do
I, (£)+ = ¢jnumberOfNodes
for each job j € J do
for each t € [j.start, j.stop] do
I, (£)+ = jnumberOfNodes
add average booking profile b to profile ftO
// calculate i
for i =tp, to 1 do
if not Iy, (i) < break
// remap jobs within remapping interval
for each j € J* do
if j.start < tg+1 do
remap j if possible
wait for next time slot: tqg = tg + 1

Fig. 6. Algorithmic overview on the calculation of the remapping
interval and the downtime independent remapping.

V. EVALUATION

In this section, the results of our load-based approach
are outlined. In particular, the impact of various choices
for n and ¢ on the terminated jobs as well as on the
overall resource utilization is examined in a simulation
environment.

A. Simulation Environment

The simulations were made assuming an infrastructure
of several cluster and parallel computers with homoge-
neous nodes, i.e., each job is capable of running on any
of the machines involved with exactly the same speed. If
an adequate metric to compare the machines is given our
algorithm could cover inhomogeneous Grids as well.

The simulations only serve the purpose of showing the
general impact of failures and since according to [10] the
actual distribution of job sizes, job durations etc. do not
affect the general quality of the results generated even
when using simple models, the simulations were made
using a simple synthetic job and failure model.

The simulations were done using the simulation mode
of the VRM framework. A simulated user reserved the
resources in advance with the reservation time being
exponentially distributed with a mean of 100 slots. The
duration of the jobs were uniformly distributed in the
interval [250,750] and each job demanded for 2% nodes
with k& uniformly distributed in the interval [1, 8].

Furthermore, a central administrative domain controller
(ADC) instance was simulated controlling an infrastruc-
ture that consisted of different parallel computers with

varying number of compute nodes. In total there were
eight machines with 512, 256, 256, 128, 128, 96, 32, and
32 nodes. Obviously, some jobs can only be executed on
the larger machines. For each resource a local resource
management system capable to support advance reserva-
tions was simulated together with an active interface (AI)
communicating with the simulated ADC. In our model all
jobs were submitted to the ADC and no additional jobs
were submitted to the local resource management systems.

An additional component simulated the failures to occur
periodically every 1500 slots with a failure duration of
always 500 slots. The resource to break down completely
was chosen randomly among the 8 machines. To simulate
varying load situations we chose different values for the
average reservation time r. Each simulation run had a
duration of 20,000 slots and the simulations were repeated
until a sufficiently small confidence interval (within £5%
of the mean with 95% confidence) was reached.

In order to assess the performance of the load-based
approach, two metrics were chosen that reflect both the
amount of jobs that were affected but could not be
successfully remapped onto alternative resources and the
number of jobs that had to be rejected because resources
are blocked due to the failure recovery. The first metric is
the termination ratio, which is defined as follows:

termination ratio := ——,
4]

with A being the set of affected jobs and A* C A C J* (see
Sec. IV-D) being the set of unsuccessfully terminated jobs.
The second metric is called request blocking ratio, defined

as
IR
S|
with S denoting the set of all submitted requests and R
denoting the rejected requests.

As described in previous sections, for the simulations
we assume that running jobs cannot be migrated which is
the usual case in a high performance computing scenario.
However, our model is general enough to cover also the
migration of running jobs, in particular this is discussed
in Sec. V-D.

request blocking ratio :=

B. Performance of the Load-Based Remapping Approach

In Fig. 7, the termination ratio is depicted for different
choices of and (. In general, it can be seen that the
impact of n is relatively high, whereas ¢ can only be
used for fine-tuning. In this setting, the best results are
obtained for ¢ = 2 with n = 0.775. As (is related to the
fragmentation caused by resource boundaries, using larger
values of ¢ does not improve the overall performance.
Consequently, the following examinations were conducted
using ¢ = 2.

