
Int. J. High Performance Computing and Networking, Vol. 10, No. 3, 2017 179

Copyright © 2017 Inderscience Enterprises Ltd.

pvFPGA: paravirtualising an FPGA-based hardware
accelerator towards general purpose computing

Wei Wang, Miodrag Bolic* and Jonathan Parri
Computer Architecture Research Group,
University of Ottawa,
800 King Edward, Ottawa, Ontario, Canada
Email: weiwang.carg@yahoo.com
Email: mbolic@eecs.uottawa.ca
Email: jparri@uottawa.ca
*Corresponding author

Abstract: This paper presents an ameliorated design of pvFPGA, which is a novel system design
solution for virtualising an FPGA-based hardware accelerator by a virtual machine monitor
(VMM). The accelerator design on the FPGA can be used for accelerating various applications,
regardless of the application computation latencies. In the implementation, we adopt the Xen
VMM to build a paravirtualised environment, and a Xilinx Virtex-6 as an FPGA accelerator. The
data transferred between the x86 server and the FPGA accelerator through direct memory access
(DMA), and a streaming pipeline technique is adopted to improve the efficiency of data transfer.
Several solutions to solve streaming pipeline hazards are discussed in this paper. In addition, we
propose a technique, hyper-requesting, which enables portions of two requests bidding to
different accelerator applications to be processed on the FPGA accelerator simultaneously
through DMA context switches, to achieve request level parallelism. The experimental results
show that hyper-requesting reduces request turnaround time by up to 80%.

Keywords: field-programmable gate array; FPGA; hardware accelerator; virtualisation; hyper-
requesting; streaming pipeline; DMA context switch.

Reference to this paper should be made as follows: Wang, W., Bolic, M. and Parri, J. (2017)
‘pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose
computing’, Int. J. High Performance Computing and Networking, Vol. 10, No. 3, pp.179–193.

Biographical notes: Wei Wang received his BEng in Electronics and Information Engineering
from the Changzhou Institute of Technology, China in 2011, and MASc in Electrical and
Computer Engineering from the University of Ottawa, Canada in 2013. He was a Research
Assistant at the Computer Architecture Research Group at the University of Ottawa. His research
interests include computer architecture, virtualisation technology, and hardware/software
co-design. He is currently a Virtualisation Software Developer at Intel.

Miodrag Bolic received his BSc and MSc in Electrical Engineering from the University of
Belgrade, Serbia in 1996 and 2001, and PhD in Electrical Engineering from Stony Brook
University, USA in 2004. From 1996 to 2000, he was a Research Associate with the Institute of
Nuclear Sciences, Vinča, Belgrade, Serbia. Since 2004, he has been with the University of
Ottawa, Canada where he is an Associate Professor with the School of Electrical Engineering and
Computer Science. His research includes hardware/software accelerators, biomedical signal
processing and RFID. He published about 40 journal papers, four book chapters and edited one
book. He currently serves as an Associate Editor for the International Journal of Reconfigurable
Computing, Hindawi and has been involved in organisation of a number of conferences.

Jonathan Parri is a PhD candidate at the University of Ottawa and a senior member of the
Computer Architecture Research Group. His current research focuses on design space
exploration in the hardware/software domain, targeting embedded and traditional systems. He
has been employed in many capacities from developer and technical writer to research engineer.

This paper is a revised and expanded version of a paper entitled ‘pvFPGA: accessing an
FPGA-based hardware accelerator in a paravirtualized environment’ presented at CODES+ISSS
2013, Montreal, Canada, 29 September to 4 October 2013.

180 W. Wang et al.

1 Introduction
Cloud computing services offer many advantages for
potential customers: low start-up cost, high-availability,
instant access to massive computing power, no need for
in-house technical expertise, and so on (Eguro and
Venkatesan, 2012). Virtualisation technology, a key
component of cloud computing, has generated great interest
recently. With virtualisation, applications running on
different operating systems (OS) can access the same
hardware resources. This is achieved by allowing the
underlying hardware resources to be shared by multiple
virtual machines (VMs) or domains (Xen-specific term of
VMs) with each running a separate OS. The virtual machine
monitor (VMM) is responsible for separating each running
instance of an OS from the physical machine, and guarantee
that these OSs do not interfere with one another. The
general benefits of virtualisation are:

1 creating higher hardware utilisation

2 reducing the number of hardware machines thereby
reducing financial costs and power consumption

3 facilitating OS migration.

x86 machines are historically difficult to virtualise, because
some sensitive instructions of x86 (e.g., SIDT) do not trap
when executed in user mode. Full virtualisation, including
hardware-assisted virtualisation [e.g., Intel VT-x (Neiger
et al., 2006)], and paravirtualisation are the two prevailing
virtualisation solutions for x86 machines. VMware
workstation (Bugnion et al., 2012) and KVM (Kivity et al.,
2007) are the two well-known VMMs that support
full virtualisation. The bedrock of full virtualisation is
trap-and-emulate, which traps the privileged instructions to
their emulated versions to implement privileged operations
during runtime. This keeps the virtualisation layer
transparent to OSs, but it leads to significant performance
penalties owing to the dynamic trap-and-emulate overhead
(Walters et al., 2008). The Xen VMM (Barham et al., 2003)
is famous for its paravirtualisation support. Paravirtualisation
requires OS modification to support paravirtualisation,
but it has high efficiency in performing I/O operations
(Chisnall, 2007). A common hybrid solution is to use
paravirtualised drivers in full virtualisation to achieve high
I/O performance.

Managing and analysing large and complex datasets
have recently brought a big challenge to the cloud
infrastructure (Agrawal et al., 2011). We view the popular
solutions like Google MapReduce (Dean and Ghemawat,
2008) and Hadoop (http://hadoop.apache.org/) as horizontal
solutions, which lay on the foundation of building large
clusters with adding more nodes. Vertical solutions (e.g.,
Canny and Zhao, 2013) aim at enhancing single node
compute capability. Horizontal and vertical solutions are not
mutually exclusive, that is, they can be combined en masse
to deal with the ‘big data’ in the cloud.

