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Abstract: This paper presents an ameliorated design of pvFPGA, which is a novel system design 
solution for virtualising an FPGA-based hardware accelerator by a virtual machine monitor 
(VMM). The accelerator design on the FPGA can be used for accelerating various applications, 
regardless of the application computation latencies. In the implementation, we adopt the Xen 
VMM to build a paravirtualised environment, and a Xilinx Virtex-6 as an FPGA accelerator. The 
data transferred between the x86 server and the FPGA accelerator through direct memory access 
(DMA), and a streaming pipeline technique is adopted to improve the efficiency of data transfer. 
Several solutions to solve streaming pipeline hazards are discussed in this paper. In addition, we 
propose a technique, hyper-requesting, which enables portions of two requests bidding to 
different accelerator applications to be processed on the FPGA accelerator simultaneously 
through DMA context switches, to achieve request level parallelism. The experimental results 
show that hyper-requesting reduces request turnaround time by up to 80%. 
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1 Introduction 
Cloud computing services offer many advantages for 
potential customers: low start-up cost, high-availability, 
instant access to massive computing power, no need for  
in-house technical expertise, and so on (Eguro and 
Venkatesan, 2012). Virtualisation technology, a key 
component of cloud computing, has generated great interest 
recently. With virtualisation, applications running on 
different operating systems (OS) can access the same 
hardware resources. This is achieved by allowing the 
underlying hardware resources to be shared by multiple 
virtual machines (VMs) or domains (Xen-specific term of 
VMs) with each running a separate OS. The virtual machine 
monitor (VMM) is responsible for separating each running 
instance of an OS from the physical machine, and guarantee 
that these OSs do not interfere with one another. The 
general benefits of virtualisation are: 

1 creating higher hardware utilisation 

2 reducing the number of hardware machines thereby 
reducing financial costs and power consumption 

3 facilitating OS migration. 

x86 machines are historically difficult to virtualise, because 
some sensitive instructions of x86 (e.g., SIDT) do not trap 
when executed in user mode. Full virtualisation, including 
hardware-assisted virtualisation [e.g., Intel VT-x (Neiger  
et al., 2006)], and paravirtualisation are the two prevailing 
virtualisation solutions for x86 machines. VMware 
workstation (Bugnion et al., 2012) and KVM (Kivity et al., 
2007) are the two well-known VMMs that support  
full virtualisation. The bedrock of full virtualisation is  
trap-and-emulate, which traps the privileged instructions to 
their emulated versions to implement privileged operations 
during runtime. This keeps the virtualisation layer 
transparent to OSs, but it leads to significant performance 
penalties owing to the dynamic trap-and-emulate overhead 
(Walters et al., 2008). The Xen VMM (Barham et al., 2003) 
is famous for its paravirtualisation support. Paravirtualisation 
requires OS modification to support paravirtualisation,  
but it has high efficiency in performing I/O operations 
(Chisnall, 2007). A common hybrid solution is to use 
paravirtualised drivers in full virtualisation to achieve high 
I/O performance. 

Managing and analysing large and complex datasets 
have recently brought a big challenge to the cloud 
infrastructure (Agrawal et al., 2011). We view the popular 
solutions like Google MapReduce (Dean and Ghemawat, 
2008) and Hadoop (http://hadoop.apache.org/) as horizontal 
solutions, which lay on the foundation of building large 
clusters with adding more nodes. Vertical solutions (e.g., 
Canny and Zhao, 2013) aim at enhancing single node 
compute capability. Horizontal and vertical solutions are not 
mutually exclusive, that is, they can be combined en masse 
to deal with the ‘big data’ in the cloud. 

Single node computing enhancement can be achieved 
through adding hardware accelerators to hardware servers. 
Hardware accelerators assist central processing units 

(CPUs) in speeding up computations of complex algorithms 
in various fields, such as video/image processing (Yamaoka 
et al., 2006; Jan et al., 2015; Taibo et al., 2011), signal 
processing (Lee et al., 2013) and various mathematical 
calculations (Tian and Benkrid, 2010; Okuyama et al., 2012; 
Rostrup et al., 2013). Graphics processing units (GPUs) and 
field-programmable gate arrays (FPGAs) are two types of 
dominantly used hardware accelerators (Chung et al., 2010). 
GPUs are inexpensive (Brodtkorb et al., 2013, and popular 
for general purpose computing (Owens et al., 2007). Since 
GPUs are programmed using high level languages and APIs 
which abstract away hardware details (Che et al., 2008), 
they are suitable to be used by software developers.  
FPGAs are highly customisable and reconfigurable, and 
achieve highly efficient algorithm acceleration with deep 
pipelining and parallelism (register level). Partial runtime 
reconfigurability is another important distinguishing feature 
of FPGAs (Silva and Ferreira, 2006). FPGAs have been 
found to outperform GPUs in many specific applications 
(Che et al., 2008; Cope et al., 2005). Since 2007, many 
researchers (Dowty and Sugerman, 2009; Gupta et al., 2009; 
Shi et al., 2012; Giunta et al., 2010; Ravi et al., 2011; 
Lagar-Cavilla et al., 2007) have been focusing on making 
GPUs a shared resource within a virtualised environment, 
which would allow for adding GPUs to the infrastructure 
level of cloud computing. But the idea of adding FPGA 
accelerators to cloud computing (El-Araby et al., 2008; 
Gonzalez et al., 2012; Huang et al., 2010; Huang and 
Hsiung, 2013; Lübbers, 2010; Sabeghi and Bertels, 2009; 
Jain et al., 2014; Byma et al., 2014; Wang et al., 2013) still 
stays at an exploration stage. 

We propose pvFPGA, a leading edge heterogeneous 
system design solution, which efficiently virtualises an 
FPGA-based hardware accelerator by a VMM on the x86 
platform. The benefits of pvFPGA are the combinations of 
the benefits of virtualisation and the benefits of using FPGA 
accelerators, which are: 

1 the utilisation of an FPGA accelerator is increased 

2 applications running in different domains can obtain 
speedup in the computation of complex algorithms 
using an FPGA accelerator. 

Service is the theme of cloud computing. Different qualities 
of service (QoS) are offered to cloud clients according to 
different tiers. Similarly, pvFPGA should be able to supply 
guest domains with different maximum data transfer 
bandwidths so that higher tier clients will complete their 
acceleration requests faster than ordinary clients. 