In Fig. 8, the termination ratio of the load-based remap-
ping approach is depicted only in dependence of 7. The
different choices of r were selected to create load situations
where the average reservation time is shorter (r = 300)

r=300

termination ratio (%)

¢ 0.60 0
0.50 n

Fig. 7. Termination ratio for different choices of n and ¢ (r = 300).

r=300 r 1000

termination ratio (%)
W N
S o
termination ratio (%)
%
(=]

0.50 0.60 070 080 090 1.00
n 7
|—6— zeta=2 = = = exact knowledge 50% undereslimalionl

Fig. 8. Termination ratio for different average reservation times.

or longer (r = 1000) than the failure duration (500). To
compare our novel approach with the estimations done in
[4], in Fig. 8 the termination ratio using the exact failure
duration to identify the jobs to be remapped (which is
a priori unknown) and an underestimation of the failure
duration by 50% are depicted.

It can be observed, that for » = 300, the termination
ratio shows a minimum at n ~ 0.8 and from thereon rises.
The curve for » = 1000 reaches its minimum earlier and
then remains stable. As already described in [4], under-
estimations of the failure duration result in considerable
increase of the termination ratio. The reason that the exact
knowledge performs worse than the load-based approach
results from the fact that the failed resource cannot be
locked for the whole duration of the failure using the load-
based approach. Hence, additional jobs which must be
remapped may be placed onto the resource. When this
remapping is successful, it contributes positively to the
termination ratio. In contrast, when a resource is locked
at the occurrence of the failure for the entire failure time,
such jobs will never be placed onto the failed resource.

The self-adaptiveness of our approach can be seen more
clearly when investigating the development of the actual
remapping interval lengths during a single failure. This is
depicted in Fig. 9. The diagram shows the length of the
computed remapping intervals during a single failure for a
sample period of 32 slots using n = 0.8.

400

350 k—*—

300 -%‘_

250 %’—.—"
(3

200
(Y

150
100
0 4 8

remapping interval length

12 16 20 24 28

time

Fig. 9. Snapshot of the remapping interval lengths computed during
a single failure (n = 0.8, » = 300).

C. Impact on the Amount of Accepted Jobs and Utilization

=300 r=1000

21 22

. %X y W

19

request blocking ratio (%)
request blocking ratio (%)

Bt 19

0.50 0.60 0.70 0.80 090 1.00 0.50 0.60 070 0.80 090 1.00
n n

Fig. 10. Request blocking ratio for » = 300 and r = 1000.

The impact of our approach on the amount of rejected
jobs can be observed in Fig. 10: The amount of rejected
jobs decreases with growing 7. Therefore, the request
blocking ratio behaves opposite to the termination ratio.
Failure situations are considered as exceptions from the
normal operation and hence the impact on the overall
request blocking ratio is limited. In particular, selecting
a small value for 7 does not impact the request blocking
ratio and hence, selecting n < 0.6, as also indicated in the
previous section, can be considered as a reasonable choice.

D. Comparison with Job Migrations

Although not assumed for the previous examinations,
migration of running jobs is an interesting feature, al-
lowing the management system to provide an almost
completely transparent failure recovery. In the most ex-
treme case, jobs may be repeatedly migrated throughout
their life-time. One possibility to support job migration is
checkpointing. In this case, the failure recovery also needs
to take care of the transfer of the checkpointed data to
the backup resource and of the correct restart of the job
at the new location. Moreover, since checkpointing is only
performed at certain intervals, the required rollback to the
last checkpoint increases the run-time of the job.

In Fig. 11, the possible benefit of checkpointing and job
migration is outlined. The diagram shows the common
approach, i.e., jobs can only be transferred as a whole
and active jobs cannot be remapped. In contrast, providing

=300

80

~ 70

€ % #
2 y4
£ 50

5 40 pd
Ef 4

£

e

zaw A/[

10 7
0

L B e L
0.50 0.60 070 0.80 090 1.00

cta

[—e— 1o job migration —— job migration |

Fig. 11. Performance benefit using checkpointing and migration

means for migration of running jobs has a significant ben-
efit as the termination ratio can be significantly reduced,
i.e., around 50% more jobs can be successfully remapped
to other resources. The diagram shows an idealized and
unrealistic situation where data transfer over the network
and rollbacks to previous checkpoints do not require time.
However, the potential of using job migrations is apparent.