Single node computing enhancement can be achieved
through adding hardware accelerators to hardware servers.
Hardware accelerators assist central processing units

(CPUs) in speeding up computations of complex algorithms
in various fields, such as video/image processing (Yamaoka
et al., 2006; Jan et al., 2015; Taibo et al., 2011), signal
processing (Lee et al., 2013) and various mathematical
calculations (Tian and Benkrid, 2010; Okuyama et al., 2012;
Rostrup et al., 2013). Graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs) are two types of
dominantly used hardware accelerators (Chung et al., 2010).
GPUs are inexpensive (Brodtkorb et al., 2013, and popular
for general purpose computing (Owens et al., 2007). Since
GPUs are programmed using high level languages and APIs
which abstract away hardware details (Che et al., 2008),
they are suitable to be used by software developers.
FPGAs are highly customisable and reconfigurable, and
achieve highly efficient algorithm acceleration with deep
pipelining and parallelism (register level). Partial runtime
reconfigurability is another important distinguishing feature
of FPGAs (Silva and Ferreira, 2006). FPGAs have been
found to outperform GPUs in many specific applications
(Che et al., 2008; Cope et al., 2005). Since 2007, many
researchers (Dowty and Sugerman, 2009; Gupta et al., 2009;
Shi et al., 2012; Giunta et al., 2010; Ravi et al., 2011;
Lagar-Cavilla et al., 2007) have been focusing on making
GPUs a shared resource within a virtualised environment,
which would allow for adding GPUs to the infrastructure
level of cloud computing. But the idea of adding FPGA
accelerators to cloud computing (El-Araby et al., 2008;
Gonzalez et al., 2012; Huang et al., 2010; Huang and
Hsiung, 2013; Lübbers, 2010; Sabeghi and Bertels, 2009;
Jain et al., 2014; Byma et al., 2014; Wang et al., 2013) still
stays at an exploration stage.

We propose pvFPGA, a leading edge heterogeneous
system design solution, which efficiently virtualises an
FPGA-based hardware accelerator by a VMM on the x86
platform. The benefits of pvFPGA are the combinations of
the benefits of virtualisation and the benefits of using FPGA
accelerators, which are:

1 the utilisation of an FPGA accelerator is increased

2 applications running in different domains can obtain
speedup in the computation of complex algorithms
using an FPGA accelerator.

Service is the theme of cloud computing. Different qualities
of service (QoS) are offered to cloud clients according to
different tiers. Similarly, pvFPGA should be able to supply
guest domains with different maximum data transfer
bandwidths so that higher tier clients will complete their
acceleration requests faster than ordinary clients.

Preliminary results of the project were presented in
Wang et al. (2013), while an upgraded and more advanced
design of pvFPGA is detailed in this paper. Basic overview
of the Xen VMM is given in Wang et al. (2013), and will
not be repeated it in this paper. But a general understanding
of the Xen VMM is recommended to understand this work.
The experimental results in Wang et al. (2013) show that:

1 the virtualisation overhead in pvFPGA is near zero
when the allocated data pool size is larger than 4 MB

 pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose computing 181

2 the coprovisor successfully multiplexes acceleration
requests from multiple domains

3 different QoS levels are assigned to domains by
assigning them different data transfer bandwidths.

In comparison to Wang et al. (2013), the main contributions
of this paper are summarised as follows:

• the accelerator design supports more than one
accelerator application on the FPGA which can be
requested by user applications from domains

• the coprovisor adopts the streaming pipeline technique
that facilitates general purpose computing

• the coprovisor supports hyper-requesting, which
enables requests destined to different accelerator
applications to be processed simultaneously, thereby
achieving request level parallelism.

The remainder of this paper is organised as follows. We
begin in Section 2 with an elaboration of our pvFPGA
design. In Section 3, we make a detailed analysis of the
streaming pipeline technique that can be used in an FPGA
accelerator design. Section 4 shows the implementation and
evaluation of pvFPGA, as well as detailed analyses of the
experimental results. In Section 5, we compare pvFPGA
with recent accelerator virtualisation solutions. Ultimately,
we conclude this paper and discuss possible future
directions in Section 6.

2 System design
Dom0 and DomU are the two types of domains supported
by Xen. Dom0 is the privileged domain, which can access
external devices directly. DomU represents an unprivileged
domain, which requires the use of a split device driver
model to access devices via Dom0.

Figure 1 An overview of pvFPGA framework (see online
version for colours)

PCIe

Xen VMM

Server Hardware
(x86 platform)

DomU

Command Channel

Dom0

User
Space

Kernel
Space

data pool
Coprovisor

DMA
Controller

(Bus Master)

Processing
Unit 1

FPGA Accelerator

Processing
Unit 2

An overview of pvFPGA is shown in Figure 1. On the
hardware side, we use a DMA controller (Northwest Logic
Corporation, 2010) on the FPGA accelerator for data
transfer between the server memory and the FPGA
accelerator. Our current implementation includes two
accelerator applications (processing units), this can be easily
extended to three or more accelerators. On the software

side, pvFPGA includes three main components: a data pool,
a command channel and a coprovisor. A data pool consists
of a group of physical memory pages, which are allocated in
a DomU kernel space and shared with the Dom0 kernel
space through the grant table mechanism supported by the
Xen VMM. A user process in a DomU can map the data
pool into its address space so that it can directly store data
into the data pool. Thus, the data pool is used for
user-kernel and inter-domain data transfer. Finally, the data
pool is exposed to the DMA controller on the FPGA
accelerator as a DMA buffer for data fetching and results
writing back. Similar to a data pool, a command channel is a
shared memory-based channel for command information
transfer. Our design currently uses the command channel to
transfer two command elements:

1 the application number that the DomU requires to use
on the FPGA accelerator

2 the size of the data in the data pool that must be
transferred to the FPGA accelerator.

For example, a DomU has a 4 MB data pool, but it may
request only 1 MB data to be transferred for processing on
the FPGA accelerator. A coprovisor is a component that we
propose for multiplexing requests from DomUs to access
the shared FPGA accelerator.

Table 1 Descriptions of the operation flow

Steps Descriptions

1 An application specifies the app number and data size
in the command channel, which is mapped to its
address space through the ‘mmap()’ call.

2 The application directly puts data in the shared data
pool, which is mapped to its address space.

3 The user application notifies the frontend driver in the
DomU kernel space that data is ready and then goes to
the Sleep state (this is achieved by a system call, e.g.,
ioctl).

4 The frontend driver in the DomU kernel space sends an
event to the backend driver in the Dom0 kernel space.

5 The frontend driver passes the request to the device
driver in the Dom0 kernel space, and the device driver
sets the DMA transfer data size according to the
parameter obtained from the command channel.

6 The device driver initiates the start of the DMA transfer
in the FPGA accelerator.

7 The DMA controller transfers all the data to the FPGA
accelerator in a pipelined way to do computations.

8 The DMA controller transfers the results of
computations back to the data pool.

9 The DMA controller sends an interrupt to the device
driver when all the results have been transferred to the
data pool.

10 The backend driver sends an event to notify the
frontend driver that the results are ready.

11 The frontend driver wakes up the user application.
12 The user application fetches the results from the data

pool.