Preliminary results of the project were presented in 
Wang et al. (2013), while an upgraded and more advanced 
design of pvFPGA is detailed in this paper. Basic overview 
of the Xen VMM is given in Wang et al. (2013), and will 
not be repeated it in this paper. But a general understanding 
of the Xen VMM is recommended to understand this work. 
The experimental results in Wang et al. (2013) show that: 

1 the virtualisation overhead in pvFPGA is near zero 
when the allocated data pool size is larger than 4 MB 
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2 the coprovisor successfully multiplexes acceleration 
requests from multiple domains 

3 different QoS levels are assigned to domains by 
assigning them different data transfer bandwidths. 

In comparison to Wang et al. (2013), the main contributions 
of this paper are summarised as follows: 

• the accelerator design supports more than one 
accelerator application on the FPGA which can be 
requested by user applications from domains 

• the coprovisor adopts the streaming pipeline technique 
that facilitates general purpose computing 

• the coprovisor supports hyper-requesting, which 
enables requests destined to different accelerator 
applications to be processed simultaneously, thereby 
achieving request level parallelism. 

The remainder of this paper is organised as follows. We 
begin in Section 2 with an elaboration of our pvFPGA 
design. In Section 3, we make a detailed analysis of the 
streaming pipeline technique that can be used in an FPGA 
accelerator design. Section 4 shows the implementation and 
evaluation of pvFPGA, as well as detailed analyses of the 
experimental results. In Section 5, we compare pvFPGA 
with recent accelerator virtualisation solutions. Ultimately, 
we conclude this paper and discuss possible future 
directions in Section 6. 

2 System design 
Dom0 and DomU are the two types of domains supported 
by Xen. Dom0 is the privileged domain, which can access 
external devices directly. DomU represents an unprivileged 
domain, which requires the use of a split device driver 
model to access devices via Dom0. 

Figure 1 An overview of pvFPGA framework (see online 
version for colours) 
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An overview of pvFPGA is shown in Figure 1. On the 
hardware side, we use a DMA controller (Northwest Logic 
Corporation, 2010) on the FPGA accelerator for data 
transfer between the server memory and the FPGA 
accelerator. Our current implementation includes two 
accelerator applications (processing units), this can be easily 
extended to three or more accelerators. On the software 

side, pvFPGA includes three main components: a data pool, 
a command channel and a coprovisor. A data pool consists 
of a group of physical memory pages, which are allocated in 
a DomU kernel space and shared with the Dom0 kernel 
space through the grant table mechanism supported by the 
Xen VMM. A user process in a DomU can map the data 
pool into its address space so that it can directly store data 
into the data pool. Thus, the data pool is used for  
user-kernel and inter-domain data transfer. Finally, the data 
pool is exposed to the DMA controller on the FPGA 
accelerator as a DMA buffer for data fetching and results 
writing back. Similar to a data pool, a command channel is a 
shared memory-based channel for command information 
transfer. Our design currently uses the command channel to 
transfer two command elements: 

1 the application number that the DomU requires to use 
on the FPGA accelerator 

2 the size of the data in the data pool that must be 
transferred to the FPGA accelerator. 

For example, a DomU has a 4 MB data pool, but it may 
request only 1 MB data to be transferred for processing on 
the FPGA accelerator. A coprovisor is a component that we 
propose for multiplexing requests from DomUs to access 
the shared FPGA accelerator. 

Table 1 Descriptions of the operation flow 

Steps Descriptions 

1 An application specifies the app number and data size 
in the command channel, which is mapped to its 
address space through the ‘mmap( )’ call. 

2 The application directly puts data in the shared data 
pool, which is mapped to its address space. 

3 The user application notifies the frontend driver in the 
DomU kernel space that data is ready and then goes to 
the Sleep state (this is achieved by a system call, e.g., 
ioctl). 

4 The frontend driver in the DomU kernel space sends an 
event to the backend driver in the Dom0 kernel space. 

5 The frontend driver passes the request to the device 
driver in the Dom0 kernel space, and the device driver 
sets the DMA transfer data size according to the 
parameter obtained from the command channel. 

6 The device driver initiates the start of the DMA transfer 
in the FPGA accelerator. 

7 The DMA controller transfers all the data to the FPGA 
accelerator in a pipelined way to do computations. 

8 The DMA controller transfers the results of 
computations back to the data pool. 

9 The DMA controller sends an interrupt to the device 
driver when all the results have been transferred to the 
data pool. 

10 The backend driver sends an event to notify the 
frontend driver that the results are ready. 

11 The frontend driver wakes up the user application. 
12 The user application fetches the results from the data 

pool. 
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Both the data pool and command channel in a DomU are 
exposed as device nodes in the /dev directory. We wrote 
some system call implementations, and user processes can 
interact with them through the system calls. Table 1 shows 
an example of general implementation using pvFPGA. A 
more detailed introduction of the basic pvFPGA design is 
introduced in Wang et al. (2013). In this paper, we will 
introduce an upgraded design of pvFPGA. 

2.1 FPGA accelerator design 
Figure 2 shows the accelerator design on the FPGA. In the 
figure, same colour modules operate at the same frequency. 
The on-chip FIFO buffer is a memory queue IP core 
supplied by Xilinx for applications requiring in-order 
storage and retrieval (Xilinx Corporation, 2011b). The input 
and output of a FIFO buffer can operate at different 
frequencies. The PCIe interface (Xilinx Corporation, 2010) 
is adopted as the communication channel, and direct 
memory access (DMA) technique is used for efficient data 
transfer between the FPGA accelerator and the host server 
memory. For convenience in the paper discussion, ‘DMA 
read operation’ means that the DMA controller reads data 
from the host system’s memory, and ‘DMA write operation’ 
means that the DMA controller writes data to the host 
system’s memory. 

As shown in Figure 2(a), we use two DMA channels to 
achieve full duplex; one for DMA read operations and one 
for DMA write operations. Thus, we can do DMA reads 
from the server memory and DMA writes to the server 
memory simultaneously; that is, we take advantage of a 
streaming pipeline. Figure 2(b) shows the pipeline stages. 
The overall procedure is performed in three stages, DMA 
read stage, computation stage, and DMA write stage. The 
latency for finishing each of the three stages is identical in 
Figure 2(b), but in practice, this is not always the case, since 
the latency of computation is determined by the accelerator 
application, and the latency of DMA read or write 
operations is determined by the communication channel. A 
detailed discussion of the pipeline technique will be shown 
in Section 3. 

The app controller in Figure 2(a) performs four 
functions: 

1 directing the input streaming data from the DMA 
controller to app1 or app2 

2 multiplexing app1 and app2 to use the DMA write 
channel 

3 maintaining the accelerator status word (ASW) 

4 raising an interrupt when required. 