VI. RELATED WORK

Advance reservations are an important allocation strat-
egy, widely used, e.g., in Grid toolkits such as Globus [11],
as they provide simple means for planning of resources and
in particular co-allocations of different resources. Besides
flexible and easy support for co-allocations, e.g., in case
complex workflows need to be processed, advance reser-
vations also have other advantages such as an increased
admission probability when reserving sufficiently early,
and reliable planning for users and operators. Support for
advance reservations has been integrated into several man-
agement systems for distributed and parallel computing
[3], [12]. In [2], advance reservations have been identified
as essential for a number of higher level services, such as
SLAs.

In the context of Grid computing, failure recovery
mechanisms are particularly important as the distributed
nature of the environment requires more sophisticated
mechanisms than needed in a setting with only few re-
sources that can be handled by a central management
system.

In general, failure detection and recovery mechanisms
focus on the requirements to deal with applications that
are already active. The Globus heartbeat monitor HBM
[3] provides mechanisms to notify applications or users
of failures occurring on the used resources. The recovery
mechanisms described in this paper can be initiated by
the failure detection of the HBM. In [13], a framework
for handling failures in Grid environments was presented,
based on the workflow structure. The framework allows
users to select different failure recovery mechanisms, such
as simply restarting jobs, or - more sophisticated - check-
pointing and migration to other resources if supported by
the application to be recovered. The different recovery
mechanisms are discussed and compared. However, the
framework can only be used for the recovery of active ap-

plications, inactive applications that are already assigned
to resources but not yet started are not taken into account.

In [4], the basic requirements and opportunities for
failure recovery in planning based resource management
systems have been examined. In particular, it was shown
that remapping of admitted but not yet active jobs is
essential in order to reduce the number of terminated
jobs. It was also shown that the best results in terms
of termination probability and overall resource utilization
are achieved, when exact knowledge of the actual duration
of a failure is available and any jobs commencing during
this interval are remapped. However, estimations of the
actual downtime are a questionable approach as these
estimations are inherently unreliable and underestima-
tions lead to a significantly higher termination ratio than
possible with exact knowledge. In [14], we extend the
approach of remapping in advance from [4] and introduce
the concept to repeatedly calculate the remapping interval.
This approach is extended here to be applicable in the
Virtual Resource Manager (VRM)]2].

VII. CONCLUSION AND FUTURE WORK

In this paper, the novel load-based failure recovery
strategy used in the VRM framework was presented.
The mechanism is applicable in any environment where
distributed resources must be managed and failures of the
system are critical, e.g., SLAs are given for the correct and
complete execution of a job. In particular, co-allocation
environments such as Grids are target environments for
our strategy.

The load-based algorithm is based on previous work
on this field which showed, that estimations of the ac-
tual downtime of a resource have a particularly negative
impact on the termination ratio. Consequently, our ap-
proach adapts to the actual load situation and determines
a remapping interval accordingly, which diminishes the
danger of underestimating failure durations as any job
is remapped before it is actually endangered of being
terminated. Simulations showed how to select appropriate
values for the used parameters to gain the best perfor-
mance of the failure recovery.

The strategy presented in this paper is generic, i.e., it
can easily be applied to almost any resource type and any
resource management system. This is particularly impor-
tant for next generation Grid systems, which essentially
need to support higher level quality-of-service guarantees,
e.g., specified by SLAs, as in the context of the VRM [2].

Future work will deal with the possibility to integrate
checkpointing and migration mechanisms into the load-
based approach, which has the potential to dramatically
increase the performance of the failure recovery mecha-
nisms as presented before. This approach will allow to
more efficiently utilize the available resources as gaps due
to temporal fragmentation can be filled. Important issues
in this context are the time required for job migration over
a network. Moreover, a completely automated selection of
both parameters will be developed simplifying the deploy-
ment of the system. However, as the simulations conducted

for this paper indicate, a static choice is also reasonable
and leads to good results.