182 W. Wang et al.

Both the data pool and command channel in a DomU are
exposed as device nodes in the /dev directory. We wrote
some system call implementations, and user processes can
interact with them through the system calls. Table 1 shows
an example of general implementation using pvFPGA. A
more detailed introduction of the basic pvFPGA design is
introduced in Wang et al. (2013). In this paper, we will
introduce an upgraded design of pvFPGA.

2.1 FPGA accelerator design
Figure 2 shows the accelerator design on the FPGA. In the
figure, same colour modules operate at the same frequency.
The on-chip FIFO buffer is a memory queue IP core
supplied by Xilinx for applications requiring in-order
storage and retrieval (Xilinx Corporation, 2011b). The input
and output of a FIFO buffer can operate at different
frequencies. The PCIe interface (Xilinx Corporation, 2010)
is adopted as the communication channel, and direct
memory access (DMA) technique is used for efficient data
transfer between the FPGA accelerator and the host server
memory. For convenience in the paper discussion, ‘DMA
read operation’ means that the DMA controller reads data
from the host system’s memory, and ‘DMA write operation’
means that the DMA controller writes data to the host
system’s memory.

As shown in Figure 2(a), we use two DMA channels to
achieve full duplex; one for DMA read operations and one
for DMA write operations. Thus, we can do DMA reads
from the server memory and DMA writes to the server
memory simultaneously; that is, we take advantage of a
streaming pipeline. Figure 2(b) shows the pipeline stages.
The overall procedure is performed in three stages, DMA
read stage, computation stage, and DMA write stage. The
latency for finishing each of the three stages is identical in
Figure 2(b), but in practice, this is not always the case, since
the latency of computation is determined by the accelerator
application, and the latency of DMA read or write
operations is determined by the communication channel. A
detailed discussion of the pipeline technique will be shown
in Section 3.

The app controller in Figure 2(a) performs four
functions:

1 directing the input streaming data from the DMA
controller to app1 or app2

2 multiplexing app1 and app2 to use the DMA write
channel

3 maintaining the accelerator status word (ASW)

4 raising an interrupt when required.

The accelerator driver will direct the app controller to send
the input block of data to either app1 or app2, by
configuring the ASW before initiating the start of a DMA
read operation. Also, the app controller needs to multiplex
requests from app1 and app2 to use the DMA write channel.
Since initiating a DMA write operation is also implemented
by the accelerator driver, the app controller needs to

maintain the ASW status, and ensures it remains visible to
the driver.

Figure 2 Accelerator design on an FPGA, (a) accelerator design
(b) pipeline stages (see online version for colours)

PCIe EndPoint

DMA Controller

On-chip
 FIFO

DMA Write ChannelDMA Read Channel

On-chip
 FIFO

App1 App2

ASW
App Controller

(a)

 DMA Read Computation DMA Write

DMA Read Computation DMA Write

DMA Read Computation DMA Write

(b)

Table 2 Bits in the ASW

Bit Functions

Bit 0 0-app1 is selected for the following block of data;
1-app2 is selected for the following block of data.
Written by the driver.

Bit 1 This bit is set by the FPGA accelerator when one
block of data finishes using the DMA read
channel. An interrupt is raised after setting this bit.
Read and Cleared by the driver.

Bit 2 0-app1 finishes its processing for one block of
data; 1-app2 finishes its processing for one block
of data. Read by the driver.

Bit 3 This bit is set by the FPGA accelerator either when
app1 or app2 finishes a computation. An interrupt
is raised after setting this bit. Read and cleared by
the driver.

Bit 4–31 Reserved for future updates.

The introduction of the ASW enhances the interaction
between the driver and the FPGA accelerator. More
precisely, the driver gets to know the status of the FPGA
accelerator through the ASW, and from the FPGA
accelerator perspective, the ASW tells the FPGA accelerator
what the driver needs. The ASW is mapped to the system
memory through the PCIe base address register (BAR). The
design of the ASW is shown in Table 2. With the help of the
ASW, interrupts that are raised by the FPGA accelerator
due to different events can be distinguished. When a block

 pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose computing 183

of data finishes using the DMA read channel, the app
controller will set bit 1 of the ASW and raise an interrupt;
for convenience, we call this a type 1 interrupt. When an
app (either app1 or app2) finishes a computation, the app
controller will clear (if app1 finishes a computation) or set
(if app2 finishes a computation) Bit 2 of the ASW, set bit 3
of the ASW, and raise an interrupt. We call this a type 2
interrupt in the later discussion. Thus, a type 1 interrupt is
raised as a block of data finishes using the DMA read
channel, and a type 2 interrupt is raised as a block of data
finishes its computation on the FPGA accelerator.

2.2 FPGA virtualisation

2.2.1 Coprovisor
The Xen VMM scheduler is only responsible for controlling
access to CPUs, while the backend drivers need to provide
some means of regulating the number of I/O requests that a
given domain can perform (Chisnall, 2007). To manage this
for pvFPGA, we propose a component that we call a
coprovisor, which multiplexes requests from different
domains accessing the FPGA accelerator. For GPU
virtualisation, the multiplexing work is performed in user
space, owing to the lack of standard interfaces at the
hardware level and driver layer. Precisely, the multiplexer
and scheduler are put on the top of CUDA runtime or driver
APIs (Gupta et al., 2009; Shi et al., 2012; Giunta et al.,
2010). In our case, the coprovisor can perform multiplexing
directly at the accelerator driver layer in Dom0.

The architecture of the coprovisor is shown in Figure 3.
It consists of five parts: request inserter, scheduler, request
remover and two request queues. Request queue 1 is used
for buffering requests to access app1 on the FPGA
accelerator, and request queue 2 is used for buffering
requests to access app2. A DomU notifies the Dom0 via an

event channel, so the request inserter, which is responsible
for inserting requests from DomUs into the corresponding
request queue, is invoked when an event notification is
received at the backend driver. When a request has been
serviced, an interrupt from the FPGA accelerator notifies
the request remover to remove the serviced request from the
corresponding request queue. The scheduler is responsible
for scheduling requests from the two request queues to
access the FPGA accelerator through the accelerator device
driver. In terms of one request queue, requests are scheduled
using first-come, first-served (FCFS) policy; that is,
requests in the same queue are extracted in an orderly
manner by the scheduler. More detail about the scheduling
is discussed in Section 2.3.

The size of a data pool in a DomU implies the maximum
data transfer bandwidth. For instance, a DomU (D1)
assigned with a 1 MB data pool can transfer 1 MB data at a
maximum for each request to the FPGA accelerator, while a
DomU (D2) assigned with a 512 KB data pool can transfer
512 KB data at a maximum per request. When the two
DomUs contend for using the same app on the FPGA
accelerator and the acceleration needs to send more than
512 KB data, D2 is slower because it needs to send more
requests to complete the entire acceleration. To provide
DomUs with different maximum data transfer bandwidths,
the size of a data pool can be regulated in each DomU’s
frontend driver and the Dom0’s backend driver.