The accelerator driver will direct the app controller to send 
the input block of data to either app1 or app2, by 
configuring the ASW before initiating the start of a DMA 
read operation. Also, the app controller needs to multiplex 
requests from app1 and app2 to use the DMA write channel. 
Since initiating a DMA write operation is also implemented 
by the accelerator driver, the app controller needs to 

maintain the ASW status, and ensures it remains visible to 
the driver. 

Figure 2 Accelerator design on an FPGA, (a) accelerator design 
(b) pipeline stages (see online version for colours) 
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Table 2 Bits in the ASW 

Bit Functions 

Bit 0 0-app1 is selected for the following block of data; 
1-app2 is selected for the following block of data. 
Written by the driver. 

Bit 1 This bit is set by the FPGA accelerator when one 
block of data finishes using the DMA read 
channel. An interrupt is raised after setting this bit. 
Read and Cleared by the driver. 

Bit 2 0-app1 finishes its processing for one block of 
data; 1-app2 finishes its processing for one block 
of data. Read by the driver. 

Bit 3 This bit is set by the FPGA accelerator either when 
app1 or app2 finishes a computation. An interrupt 
is raised after setting this bit. Read and cleared by 
the driver. 

Bit 4–31 Reserved for future updates. 

The introduction of the ASW enhances the interaction 
between the driver and the FPGA accelerator. More 
precisely, the driver gets to know the status of the FPGA 
accelerator through the ASW, and from the FPGA 
accelerator perspective, the ASW tells the FPGA accelerator 
what the driver needs. The ASW is mapped to the system 
memory through the PCIe base address register (BAR). The 
design of the ASW is shown in Table 2. With the help of the 
ASW, interrupts that are raised by the FPGA accelerator 
due to different events can be distinguished. When a block 
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of data finishes using the DMA read channel, the app 
controller will set bit 1 of the ASW and raise an interrupt; 
for convenience, we call this a type 1 interrupt. When an 
app (either app1 or app2) finishes a computation, the app 
controller will clear (if app1 finishes a computation) or set 
(if app2 finishes a computation) Bit 2 of the ASW, set bit 3 
of the ASW, and raise an interrupt. We call this a type 2 
interrupt in the later discussion. Thus, a type 1 interrupt is 
raised as a block of data finishes using the DMA read 
channel, and a type 2 interrupt is raised as a block of data 
finishes its computation on the FPGA accelerator. 

2.2 FPGA virtualisation 

2.2.1 Coprovisor 
The Xen VMM scheduler is only responsible for controlling 
access to CPUs, while the backend drivers need to provide 
some means of regulating the number of I/O requests that a 
given domain can perform (Chisnall, 2007). To manage this 
for pvFPGA, we propose a component that we call a 
coprovisor, which multiplexes requests from different 
domains accessing the FPGA accelerator. For GPU 
virtualisation, the multiplexing work is performed in user 
space, owing to the lack of standard interfaces at the 
hardware level and driver layer. Precisely, the multiplexer 
and scheduler are put on the top of CUDA runtime or driver 
APIs (Gupta et al., 2009; Shi et al., 2012; Giunta et al., 
2010). In our case, the coprovisor can perform multiplexing 
directly at the accelerator driver layer in Dom0. 

The architecture of the coprovisor is shown in Figure 3. 
It consists of five parts: request inserter, scheduler, request 
remover and two request queues. Request queue 1 is used 
for buffering requests to access app1 on the FPGA 
accelerator, and request queue 2 is used for buffering 
requests to access app2. A DomU notifies the Dom0 via an 

event channel, so the request inserter, which is responsible 
for inserting requests from DomUs into the corresponding 
request queue, is invoked when an event notification is 
received at the backend driver. When a request has been 
serviced, an interrupt from the FPGA accelerator notifies 
the request remover to remove the serviced request from the 
corresponding request queue. The scheduler is responsible 
for scheduling requests from the two request queues to 
access the FPGA accelerator through the accelerator device 
driver. In terms of one request queue, requests are scheduled 
using first-come, first-served (FCFS) policy; that is, 
requests in the same queue are extracted in an orderly 
manner by the scheduler. More detail about the scheduling 
is discussed in Section 2.3. 

The size of a data pool in a DomU implies the maximum 
data transfer bandwidth. For instance, a DomU (D1) 
assigned with a 1 MB data pool can transfer 1 MB data at a 
maximum for each request to the FPGA accelerator, while a 
DomU (D2) assigned with a 512 KB data pool can transfer 
512 KB data at a maximum per request. When the two 
DomUs contend for using the same app on the FPGA 
accelerator and the acceleration needs to send more than 
512 KB data, D2 is slower because it needs to send more 
requests to complete the entire acceleration. To provide 
DomUs with different maximum data transfer bandwidths, 
the size of a data pool can be regulated in each DomU’s 
frontend driver and the Dom0’s backend driver. 

2.3 Hyper-requesting 

2.3.1 Case analysis 
In this section, we propose the concept of hyper-requesting 
to improve request turnaround time through DMA context 
switches. 

Figure 3 Design of a coprovisor (see online version for colours) 
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Let us consider two applications, app1 and app2, running on 
the FPGA accelerator as shown in Figure 4. The processing 
time needed by app1 and app2 for processing one block of 
data is T1 and T2, respectively [see Figure 4(a)]. Assume 
both T1 and T2 are longer than the communication latency 
of transferring one block of data. Two DomUs, Lucid1 and 
Lucid2, are requesting access to the FPGA accelerator 
simultaneously, with Lucid1 requesting app1 acceleration 
and Lucid2 requesting app2 acceleration. Suppose the 
Lucid2 request comes first and gets serviced before the 
Lucid1 request. Without hyper-requesting, the turnaround 
time of Lucid1 was T1 + T3 [see Figure 4(b)], where T3 
equals T2. The Lucid1 request will not be scheduled to the 
FPGA accelerator until the Lucid2 request is serviced, 
which results in a scheduling delay (T3) for Lucid1 to get its 
request serviced. Even though the DMA read channel [in 
Figure 2(a)] becomes idle when a block of data is 
transferred to app2 for processing, the Lucid1 request has to 
wait to get serviced till app2 on the FPGA accelerator 
finishes its processing and raises an interrupt to the server. 
This unnecessary scheduling delay can be eliminated by 
implementing a DMA context switch. More precisely, once 
the Lucid2 request finishes its use of DMA read channel, an 
immediate context switch to the Lucid1 request will be 
implemented by the coprovisor. 