REFERENCES

[1] Czajkowski, K., I. Foster, C. Kesselman, V. Sander, and
S. Tuecke, “SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in Dis-
tributed Systems,” in 8th Intl. Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), Edinburgh, Scot-
land, UK, ser. Lecture Notes in Computer Science (LNCS), vol.
2537. Springer, January 2002, pp. 153—-183.

[2] Burchard, L.-O., M. Hovestadt, O. Kao, A. Keller, and B. Lin-
nert, “The Virtual Resource Manager: An Architecture for SLA-
aware Resource Management,” in 4th Intl. IEEE/ACM Intl.
Symposium on Cluster Computing and the Grid (CCGrid),
Chicago, USA, 2004.

[3] “The Globus Project,” http://www.globus.org/.

[4] Burchard, L.-O. and B. Linnert, “Failure Recovery in Dis-
tributed Environments with Advance Reservation Management
Systems,” in 15th IFIP/IEEFE International Workshop on Dis-
tributed Systems: Operations and Management (DSOM), Davis,
USA, ser. Lecture Notes in Computer Science (LNCS), vol. 3278.
Springer, 2004, to appear.

[5] Litzkow, M., T. Tannenbaum, J. Basney, and M. Livny, “Check-
point and Migration of UNIX Processes in the Condor Distrib-
uted Processing System,” University of Wisconsin - Madison
Computer Sciences Department, Tech. Rep. UW-CS-TR-1346,
April 1997.

[6] DeFanti, T., C. de Laat, J. Mambretti, K. Neggers, and B. S. Ar-
naud, “TransLight: A Global-Scale LambdaGrid for E-Science,”
Communications of the ACM, vol. 46, no. 11, pp. 34-41, No-
vember 2003.

[7] Keller, A., and A. Reinefeld, “Anatomy of a Resource Manage-
ment System for HPC Clusters,” in Annual Review of Scalable
Computing, vol. 3, Singapore University Press, 2001, pp. 1-31.

[8] Heine, F., M. Hovestadt, and O. Kao, “Towards Ontology-
Driven P2P Grid Resource Discovery,” in 5th IEEE/ACM In-
ternational Workshop on Grid Computing, to appear, 2004.

[9] Garey, M. and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. ~W. H. Freeman
& Co., 1979.

[10] Lo, V., J. Mache, and K. Windisch, “A Comparative Study
of Real Workload Traces and Synthetic Workload Models for
Parallel Job Scheduling,” in 4th Workshop on Job Scheduling
Strategies for Parallel Processing, Orlando, USA, ser. Lecture
Notes in Computer Science (LNCS), vol. 1459. Springer, 1998,
pp. 25-46.

[11] Foster, I., C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy, “A Distributed Resource Management Architecture
that Supports Advance Reservations and Co-Allocation,” in
7th International Workshop on Quality of Service (IWQoS),
London, UK, 1999, pp. 27-36.

[12] Smell, D., M. Clement, D. Jackson, and C. Gregory, “The Per-
formance Impact of Advance Reservation Meta-scheduling,” in
6th Workshop on Job Scheduling Strategies for Parallel Process-
ing, Cancun, Mexiko, ser. Lecture Notes in Computer Science
(LNCS), vol. 1911. Springer, 2000, pp. 137-153.

[13] Hwang, S. and C. Kesselman, “Grid Workflow: A Flexible Fail-
ure Handling Framework for the Grid,” in 12th Intl. Symposium
on High Performance Distributed computing (HPDC), Seattle,
USA. IEEE, 2003, pp. 126-138.

[14] L.-O. Burchard, B. Linnert, and J. Schneider, “A distributed
load-based failure recovery mechanism for advance reservation
environments,” in 5th ACM/IEEE Intl. Symposium on Cluster
Computing and the Grid (CCGrid), 2005.