2.3 Hyper-requesting

2.3.1 Case analysis
In this section, we propose the concept of hyper-requesting
to improve request turnaround time through DMA context
switches.

Figure 3 Design of a coprovisor (see online version for colours)

 Interrupt FPGA
Accelerator

Domain 1 Domain 2 Domain 3 Domain 4

Coprovisor

Request Inserter

 Dom0
Kernel Space Accelerator

Driver

Event Channel

Request Queue 1

Request Queue 2

scheduler

DMA Channel
 Status

Request Remover

184 W. Wang et al.

Let us consider two applications, app1 and app2, running on
the FPGA accelerator as shown in Figure 4. The processing
time needed by app1 and app2 for processing one block of
data is T1 and T2, respectively [see Figure 4(a)]. Assume
both T1 and T2 are longer than the communication latency
of transferring one block of data. Two DomUs, Lucid1 and
Lucid2, are requesting access to the FPGA accelerator
simultaneously, with Lucid1 requesting app1 acceleration
and Lucid2 requesting app2 acceleration. Suppose the
Lucid2 request comes first and gets serviced before the
Lucid1 request. Without hyper-requesting, the turnaround
time of Lucid1 was T1 + T3 [see Figure 4(b)], where T3
equals T2. The Lucid1 request will not be scheduled to the
FPGA accelerator until the Lucid2 request is serviced,
which results in a scheduling delay (T3) for Lucid1 to get its
request serviced. Even though the DMA read channel [in
Figure 2(a)] becomes idle when a block of data is
transferred to app2 for processing, the Lucid1 request has to
wait to get serviced till app2 on the FPGA accelerator
finishes its processing and raises an interrupt to the server.
This unnecessary scheduling delay can be eliminated by
implementing a DMA context switch. More precisely, once
the Lucid2 request finishes its use of DMA read channel, an
immediate context switch to the Lucid1 request will be
implemented by the coprovisor.

Figure 4 Analysis of request turnaround time, (a) processing
time of app1 and app2 (b) turnaround time without
hyper-requesting (c) turnaround time with
hyper-requesting (see online version for colours)

 T1

T2

app1:

app2:
(a)

T1

Lucid2 Turnaround Time

Lucid1 Turnaround Time

T3

Overall Turnaround Time

app1:

app2: T2

(b)

T1

T2

Context
Switch
 T4

Lucid2 Turnaround Time

Overall Turnaround Time

Lucid1 Turnaround Time

app1:

app2:

(c)

As shown in Figure 4(c), the overall turnaround time will be
reduced to T2, and the turnaround time of Lucid1 is T1 plus
the context switching overhead T4. The DMA context
switching overhead is minor, because only one parameter
(the bus address of the next DMA buffer descriptor) needs
to be loaded to the DMA controller. Therefore, both Lucid1

and the overall turnaround time will be reduced through a
DMA context switch. When two requests have multiple
portions of data that are required to be processed, portions
of the two requests can be loaded into the FPGA accelerator
through DMA context switches to be processed
simultaneously. The request turnaround time improvement
will be shown in our experiments in Section 4.3.

2.3.2 Hyper-requesting design
In order to support hyper-requesting, requests to access the
FPGA accelerator need to become context-aware so that
request context switches can be performed. Similar to the
functionality of a process control block (PCB), each request
has its own request control block (RCB) which is used by
the coprovisor to setup a DMA executing context. The
design of an RCB is shown in Figure 5. Table 3 explains the
fields of an RCB.

Figure 5 Design of a request control block

DomID

Port

App_num

Total_buf_num

Current_buf_num

Request State

RCB_list

Table 3 Description of a request control block

Field Description

DomID Denotes the ID of the domain that the
request comes from.

Port The port number of the event channel. It is
used to notify the request’s domain
through the corresponding event channel.

Request State The three possible states of a request:
DMAREAD, DMAWRITE and DMAFIN.

App_num Specifies which app the request needs to
use on the FPGA accelerator. 0-app1,
1-app2.

Total_buf_num The total number of buffer fragments used
by the request.The size of one DMA buffer
fragment is 4KB in our implementation.

Current_buf_num Specifies the number of current buffer
fragment that needs to be transferred to the
FPGA accelerator.

RCB_list A pointer to the next request.

The scheduler in Figure 3 mainly performs four functions:

 pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose computing 185

1 Exposing the status of both DMA read and DMA write
channels to the device driver (such as if the DMA read
channel is idle or in use).

2 Scheduling a request to use the DMA read channel (this
may need to implement a DMA context switch).

3 Maintaining the RCBs of the head requests of the two
queues; for example, when one buffer fragment (storing
one block of data) of a request is scheduled to use the
DMA read channel, the request state will be updated
with DMAWRITE, and the ‘current_buf_num’ will be
incremented by one.

4 Invoking the request remover to remove a request once
the request has completed using the FPGA accelerator.

Figure 6 shows the request state transition diagram, and the
DMA read channel state transition diagram is shown in
Figure 7. When a request is received from a DomU it is
marked with DMAREAD state, which indicates that the
request is waiting for a DMA read operation. If the DMA
read channel is in IDLE state, the DMA read operation will
be initiated, the DMA read channel state will be updated to
BUSY, and the request state will be updated to
DMAWRITE. The scheduler is invoked in the following
three cases:

1 a new request is inserted into a queue

2 a type 1 interrupt is received

3 after initiating a DMA write operation.

When the scheduler is invoked, it will check if the DMA
read channel is idle and a head request in one of the queues
is in DMAREAD state. If so, it will schedule the head
request for a DMA read operation.

Figure 6 Request state transition diagram

DMAFIN DMAWRITE

Type 1 interrupt: Raised as the DMA read operation finishes
Type 2 interrupt: Raised as the FPGA finishes processing

New Request

Trigger: A Type 2 interrupt is received

Condition:
Current_buf_num != Total_buf_num

DMAREAD

Condition:
Current_buf_num == Total_buf_num
Trigger: A Type 2 interrupt is received

Condition:DMA read channel is idle
Trigger: 1.A new request is inserted
 or 2.A Type 1 interrupt is received
 or 3.After initiating a DMA write

Figure 7 DMA read channel state transition diagram

IDLE BUSY

Trigger:
After initiating a DMA read operation

Trigger:
A Type 1 interrupt is received

When a DMA read operation finishes, a type 1 interrupt will
be received from the FPGA accelerator to release the DMA
read channel, thereby modifying the DMA read channel
state to IDLE. In this case, if the head request in the other
queue is waiting for a DMA read operation, the operation
can be initiated. When a type 2 interrupt is received, the
context of a request with DMAWRITE state will be loaded
into the DMA controller to implement a DMA write
operation, and the ‘Current_buf_num’ will be incremented
by one. If the head requests of the two queues are both in
DMAWRITE state, the bit 2 of the ASW informs the
Scheduler which request has finished a computation on the
FPGA.