Figure 4 Analysis of request turnaround time, (a) processing 
time of app1 and app2 (b) turnaround time without 
hyper-requesting (c) turnaround time with  
hyper-requesting (see online version for colours) 
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As shown in Figure 4(c), the overall turnaround time will be 
reduced to T2, and the turnaround time of Lucid1 is T1 plus 
the context switching overhead T4. The DMA context 
switching overhead is minor, because only one parameter 
(the bus address of the next DMA buffer descriptor) needs 
to be loaded to the DMA controller. Therefore, both Lucid1 

and the overall turnaround time will be reduced through a 
DMA context switch. When two requests have multiple 
portions of data that are required to be processed, portions 
of the two requests can be loaded into the FPGA accelerator 
through DMA context switches to be processed 
simultaneously. The request turnaround time improvement 
will be shown in our experiments in Section 4.3. 

2.3.2 Hyper-requesting design 
In order to support hyper-requesting, requests to access the 
FPGA accelerator need to become context-aware so that 
request context switches can be performed. Similar to the 
functionality of a process control block (PCB), each request 
has its own request control block (RCB) which is used by 
the coprovisor to setup a DMA executing context. The 
design of an RCB is shown in Figure 5. Table 3 explains the 
fields of an RCB. 

Figure 5 Design of a request control block 

DomID

Port

App_num

Total_buf_num

Current_buf_num

Request State

RCB_list
 

Table 3 Description of a request control block 

Field Description 

DomID Denotes the ID of the domain that the 
request comes from. 

Port The port number of the event channel. It is 
used to notify the request’s domain 
through the corresponding event channel. 

Request State The three possible states of a request: 
DMAREAD, DMAWRITE and DMAFIN. 

App_num Specifies which app the request needs to 
use on the FPGA accelerator. 0-app1,  
1-app2. 

Total_buf_num The total number of buffer fragments used 
by the request.The size of one DMA buffer 
fragment is 4KB in our implementation. 

Current_buf_num Specifies the number of current buffer 
fragment that needs to be transferred to the 
FPGA accelerator. 

RCB_list A pointer to the next request. 

The scheduler in Figure 3 mainly performs four functions: 
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1 Exposing the status of both DMA read and DMA write 
channels to the device driver (such as if the DMA read 
channel is idle or in use). 

2 Scheduling a request to use the DMA read channel (this 
may need to implement a DMA context switch). 

3 Maintaining the RCBs of the head requests of the two 
queues; for example, when one buffer fragment (storing 
one block of data) of a request is scheduled to use the 
DMA read channel, the request state will be updated 
with DMAWRITE, and the ‘current_buf_num’ will be 
incremented by one. 

4 Invoking the request remover to remove a request once 
the request has completed using the FPGA accelerator. 

Figure 6 shows the request state transition diagram, and the 
DMA read channel state transition diagram is shown in 
Figure 7. When a request is received from a DomU it is 
marked with DMAREAD state, which indicates that the 
request is waiting for a DMA read operation. If the DMA 
read channel is in IDLE state, the DMA read operation will 
be initiated, the DMA read channel state will be updated to 
BUSY, and the request state will be updated to 
DMAWRITE. The scheduler is invoked in the following 
three cases: 

1 a new request is inserted into a queue 

2 a type 1 interrupt is received 

3 after initiating a DMA write operation. 

When the scheduler is invoked, it will check if the DMA 
read channel is idle and a head request in one of the queues 
is in DMAREAD state. If so, it will schedule the head 
request for a DMA read operation. 

Figure 6 Request state transition diagram 
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Figure 7 DMA read channel state transition diagram 
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When a DMA read operation finishes, a type 1 interrupt will 
be received from the FPGA accelerator to release the DMA 
read channel, thereby modifying the DMA read channel 
state to IDLE. In this case, if the head request in the other 
queue is waiting for a DMA read operation, the operation 
can be initiated. When a type 2 interrupt is received, the 
context of a request with DMAWRITE state will be loaded 
into the DMA controller to implement a DMA write 
operation, and the ‘Current_buf_num’ will be incremented 
by one. If the head requests of the two queues are both in 
DMAWRITE state, the bit 2 of the ASW informs the 
Scheduler which request has finished a computation on the 
FPGA. 

After initiating a DMA write operation there are two 
possible cases. One case is that the request has not been 
completely serviced; that is, there are still data in the DMA 
buffer associated with the request that have not been 
processed. In this case, the state of this request will be 
updated to DMAREAD after initiating the DMA write 
operation. The second case is that a request has finished all 
its data processing (Current_buf_num == Total_buf_num). 
The request will be set to the DMAFIN state, and the 
request remover will be invoked to remove the request from 
the queue. 

3 Streaming pipeline analysis 
With the pipeline technique, some execution latency can be 
hidden. For example, in the third cycle in Figure 2(b), the 
DMA read and DMA write operations are implemented 
simultaneously as the FPGA accelerator is doing a 
computation, so the latency of the DMA read and write 
operations is hidden. In the following discussion, we 
assume the computation latency is TC, and the DMA data 
transfer latency of one block of data is TD (DMA read 
latency = DMA write latency = TD), and the total number of 
blocks of data is N. 

The pipeline shown in Figure 2(b) is similar to a classic 
reduced instruction set computer (RISC) pipeline, where all 
the operations have identical execution latency. However, 
this type of pipeline seldom occurs with the design of an 
FPGA accelerator, because it is uncertain that the 
computation latency, TC, is equal to the DMA data transfer 
latency, TD. Following are two possible scenarios: 

Scenario 1 In Figure 8(a), the DMA data transfer  
latency is larger than the FPGA accelerator 
computation latency, that is, TD > TC. One 
block in the figure occupies one timing  
unit. DR represents DMA read, and two 
concatenate DR blocks mean that the DMA 
read operation occupies two timing units; CP 
represents Computation on the FPGA; DW 
represents DMA write. 

Scenario 2 In Figure 8(b), the DMA data transfer latency 
is less than the FPGA accelerator computation 
latency, that is TD < TC. 
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Pipelined operations in scenario 1 can work similarly to the 
RISC pipeline technique. However, the scenario 2 pipelined 
operations shown in Figure 8(b) will cause some problems. 
The overlapping of two computation operations [e.g., two 
red CPs in Figure 8(b)] implies that two blocks of data are 
contending for one computation module. In other words, 
when the second block of data arrives in the FPGA 
accelerator for doing a computation, the first block of data 
has not completed its computation. This will cause a 
conflict on using the computation module. We refer to 
problems with streaming data conflicting on using the 
computation module as streaming pipeline hazards.1 

A simple solution to solve the streaming pipeline 
hazards shown in Figure 8(b) is to increase the operating 
frequency of the computation module, thereby reducing the 
computation latency, TC. But this is not always feasible, 
because there is always a limit to the maximum frequency 
of the design. Exceeding the maximum frequency would 
cause issues such as setup/hold timing violations. 

Figure 8 Examples of non-RISC-like pipeline stages,  
(a) an example of scenario 1 pipeline stages  
(b) an example of scenario 2 pipeline stages  
(see online version for colours) 
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The second solution to solve the streaming pipeline hazards 
is shown in Figure 9(a), where the start of next DMA read 
operation is delayed. This is very difficult to implement, 
because the time to start the DMA read operation needs to 
be at an accurate time instance when the FPGA is executing 
a computation. Figure 9(a) shows an example where TC 
equals 2*TD, and the time to start the DMA read of next 
block of data can be set when the FPGA finishes the current 
half block of data computation. However, in practice TC 
could be any factor larger than TD (e.g., 1.5 or 1.75). 
Implementing this solution is complicated, and varies with 
different applications because they have different 
computation latencies. 

The third solution is to delay the start of the 
computation module, as shown in Figure 9(b). It is clear in 
the figure that the second and third solutions have the same 
turnaround time. In practice, the solution shown in  
Figure 9(b) is prone to implement, because the start of next 
DMA read operation can be just triggered when the first 
DMA read operation finishes, but the incoming data are not 
processed immediately when they arrive in the FPGA 

accelerator. For example, when the second block of data is 
being computed, the third to fifth blocks of data have 
already arrived and must be buffered. It can be easily 
inferred from Figure 9(b) that the pipeline bubbles between 
DR and CP get increased when N increases. Thus, the 
disadvantage of the solution in Figure 9(b) is that it requires 
large memory to buffer the incoming data, and the required 
size of the buffer grows as N increases. 

Figure 9 Solutions to solve streaming pipeline hazards,  
(a) delay the start of computation operations (b) delay 
the start of DMA read operations (c) simultaneous 
implementation of DMA read and write operations  
(see online version for colours) 
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The fourth solution is to add one more computation unit to 
the FPGA accelerator. In this case, the second block of data 
can be streamed to a different computation unit from  
the first block of data for a computation. However, 
implementing this solution has a similar difficulty to 
implementing the second solution. The example we show in 
Figure 9(b), where TC = 2*TD, needs two computation units 
in total. In practice, we may need to add more computation 
units on the FPGA based on the relationship between TC and 
TD. Thus, this solution cannot be adopted for general 
purpose use. 

Figure 9(c) illustrates the fifth solution to address the 
problem; hide the DMA write operation latency by 
executing it simultaneously with a DMA read operation. 
The drawback of this solution is that it has longer 
turnaround time than the other solutions above. However, 
the fact that it can be used for general purpose computing is 
an advantage. That is, in practice it can be easily adopted for 
any situation regardless of the latency difference between 
the DMA data transfer and the FPGA computation. This 
type of pipeline satisfies our FPGA accelerator design aim, 
which is to make the FPGA accelerator capable of 
accelerating various applications for cloud clients. The 
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overall turnaround time of the pipeline shown in Figure 9(c) 
can be calculated by the following formula: 

( )*D C DT N T T+ +  (1) 

4 Implementation and evaluation 
Table 4 shows the details of our experimental platform. We 
have verified the functionality and virtualisation overhead 
with a fast Fourier transform (FFT) benchmark, which 
generates the same results as those shown in Sabeghi and 
Bertels (2009). Thus, we will not repeat the results in this 
paper. In Section 4.1, we will measure the DMA data 
transfer latency, TD, with a loopback application, and the 
result of TD will be used for the following analyses. In 
Section 4.2, we will verify the functionality of the 
coprovisor for multiplexing requests to the same 
acceleration application and make a detailed analysis of the 
contention. Finally, we will evaluate the improvement in 
request turnaround time with hyper-requesting in  
Section 4.3. 

Table 4 Experimental platform 

Name Description 

x86 server Intel® Xeon Processor W3670 running 
at 3.2 GHZ and 4 GB of main memory 

FPGA accelerator Virtex-6 LXT FPGA ML605 
Evaluation Kit, 4-lane (Gen 2 ) PCIe 

interface 
VMM Xen-4.1.2 
Native Linux without 
the Xen VMM 

Ubuntu 12.04LTS 

Dom0 Ubuntu 12.04LTS 
4 DomUs Ubuntu 10.04LTS, named with 

Lucid1, Lucid2, Lucid3, Lucid4, 
respectively 

4.1 DMA data transfer latency measurement 
In order to measure the DMA data transfer latency, we use a 
loopback application, which simply returns any unmodified 
data it receives, on the FPGA accelerator in the position of 
app1 in Figure 2(a). The DMA read and write operations are 
implemented with 4 KB data size as a block. The FPGA 
computation latency, TC, can be considered zero, since there 
is no computation of the loopback application. The pipeline 
of the loopback application is depicted in Figure 10. When 
TC equals zero, formula (1) can be simplified as: 

*D DT N T+  (2) 

The formula (2) shows the turnaround time of the loopback 
application. When large amounts of data (e.g., N = 1,024) 
are transferred to the loopback benchmark, we can get an 
accurate value of TD, which is the DMA data transfer 
latency of one block of data. When 4 MB data (N = 1,024) 
is sent to the FPGA, the turnaround time is 3,586 us. 
According to formula (2), we get TD equal to 3.5 us, which 

is the time of transferring 4 KB data. This value will be used 
for analyses of the following experiments. 

Figure 10 Pipeline stages of the loopback application  
(see online version for colours) 
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4.2 Coprovisor evaluation 
The evaluation was presented in our previous paper (Wang 
et al., 2013). Since the coprovisor was significantly 
modified, we will re-evaluate the functionality of the 
coprovisor in this section and give a detailed contention 
analysis to show validity of experimental results in  
Section 4.2.1. 

Figure 11 Evaluation of the coprovisor, (a) identical data pool 
size in DomUs (b) different data pool sizes in DomUs 
(see online version for colours) 
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In the experiments, we built a benchmark based on Xilinx 
FFT IP core (Xilinx Corporation, 2011a) for accelerating 
256-point floating point (single precision) FFT. Executing 
this FFT benchmark requires at least 2 KB data (1 KB real 
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number and 1 KB complex number) to be transferred to the 
FPGA accelerator. Thus, each block of data has two FFT 
computations (4 KB/2 KB = 2). The FFT benchmark 
module operates at 250 MHz. One block of data in our 
implementation is 4 KB, so the FFT benchmark performs 
two FFT computations each time. We obtain the FFT 
benchmark computation latency (approximately 9.5 us) 
through a simulation in Modelsim, that is, TC equals 9.5 us. 