After initiating a DMA write operation there are two
possible cases. One case is that the request has not been
completely serviced; that is, there are still data in the DMA
buffer associated with the request that have not been
processed. In this case, the state of this request will be
updated to DMAREAD after initiating the DMA write
operation. The second case is that a request has finished all
its data processing (Current_buf_num == Total_buf_num).
The request will be set to the DMAFIN state, and the
request remover will be invoked to remove the request from
the queue.

3 Streaming pipeline analysis
With the pipeline technique, some execution latency can be
hidden. For example, in the third cycle in Figure 2(b), the
DMA read and DMA write operations are implemented
simultaneously as the FPGA accelerator is doing a
computation, so the latency of the DMA read and write
operations is hidden. In the following discussion, we
assume the computation latency is TC, and the DMA data
transfer latency of one block of data is TD (DMA read
latency = DMA write latency = TD), and the total number of
blocks of data is N.

The pipeline shown in Figure 2(b) is similar to a classic
reduced instruction set computer (RISC) pipeline, where all
the operations have identical execution latency. However,
this type of pipeline seldom occurs with the design of an
FPGA accelerator, because it is uncertain that the
computation latency, TC, is equal to the DMA data transfer
latency, TD. Following are two possible scenarios:

Scenario 1 In Figure 8(a), the DMA data transfer
latency is larger than the FPGA accelerator
computation latency, that is, TD > TC. One
block in the figure occupies one timing
unit. DR represents DMA read, and two
concatenate DR blocks mean that the DMA
read operation occupies two timing units; CP
represents Computation on the FPGA; DW
represents DMA write.

Scenario 2 In Figure 8(b), the DMA data transfer latency
is less than the FPGA accelerator computation
latency, that is TD < TC.

186 W. Wang et al.

Pipelined operations in scenario 1 can work similarly to the
RISC pipeline technique. However, the scenario 2 pipelined
operations shown in Figure 8(b) will cause some problems.
The overlapping of two computation operations [e.g., two
red CPs in Figure 8(b)] implies that two blocks of data are
contending for one computation module. In other words,
when the second block of data arrives in the FPGA
accelerator for doing a computation, the first block of data
has not completed its computation. This will cause a
conflict on using the computation module. We refer to
problems with streaming data conflicting on using the
computation module as streaming pipeline hazards.1

A simple solution to solve the streaming pipeline
hazards shown in Figure 8(b) is to increase the operating
frequency of the computation module, thereby reducing the
computation latency, TC. But this is not always feasible,
because there is always a limit to the maximum frequency
of the design. Exceeding the maximum frequency would
cause issues such as setup/hold timing violations.

Figure 8 Examples of non-RISC-like pipeline stages,
(a) an example of scenario 1 pipeline stages
(b) an example of scenario 2 pipeline stages
(see online version for colours)

 DR CP DWDR DW

DR CP DWDR DW

DR CP DWDR DW

DR CP DWDR DW

DR CP DWDR DW

(a)
 CP DWDR CP

CP DWDR CP

CP DWDR CP

CP DWDR CP

CP DWDR CP

(b)

The second solution to solve the streaming pipeline hazards
is shown in Figure 9(a), where the start of next DMA read
operation is delayed. This is very difficult to implement,
because the time to start the DMA read operation needs to
be at an accurate time instance when the FPGA is executing
a computation. Figure 9(a) shows an example where TC
equals 2*TD, and the time to start the DMA read of next
block of data can be set when the FPGA finishes the current
half block of data computation. However, in practice TC
could be any factor larger than TD (e.g., 1.5 or 1.75).
Implementing this solution is complicated, and varies with
different applications because they have different
computation latencies.

The third solution is to delay the start of the
computation module, as shown in Figure 9(b). It is clear in
the figure that the second and third solutions have the same
turnaround time. In practice, the solution shown in
Figure 9(b) is prone to implement, because the start of next
DMA read operation can be just triggered when the first
DMA read operation finishes, but the incoming data are not
processed immediately when they arrive in the FPGA

accelerator. For example, when the second block of data is
being computed, the third to fifth blocks of data have
already arrived and must be buffered. It can be easily
inferred from Figure 9(b) that the pipeline bubbles between
DR and CP get increased when N increases. Thus, the
disadvantage of the solution in Figure 9(b) is that it requires
large memory to buffer the incoming data, and the required
size of the buffer grows as N increases.

Figure 9 Solutions to solve streaming pipeline hazards,
(a) delay the start of computation operations (b) delay
the start of DMA read operations (c) simultaneous
implementation of DMA read and write operations
(see online version for colours)

DR CP DWCP

DR

DR

DR

CP DWDR CP

CP DWCP

CP DWCP

CP DWCP

(a)

DR CP DWCP

DR

DR

DR

CP DWDR CP

CP DWCP

CP DWCP

CP DWCP

(b)

DR CP DWCP

DR

CP DWDR CP

DR

DR

CP DWCP

CP DWCP

CP DWCP

(c)

The fourth solution is to add one more computation unit to
the FPGA accelerator. In this case, the second block of data
can be streamed to a different computation unit from
the first block of data for a computation. However,
implementing this solution has a similar difficulty to
implementing the second solution. The example we show in
Figure 9(b), where TC = 2*TD, needs two computation units
in total. In practice, we may need to add more computation
units on the FPGA based on the relationship between TC and
TD. Thus, this solution cannot be adopted for general
purpose use.

Figure 9(c) illustrates the fifth solution to address the
problem; hide the DMA write operation latency by
executing it simultaneously with a DMA read operation.
The drawback of this solution is that it has longer
turnaround time than the other solutions above. However,
the fact that it can be used for general purpose computing is
an advantage. That is, in practice it can be easily adopted for
any situation regardless of the latency difference between
the DMA data transfer and the FPGA computation. This
type of pipeline satisfies our FPGA accelerator design aim,
which is to make the FPGA accelerator capable of
accelerating various applications for cloud clients. The

 pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose computing 187

overall turnaround time of the pipeline shown in Figure 9(c)
can be calculated by the following formula:

()*D C DT N T T+ + (1)

4 Implementation and evaluation
Table 4 shows the details of our experimental platform. We
have verified the functionality and virtualisation overhead
with a fast Fourier transform (FFT) benchmark, which
generates the same results as those shown in Sabeghi and
Bertels (2009). Thus, we will not repeat the results in this
paper. In Section 4.1, we will measure the DMA data
transfer latency, TD, with a loopback application, and the
result of TD will be used for the following analyses. In
Section 4.2, we will verify the functionality of the
coprovisor for multiplexing requests to the same
acceleration application and make a detailed analysis of the
contention. Finally, we will evaluate the improvement in
request turnaround time with hyper-requesting in
Section 4.3.