In the first evaluation, each of the four DomUs (Lucid1, 
Lucid2, Lucid3 and Lucid4) allocates a 1MB size data pool, 
which is shared with Dom0 for inter-domain data transfer. 
The FFT benchmark is used as app1 [see Figure 2(a)] for 
the evaluation. We set all the applications in the four 
DomUs to select app1 when they request services, and the 
data size for all the requests is set to 1MB via the command 
channel. In this evaluation, each of the DomUs sends 2 GB 
of data to compute FFT on the FPGA accelerator, so each 
DomU needs to send 2,048 requests to complete the 
computations. In Figure 11(a), when all four DomUs 
contend for one FPGA accelerator, all the DomUs spend 
equal time to complete the computations. 

In the second evaluation, we assigned Lucid1, Lucid2, 
Lucid3 and Lucid4 with 1 MB, 512 KB, 256 KB and  
256 KB data pool sizes respectively, separately in their 
kernel spaces. In this case, Lucid1 is treated as a higher tier 
domain, as it is assigned the larger data pool size, which 
implies higher maximum data transfer bandwidth. We set all 
the applications in the four DomUs to set the data size for 
all the requests equal to the data pool size via the command 
channel. In Figure 11(b), when all four DomUs request 
access to one FPGA accelerator simultaneously, Lucid1 
completes the evaluation task twice faster than Lucid3, and 
Lucid3 and Lucid4 spend equal time to complete their 
evaluation tasks, due to their equal assigned data pool size. 
The request contention analysis of the two cases are 
elaborated in the following subsection. 

4.2.1 Contention analysis 
We first consider the situation in Figure 11(a) where the 
four DomUs contend for access to the FPGA accelerator 
with equal sized data pools. Figure 12(a) shows how these 
requests are scheduled. L1-1 represents the first request 
from Lucid1, L2-1 represents the first request from Lucid2, 
and so on. In Figure 11(a), each DomU is assigned a 1 MB 
data pool, so each domain needs to send 2,048 requests to 
complete 2 GB data of FFT computations. A DomU cannot 
send the second request until the first request is serviced, 
because each DomU has only one data pool. Thus, all the 
requests can be grouped into 2,048 groups, with each group 
having a request from each of the DomUs. Here, every 
request has 256 blocks of data (1 MB/4 KB); that is, N 
equals 256. After sending 2048 groups of requests, all the 
DomUs will complete their tasks. They finish with almost 
the same turnaround time, which is also the turnaround time 
of the 2048 groups of requests. One group of requests has 
four requests from each of the four DomUs. According to 
formula (1), the turnaround time of one group of requests, 
denoted as Tg, is [3.5 + 256 * (9.5 + 3.5)] * 4 = 13,326 us. 

Thus, the turnaround time of 2,048 groups of requests is 
2,048 * Tg = 27.3 seconds, which means each of the four 
DomUs needs 27.3 seconds to get their requests serviced. 
Before sending a request, each DomU needs to load data 
into the data pool; this can be viewed as preprocessing 
work. However, it is not necessary to add the preprocessing 
time to the calculated result. In Figure 12(a), when the first 
request from Lucid1 (L1-1) finishes, it will load new data to 
the data pool for the second request (L1-2 in Group 2). 
Meanwhile, the first request from Lucid2 (L2-1) is 
scheduled for computations. The preprocessing time of L1-2 
overlaps the time for servicing L2-1, so the preprocessing 
time is hidden. The experimental result in Figure 11(a) is 
27.5 us which is very close to the calculated result. 

Figure 12 Analysis of four DomUs contending for access  
to the shared FPGA accelerator, 
(a) contention analysis of Figure 11(a) 
(b) Phase 1 contention analysis of Figure 11(b)  
(c) Phase 2 contention analysis of Figure 11(b)  
(d) Phase 3 contention analysis of Figure 11(b)  
(see online version for colours) 
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We next consider the situation in Figure 11(b), where the 
four DomUs that are assigned different data pool sizes 
contend for access to the shared FPGA accelerator. The 
contention analysis is more complex, since higher tier 
domains will complete their requests first and are out of the 
contention at a certain time instance. Here, we split the 
contention into three phases. In each phase a DomU 
completes its evaluation task, and will be out of contention 
for access to the shared FPGA accelerator. Phase 1 has 
Lucid1, Lucid2, Lucid3 and Lucid4 contending for the 
FPGA accelerator, while in Phase 2 only Lucid2, Lucid3 
and Lucid4 contend for the accelerator, since Lucid1 has 
completed all its requests and is out of contention at the end 
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of Phase 1. In Phase 3, Lucid3 and Lucid4 contend for the 
FPGA accelerator, since Lucid2 has finished all its requests 
and is out of contention at the end of Phase 2. 

Phase 1 Lucid1, Lucid2, Lucid3 and Lucid4 contend for 
access to the shared FPGA accelerator. Lucid1 will 
complete all its requests at the end of Phase 1. 
Figure 12(b) shows how the requests are 
scheduled, which is slightly different than that in 
Figure 12(a). L1-1 is twice as long as L2-1 and 
four times longer than L3-1, because Lucid1 is 
assigned a 1 MB data pool, while Lucid2 is 
assigned a 512 KB data pool and Lucid3 a 256 KB 
data pool. After 2,048 groups of requests, Phase 1 
ends because Lucid1 has completed its task (1 MB 
* 2048 = 2 GB). After Phase 1, Lucid2, Lucid3 and 
Lucid4 have only partially finished their tasks. 
Table 5 shows the remaining data size of each 
DomU at the end of Phase 1. 

In Phase 1, the turnaround time of one group of 
requests, Tg1, is equal to the sum of the request 
turnaround time of the four DomUs. Therefore, 
according to (1): 

1 3.5 256*(9.5 3.5) 3.5 128*(9.5 3.5)
3.5 64*(9.5 3.5) 3.5 64*(9.5 3.5)
6,670 .

Tg

us

= + + + + +
+ + + + + +
=

 

The turnaround time of Lucid1 equals the  
13.7 seconds (2,048 * Tg1) turnaround time  
of Phase 1. As shown in Figure 11(b), our 
experimental result of 13.9 seconds is close  
to the calculated result. 

Phase 2 As shown in Figure 12(c), in this phase Lucid2, 
Lucid3 and Lucid4, contend for access to the 
shared FPGA accelerator. Table 4 shows that 
Lucid2 has 1 GB data left for FFT computations, 
so the number of groups in Phase 2 is 2,048  
(1 GB/512 KB). Table 6 shows the remaining data 
size of each DomU at the end of Phase 2. 