Table 4 Experimental platform

Name Description

x86 server Intel® Xeon Processor W3670 running
at 3.2 GHZ and 4 GB of main memory

FPGA accelerator Virtex-6 LXT FPGA ML605
Evaluation Kit, 4-lane (Gen 2) PCIe

interface
VMM Xen-4.1.2
Native Linux without
the Xen VMM

Ubuntu 12.04LTS

Dom0 Ubuntu 12.04LTS
4 DomUs Ubuntu 10.04LTS, named with

Lucid1, Lucid2, Lucid3, Lucid4,
respectively

4.1 DMA data transfer latency measurement
In order to measure the DMA data transfer latency, we use a
loopback application, which simply returns any unmodified
data it receives, on the FPGA accelerator in the position of
app1 in Figure 2(a). The DMA read and write operations are
implemented with 4 KB data size as a block. The FPGA
computation latency, TC, can be considered zero, since there
is no computation of the loopback application. The pipeline
of the loopback application is depicted in Figure 10. When
TC equals zero, formula (1) can be simplified as:

*D DT N T+ (2)

The formula (2) shows the turnaround time of the loopback
application. When large amounts of data (e.g., N = 1,024)
are transferred to the loopback benchmark, we can get an
accurate value of TD, which is the DMA data transfer
latency of one block of data. When 4 MB data (N = 1,024)
is sent to the FPGA, the turnaround time is 3,586 us.
According to formula (2), we get TD equal to 3.5 us, which

is the time of transferring 4 KB data. This value will be used
for analyses of the following experiments.

Figure 10 Pipeline stages of the loopback application
(see online version for colours)

TD

N=1

N=2

N=3

TD

TD

TD

DR DW
DR DW

DR DW

4.2 Coprovisor evaluation
The evaluation was presented in our previous paper (Wang
et al., 2013). Since the coprovisor was significantly
modified, we will re-evaluate the functionality of the
coprovisor in this section and give a detailed contention
analysis to show validity of experimental results in
Section 4.2.1.

Figure 11 Evaluation of the coprovisor, (a) identical data pool
size in DomUs (b) different data pool sizes in DomUs
(see online version for colours)

Number of DomUs requesting service simultaneously

Ti
m

e
(s

)

(a)

Ti
m

e
(s

)

Number of DomUs requesting service simultaneously
(b)

In the experiments, we built a benchmark based on Xilinx
FFT IP core (Xilinx Corporation, 2011a) for accelerating
256-point floating point (single precision) FFT. Executing
this FFT benchmark requires at least 2 KB data (1 KB real

188 W. Wang et al.

number and 1 KB complex number) to be transferred to the
FPGA accelerator. Thus, each block of data has two FFT
computations (4 KB/2 KB = 2). The FFT benchmark
module operates at 250 MHz. One block of data in our
implementation is 4 KB, so the FFT benchmark performs
two FFT computations each time. We obtain the FFT
benchmark computation latency (approximately 9.5 us)
through a simulation in Modelsim, that is, TC equals 9.5 us.

In the first evaluation, each of the four DomUs (Lucid1,
Lucid2, Lucid3 and Lucid4) allocates a 1MB size data pool,
which is shared with Dom0 for inter-domain data transfer.
The FFT benchmark is used as app1 [see Figure 2(a)] for
the evaluation. We set all the applications in the four
DomUs to select app1 when they request services, and the
data size for all the requests is set to 1MB via the command
channel. In this evaluation, each of the DomUs sends 2 GB
of data to compute FFT on the FPGA accelerator, so each
DomU needs to send 2,048 requests to complete the
computations. In Figure 11(a), when all four DomUs
contend for one FPGA accelerator, all the DomUs spend
equal time to complete the computations.

In the second evaluation, we assigned Lucid1, Lucid2,
Lucid3 and Lucid4 with 1 MB, 512 KB, 256 KB and
256 KB data pool sizes respectively, separately in their
kernel spaces. In this case, Lucid1 is treated as a higher tier
domain, as it is assigned the larger data pool size, which
implies higher maximum data transfer bandwidth. We set all
the applications in the four DomUs to set the data size for
all the requests equal to the data pool size via the command
channel. In Figure 11(b), when all four DomUs request
access to one FPGA accelerator simultaneously, Lucid1
completes the evaluation task twice faster than Lucid3, and
Lucid3 and Lucid4 spend equal time to complete their
evaluation tasks, due to their equal assigned data pool size.
The request contention analysis of the two cases are
elaborated in the following subsection.

4.2.1 Contention analysis
We first consider the situation in Figure 11(a) where the
four DomUs contend for access to the FPGA accelerator
with equal sized data pools. Figure 12(a) shows how these
requests are scheduled. L1-1 represents the first request
from Lucid1, L2-1 represents the first request from Lucid2,
and so on. In Figure 11(a), each DomU is assigned a 1 MB
data pool, so each domain needs to send 2,048 requests to
complete 2 GB data of FFT computations. A DomU cannot
send the second request until the first request is serviced,
because each DomU has only one data pool. Thus, all the
requests can be grouped into 2,048 groups, with each group
having a request from each of the DomUs. Here, every
request has 256 blocks of data (1 MB/4 KB); that is, N
equals 256. After sending 2048 groups of requests, all the
DomUs will complete their tasks. They finish with almost
the same turnaround time, which is also the turnaround time
of the 2048 groups of requests. One group of requests has
four requests from each of the four DomUs. According to
formula (1), the turnaround time of one group of requests,
denoted as Tg, is [3.5 + 256 * (9.5 + 3.5)] * 4 = 13,326 us.

Thus, the turnaround time of 2,048 groups of requests is
2,048 * Tg = 27.3 seconds, which means each of the four
DomUs needs 27.3 seconds to get their requests serviced.
Before sending a request, each DomU needs to load data
into the data pool; this can be viewed as preprocessing
work. However, it is not necessary to add the preprocessing
time to the calculated result. In Figure 12(a), when the first
request from Lucid1 (L1-1) finishes, it will load new data to
the data pool for the second request (L1-2 in Group 2).
Meanwhile, the first request from Lucid2 (L2-1) is
scheduled for computations. The preprocessing time of L1-2
overlaps the time for servicing L2-1, so the preprocessing
time is hidden. The experimental result in Figure 11(a) is
27.5 us which is very close to the calculated result.

Figure 12 Analysis of four DomUs contending for access
to the shared FPGA accelerator,
(a) contention analysis of Figure 11(a)
(b) Phase 1 contention analysis of Figure 11(b)
(c) Phase 2 contention analysis of Figure 11(b)
(d) Phase 3 contention analysis of Figure 11(b)
(see online version for colours)

(a)

(b)

(c)

(d)

We next consider the situation in Figure 11(b), where the
four DomUs that are assigned different data pool sizes
contend for access to the shared FPGA accelerator. The
contention analysis is more complex, since higher tier
domains will complete their requests first and are out of the
contention at a certain time instance. Here, we split the
contention into three phases. In each phase a DomU
completes its evaluation task, and will be out of contention
for access to the shared FPGA accelerator. Phase 1 has
Lucid1, Lucid2, Lucid3 and Lucid4 contending for the
FPGA accelerator, while in Phase 2 only Lucid2, Lucid3
and Lucid4 contend for the accelerator, since Lucid1 has
completed all its requests and is out of contention at the end

 pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose computing 189

of Phase 1. In Phase 3, Lucid3 and Lucid4 contend for the
FPGA accelerator, since Lucid2 has finished all its requests
and is out of contention at the end of Phase 2.

Phase 1 Lucid1, Lucid2, Lucid3 and Lucid4 contend for
access to the shared FPGA accelerator. Lucid1 will
complete all its requests at the end of Phase 1.
Figure 12(b) shows how the requests are
scheduled, which is slightly different than that in
Figure 12(a). L1-1 is twice as long as L2-1 and
four times longer than L3-1, because Lucid1 is
assigned a 1 MB data pool, while Lucid2 is
assigned a 512 KB data pool and Lucid3 a 256 KB
data pool. After 2,048 groups of requests, Phase 1
ends because Lucid1 has completed its task (1 MB
* 2048 = 2 GB). After Phase 1, Lucid2, Lucid3 and
Lucid4 have only partially finished their tasks.
Table 5 shows the remaining data size of each
DomU at the end of Phase 1.

In Phase 1, the turnaround time of one group of
requests, Tg1, is equal to the sum of the request
turnaround time of the four DomUs. Therefore,
according to (1):

1 3.5 256*(9.5 3.5) 3.5 128*(9.5 3.5)
3.5 64*(9.5 3.5) 3.5 64*(9.5 3.5)
6,670 .

Tg

us

= + + + + +
+ + + + + +
=

The turnaround time of Lucid1 equals the
13.7 seconds (2,048 * Tg1) turnaround time
of Phase 1. As shown in Figure 11(b), our
experimental result of 13.9 seconds is close
to the calculated result.

Phase 2 As shown in Figure 12(c), in this phase Lucid2,
Lucid3 and Lucid4, contend for access to the
shared FPGA accelerator. Table 4 shows that
Lucid2 has 1 GB data left for FFT computations,
so the number of groups in Phase 2 is 2,048
(1 GB/512 KB). Table 6 shows the remaining data
size of each DomU at the end of Phase 2.

In Phase 2, the turnaround time of one group of
requests, Tg2, equals the sum of the request
turnaround time of Lucid2, Lucid3 and Lucid4.
Therefore:

2 3.5 128*(9.5 3.5) 3.5
64*(9.5 3.5) 3.5 64*(9.5 3.5)
3,338.5 .

Tg

us

= + + +
+ + + + +

=

The turnaround time of Lucid2 is equal to the
turnaround time of Phase 1 and Phase 2, which is
13.7 s + 2,048 * 3,338.5 us = 20.5 seconds. Our
experimental result is 20.8 seconds which is close
to the concluded result.

Phase 3 As shown in Figure 12(d), only Lucid3 and Lucid4
contend for access to the shared FPGA accelerator.
So we get:

3 3.5 64*(9.5 3.5) 3.5 64*(9.5 3.5)
1,671 .

Tg
us

= + + + + +
=

Both Lucid3 and Lucid4 have 1GB data left
for computations, so after 4,096 groups
(1 GB/256 KB) of requests are scheduled Lucid3
and Lucid4 have completed their tasks. Therefore,
the turnaround time of Lucid3 equals the
turnaround time of Lucid4, which is also the
turnaround time of the three phases. This is
calculated as: 20.5 s + 4,096 * 1,671 us =
27.3 seconds. Our experimental result is
27.7 seconds, which is close to the calculated
result.
As shown, the overall turnaround time (Phase 1 +
Phase 2 + Phase 3) of Figure 11(b) equals that of
Figure 11(a), since their overall data sizes for FFT
computations are the same (4 * 2 GB = 8 GB). In
Figure 11(a), all the DomUs get their requests
serviced at an equivalent and invariable speed. In
Figure 11(b), Lucid3 and Lucid4 get their requests
serviced at a slower speed at the beginning, but as
Lucid1 and Lucid2 drop out of contention the
speed increases.

Table 5 Remaining data size of each DomU at the end
Phase 1

DomU Remaining data size
Lucid1 2 GB–1 MB * 2,028 = 0
Lucid2 2 GB–512 KB * 2,048 = 1 GB
Lucid3 2 GB–256 KB * 2,048 = 1.5 GB
Lucid4 2 GB–256 KB * 2,048 = 1.5 GB

Table 6 Remaining data size of each DomU at the end
Phase 2

DomU Remaining data size
Lucid2 1 GB–512 KB * 2,048 = 0
Lucid3 1.5 GB–256 KB * 2,048 = 1 GB
Lucid4 1.5 GB–256 KB * 2,048 = 1 GB

4.3 Hyper-requesting evaluation
In this section, we evaluate the improvement of request
turnaround time due to hyper-requesting. The aim of
proposing hyper-requesting is to enable two requests
bidding to different accelerator applications to be processed
simultaneously on the FPGA accelerator through DMA
context switches, thereby reducing the request turnaround
time. For convenience, we refer to the design presented in
Wang et al. (2013), which does not have the ability to
perform hyper-requesting as a basic design, and the
design presented in this paper, which is able to perform
hyper-requesting, as an improved design. All the above
evaluations were implemented with requests requesting to
use the same accelerator application (app1) on the FPGA
accelerator, so hyper-requesting was not used. To evaluate

190 W. Wang et al.

the request turnaround time improved by hyper-requesting,
requests from Lucid1 and Lucid2 are set to access app1, and
requests from Lucid3 and Lucid4 are set to access app2.