In Phase 2, the turnaround time of one group of 
requests, Tg2, equals the sum of the request 
turnaround time of Lucid2, Lucid3 and Lucid4. 
Therefore: 

2 3.5 128*(9.5 3.5) 3.5
64*(9.5 3.5) 3.5 64*(9.5 3.5)
3,338.5 .

Tg

us

= + + +
+ + + + +

=
 

The turnaround time of Lucid2 is equal to the 
turnaround time of Phase 1 and Phase 2, which is 
13.7 s + 2,048 * 3,338.5 us = 20.5 seconds. Our 
experimental result is 20.8 seconds which is close 
to the concluded result. 

Phase 3 As shown in Figure 12(d), only Lucid3 and Lucid4 
contend for access to the shared FPGA accelerator. 
So we get: 

3 3.5 64*(9.5 3.5) 3.5 64*(9.5 3.5)
1,671 .

Tg
us

= + + + + +
=

 

Both Lucid3 and Lucid4 have 1GB data left  
for computations, so after 4,096 groups  
(1 GB/256 KB) of requests are scheduled Lucid3 
and Lucid4 have completed their tasks. Therefore, 
the turnaround time of Lucid3 equals the 
turnaround time of Lucid4, which is also the 
turnaround time of the three phases. This is 
calculated as: 20.5 s + 4,096 * 1,671 us =  
27.3 seconds. Our experimental result is  
27.7 seconds, which is close to the calculated 
result. 
As shown, the overall turnaround time (Phase 1 + 
Phase 2 + Phase 3) of Figure 11(b) equals that of 
Figure 11(a), since their overall data sizes for FFT 
computations are the same (4 * 2 GB = 8 GB). In 
Figure 11(a), all the DomUs get their requests 
serviced at an equivalent and invariable speed. In 
Figure 11(b), Lucid3 and Lucid4 get their requests 
serviced at a slower speed at the beginning, but as 
Lucid1 and Lucid2 drop out of contention the 
speed increases. 

Table 5 Remaining data size of each DomU at the end  
Phase 1 

DomU Remaining data size 
Lucid1 2 GB–1 MB * 2,028 = 0 
Lucid2 2 GB–512 KB * 2,048 = 1 GB 
Lucid3 2 GB–256 KB * 2,048 = 1.5 GB 
Lucid4 2 GB–256 KB * 2,048 = 1.5 GB 

Table 6 Remaining data size of each DomU at the end  
Phase 2 

DomU Remaining data size 
Lucid2 1 GB–512 KB * 2,048 = 0 
Lucid3 1.5 GB–256 KB * 2,048 = 1 GB 
Lucid4 1.5 GB–256 KB * 2,048 = 1 GB 

4.3 Hyper-requesting evaluation 
In this section, we evaluate the improvement of request 
turnaround time due to hyper-requesting. The aim of 
proposing hyper-requesting is to enable two requests 
bidding to different accelerator applications to be processed 
simultaneously on the FPGA accelerator through DMA 
context switches, thereby reducing the request turnaround 
time. For convenience, we refer to the design presented in 
Wang et al. (2013), which does not have the ability to 
perform hyper-requesting as a basic design, and the  
design presented in this paper, which is able to perform 
hyper-requesting, as an improved design. All the above 
evaluations were implemented with requests requesting to 
use the same accelerator application (app1) on the FPGA 
accelerator, so hyper-requesting was not used. To evaluate 
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the request turnaround time improved by hyper-requesting, 
requests from Lucid1 and Lucid2 are set to access app1, and 
requests from Lucid3 and Lucid4 are set to access app2. 

At the FPGA accelerator end, we used a design that 
emulates the computation procedure. As shown in  
Figure 13, both app1 and app2 have a buffer for storing a 
block of incoming data, and a timer for emulating algorithm 
computation time. The timer asserts an interrupt request to 
the app controller when the time is up. From the 
acceleration module perspective, the major difference 
between different accelerator applications involves varying 
computational latencies. The previous experiments are 
implemented with an app whose computation latency is at 
the microseconds level. In order to show that our proposed 
accelerator design can be used for general purpose 
computing, regardless of the app computation latency, we 
set the app1 timer to 4 seconds and the app2 timer to  
2 seconds for one block of data (4 KB in the experiments). 
In this case, app1 and app2 emulate two algorithm 
computations that require 4 seconds and 2 seconds 
respectively to complete one block of data processing. 
Figure 13 An accelerator emulating design for verification 

purposes (see online version for colours) 
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Figure 14 Request turnaround time comparison between the 

basic design and improved design (see online version 
for colours) 
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Figure 14 shows the turnaround time when each DomU 
sends a request with eight blocks of data (32 KB) to the 

FPGA accelerator simultaneously. The improved design 
does not affect Lucid2 because its request is inserted into 
the same queue as the Lucid1 request, and requests in the 
same queue are scheduled via FCFS policy. The most 
apparent improvement (an 80% reduction of the basic 
design’s turnaround time) is when the Lucid3 request is 
inserted into a different queue than the Lucid1 request. 
Hyper-Requesting helps reduce the scheduling delay caused 
by scheduling the requests from Lucid1 and Lucid2. The 
concurrent share of the DMA read channel enables 
simultaneous use of app1 and app2 on the FPGA 
accelerator. With the improved design, the turnaround time 
of all the requests is reduced to approximately 53% of that 
with the basic design. 

5 Related works 
5.1 FPGA virtualisation 
El-Araby et al. (2008) describe a virtualisation solution for 
FPGA accelerators. The authors have proposed a solution 
for virtualising an FPGA accelerator for multiple processes 
on a single OS. An important component in their 
virtualisation solution is what they refer to as a ‘virtual 
coprocessor monitor (VCM)’, which multiplexes requests 
from multiple processes to access the shared FPGA 
accelerator. When a user process sends a request to the 
VCM to access the FPGA accelerator, the VCM creates a 
virtual memory space. It shares this space with the calling 
process through conventional POSIX memory sharing  
inter-process communication (IPC) primitives. Then the 
user process copies data to the virtual memory space, 
followed by the insertion of a request into the request queue. 
When the FPGA accelerator has finished, the VCM will 
send an acknowledge signal to the user process indicating 
that results are ready to be fetched. The VCM also provides 
an API for a process to release the virtual memory space. 

The work presented in El-Araby et al. (2008) does not 
include a design of an FPGA accelerator, and the FPGA 
design they use is vendor proprietary. Thus, their proposed 
VCM, which is designed as a user-level application, 
interacts with the FPGA accelerator driver through  
vendor-supplied APIs. The authors modified the  
vendor-supplied APIs with virtualisation APIs, which can 
be used by user processes to interact with the VCM. In 
comparison to the work presented in El-Araby et al. (2008), 
pvFPGA moves a step forward to virtualise an FPGA 
accelerator for processes from different domains. We have 
proposed an accelerator design which can be used for 
accelerating various applications, regardless of the 
application computation latencies. Also, our device  
driver level design solution can be easily optimised (e.g., 
hyper-requesting). 

Byma et al. (2014) focus on integrating FPGAs into 
OpenStack. Taking advantage of partial reconfiguration, 
they partition an FPGA into several reconfigurable regions, 
with each region exposed to OpenStack as an allocable 
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resource. No novel VMM layer design is presented in this 
work. 

5.2 GPU virtualisation 
A direct comparison between pvFPGA and the recent GPU 
virtualisation solutions may seem unfair, since GPUs have 
been used for general purpose computing. But pvFPGA 
draws on some of the techniques used in GPU virtualisation 
solutions. Our proposed accelerator enables FPGAs to be 
used for general purpose computing when partial 
reconfiguration is integrated in the future. GViM (Gupta  
et al., 2009), vCUDA (Shi et al., 2012) and gVirtuS (Giunta 
et al., 2010) are three GPU virtualisation solutions that have 
been recently proposed. In this section, we compare the 
difference between pvFPGA and the recent GPU 
virtualisation solutions only in terms of the virtualisation 
techniques being used. 

GViM is a Xen-based system design solution that 
permits users to run any CUDA-based applications in a 
domain (Gupta et al., 2009). It uses the shared memory 
mechanism for data transfer between domains, and an 
interposer library in each unprivileged domain (DomU) 
provides CUDA accesses. CUDA calls from user 
applications in a DomU are intercepted, packed together 
with parameters into CUDA call packets by the interposer 
library, and then passed to the frontend driver, which 
transfers them to the Domain 0 (Dom0) backend driver. In 
Dom0, the CUDA call packets are continuously passed to 
the library wrapper, which converts them into standard 
CUDA function calls. Each DomU has a dedicated CUDA 
call buffer in Dom0. CUDA calls from DomUs requesting 
access to the GPU are stored in the buffer first, the buffered 
requests are then scheduled to be translated into CUDA 
function calls in a round-robin fashion. 

In some respects, vCUDA functions in a similar way as 
GViM; for example, the latest version of vCUDA also uses 
shared memory for data transfer between domains. CUDA 
calls in a DomU are intercepted and packed by a vCUDA 
library. The vCUDA library has a vGPU component that 
reveals the device information (e.g., GPU memory usage, 
texture memory properties) to applications in a DomU. To 
ensure information consistency, vCUDA includes a 
synchronisation mechanism between the vGPU and a 
component in Dom0 known as vCUDA stub. The vCUDA 
library has a global queue for storing all the packed packets, 
which are periodically transferred to the vCUDA stub. The 
vCUDA stub unpacks the received packets and invokes the 
related CUDA API calls in Dom0. The designers also 
propose using a Lazy Remote Procedure Call (RPC) 
mechanism to batch specific RPCs, thereby reducing the 
number of expensive world switches (context switches 
between different domains). vCUDA uses working/service 
threads [introduced in Shi et al. (2012)] to enable requests 
from the same or different domains to be concurrently 
executed on the GPU accelerator. 

gVirtuS is a VMM independent solution for GPU 
virtualisation in a cluster environment. Intercepted CUDA 
calls in a DomU are redirected to the host domain running 

on a different physical machine via a TCP/IP-based 
communicator. A resource sharing framework was proposed 
as an extension of gVirtuS in Ravi et al. (2011). Ravi et al. 
(2011) created a virtual process context to consolidate 
different applications (including from different domains) 
into a single application context, in order to time share or 
space share streaming multiprocessors (SMs) in a GPU 
accelerator. 

Both the recent GPU virtualisation solutions and 
pvFPGA use shared memory for inter-domain data transfer, 
but the above solutions of intercepting user space API calls 
from frontend domains and redirecting them to the backend 
domain are specific to GPUs. Owing to the limited 
knowledge of GPU hardware specifications and the 
complexity of GPGPU programming model, it is not 
feasible to achieve GPGPU virtualisation at the low device 
driver layer, which can provide lower overhead and higher 
efficiency (i.e., we propose hyper-requesting to reduce 
request turnaround time). A CUDA application might entail 
calling thousands of CUDA APIs (Shi et al., 2012), whereas 
only one ‘call’ is required to access the FPGA accelerator in 
pvFPGA. The overhead on GPU virtualisation solutions 
average 11%, whereas pvFPGA overhead is near zero when 
a DomU uses a large data pool (e.g., 4 MB) for data 
transfer. Also, no GPU virtualisation solutions include a 
scheme to supply DomUs with different maximum data 
transfer bandwidths. The coprovisor efficiently multiplex 
requests to access the FPGA accelerator at the device driver 
layer, and pvFPGA can provide different maximum data 
transfer bandwidths for DomUs by regulating the size of the 
shared data pools. 

6 Conclusions and future works 
In this paper, we present an ameliorated design of pvFPGA, 
which is a leading edge system design solution of 
virtualising an FPGA-based hardware accelerator by a 
VMM on the x86 platform. The proposed accelerator design 
can be used for accelerating various applications, regardless 
of the application computation latencies on the FPGA. A 
streaming pipeline technique is adopted in pvFPGA for 
efficient data transfer between the server and the FPGA 
accelerator. We discuss the concept of streaming pipeline 
hazards, and several solutions for solving streaming pipeline 
hazards are covered in this paper. Additionally, we propose 
a technique called hyper-requesting, which enables portions 
of two requests to be simultaneously processed on the 
FPGA accelerator through DMA context switches, to 
achieve request level parallelism. 

An important future direction of our work is to integrate 
partial reconfiguration into pvFPGA. With partial 
reconfiguration, various accelerator applications can be 
preconfigured as partial bitstream files, and be dynamically 
swapped into either app1 or app2 in Figure 2(a) according 
to a DomU’s request, which will accomplish runtime 
general purpose computing. Another future direction of our 
work is to extend pvFPGA to a cluster environment, where 
each node in the cluster is equipped with an FPGA 
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accelerator. When the coprovisor recognises that there are 
too many requests in the queue for the native FPGA 
accelerator, while the FPGA accelerators in other servers 
are underutilised, some of the requests can be scheduled 
through an extra TCP/IP mechanism to the idle FPGA 
accelerators in remote physical machines. This would also 
raise some load balancing issues that need to be solved. 
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Notes 
1 Streaming pipeline hazards are different from data hazards in 

an instruction pipeline, since there are no data dependencies 
between the two blocks of data that cause streaming pipeline 
hazards. 