At the FPGA accelerator end, we used a design that
emulates the computation procedure. As shown in
Figure 13, both app1 and app2 have a buffer for storing a
block of incoming data, and a timer for emulating algorithm
computation time. The timer asserts an interrupt request to
the app controller when the time is up. From the
acceleration module perspective, the major difference
between different accelerator applications involves varying
computational latencies. The previous experiments are
implemented with an app whose computation latency is at
the microseconds level. In order to show that our proposed
accelerator design can be used for general purpose
computing, regardless of the app computation latency, we
set the app1 timer to 4 seconds and the app2 timer to
2 seconds for one block of data (4 KB in the experiments).
In this case, app1 and app2 emulate two algorithm
computations that require 4 seconds and 2 seconds
respectively to complete one block of data processing.
Figure 13 An accelerator emulating design for verification

purposes (see online version for colours)

Buffer
Timer

IRQ1

App Controller

Buffer
Timer

IRQ2

App1 App2

Figure 14 Request turnaround time comparison between the

basic design and improved design (see online version
for colours)

Request domain

Tu
rn

ar
ou

nd
 ti

m
e

(s
)

Figure 14 shows the turnaround time when each DomU
sends a request with eight blocks of data (32 KB) to the

FPGA accelerator simultaneously. The improved design
does not affect Lucid2 because its request is inserted into
the same queue as the Lucid1 request, and requests in the
same queue are scheduled via FCFS policy. The most
apparent improvement (an 80% reduction of the basic
design’s turnaround time) is when the Lucid3 request is
inserted into a different queue than the Lucid1 request.
Hyper-Requesting helps reduce the scheduling delay caused
by scheduling the requests from Lucid1 and Lucid2. The
concurrent share of the DMA read channel enables
simultaneous use of app1 and app2 on the FPGA
accelerator. With the improved design, the turnaround time
of all the requests is reduced to approximately 53% of that
with the basic design.

5 Related works
5.1 FPGA virtualisation
El-Araby et al. (2008) describe a virtualisation solution for
FPGA accelerators. The authors have proposed a solution
for virtualising an FPGA accelerator for multiple processes
on a single OS. An important component in their
virtualisation solution is what they refer to as a ‘virtual
coprocessor monitor (VCM)’, which multiplexes requests
from multiple processes to access the shared FPGA
accelerator. When a user process sends a request to the
VCM to access the FPGA accelerator, the VCM creates a
virtual memory space. It shares this space with the calling
process through conventional POSIX memory sharing
inter-process communication (IPC) primitives. Then the
user process copies data to the virtual memory space,
followed by the insertion of a request into the request queue.
When the FPGA accelerator has finished, the VCM will
send an acknowledge signal to the user process indicating
that results are ready to be fetched. The VCM also provides
an API for a process to release the virtual memory space.

The work presented in El-Araby et al. (2008) does not
include a design of an FPGA accelerator, and the FPGA
design they use is vendor proprietary. Thus, their proposed
VCM, which is designed as a user-level application,
interacts with the FPGA accelerator driver through
vendor-supplied APIs. The authors modified the
vendor-supplied APIs with virtualisation APIs, which can
be used by user processes to interact with the VCM. In
comparison to the work presented in El-Araby et al. (2008),
pvFPGA moves a step forward to virtualise an FPGA
accelerator for processes from different domains. We have
proposed an accelerator design which can be used for
accelerating various applications, regardless of the
application computation latencies. Also, our device
driver level design solution can be easily optimised (e.g.,
hyper-requesting).

Byma et al. (2014) focus on integrating FPGAs into
OpenStack. Taking advantage of partial reconfiguration,
they partition an FPGA into several reconfigurable regions,
with each region exposed to OpenStack as an allocable

 pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose computing 191

resource. No novel VMM layer design is presented in this
work.

5.2 GPU virtualisation
A direct comparison between pvFPGA and the recent GPU
virtualisation solutions may seem unfair, since GPUs have
been used for general purpose computing. But pvFPGA
draws on some of the techniques used in GPU virtualisation
solutions. Our proposed accelerator enables FPGAs to be
used for general purpose computing when partial
reconfiguration is integrated in the future. GViM (Gupta
et al., 2009), vCUDA (Shi et al., 2012) and gVirtuS (Giunta
et al., 2010) are three GPU virtualisation solutions that have
been recently proposed. In this section, we compare the
difference between pvFPGA and the recent GPU
virtualisation solutions only in terms of the virtualisation
techniques being used.

GViM is a Xen-based system design solution that
permits users to run any CUDA-based applications in a
domain (Gupta et al., 2009). It uses the shared memory
mechanism for data transfer between domains, and an
interposer library in each unprivileged domain (DomU)
provides CUDA accesses. CUDA calls from user
applications in a DomU are intercepted, packed together
with parameters into CUDA call packets by the interposer
library, and then passed to the frontend driver, which
transfers them to the Domain 0 (Dom0) backend driver. In
Dom0, the CUDA call packets are continuously passed to
the library wrapper, which converts them into standard
CUDA function calls. Each DomU has a dedicated CUDA
call buffer in Dom0. CUDA calls from DomUs requesting
access to the GPU are stored in the buffer first, the buffered
requests are then scheduled to be translated into CUDA
function calls in a round-robin fashion.

In some respects, vCUDA functions in a similar way as
GViM; for example, the latest version of vCUDA also uses
shared memory for data transfer between domains. CUDA
calls in a DomU are intercepted and packed by a vCUDA
library. The vCUDA library has a vGPU component that
reveals the device information (e.g., GPU memory usage,
texture memory properties) to applications in a DomU. To
ensure information consistency, vCUDA includes a
synchronisation mechanism between the vGPU and a
component in Dom0 known as vCUDA stub. The vCUDA
library has a global queue for storing all the packed packets,
which are periodically transferred to the vCUDA stub. The
vCUDA stub unpacks the received packets and invokes the
related CUDA API calls in Dom0. The designers also
propose using a Lazy Remote Procedure Call (RPC)
mechanism to batch specific RPCs, thereby reducing the
number of expensive world switches (context switches
between different domains). vCUDA uses working/service
threads [introduced in Shi et al. (2012)] to enable requests
from the same or different domains to be concurrently
executed on the GPU accelerator.

gVirtuS is a VMM independent solution for GPU
virtualisation in a cluster environment. Intercepted CUDA
calls in a DomU are redirected to the host domain running

on a different physical machine via a TCP/IP-based
communicator. A resource sharing framework was proposed
as an extension of gVirtuS in Ravi et al. (2011). Ravi et al.
(2011) created a virtual process context to consolidate
different applications (including from different domains)
into a single application context, in order to time share or
space share streaming multiprocessors (SMs) in a GPU
accelerator.

Both the recent GPU virtualisation solutions and
pvFPGA use shared memory for inter-domain data transfer,
but the above solutions of intercepting user space API calls
from frontend domains and redirecting them to the backend
domain are specific to GPUs. Owing to the limited
knowledge of GPU hardware specifications and the
complexity of GPGPU programming model, it is not
feasible to achieve GPGPU virtualisation at the low device
driver layer, which can provide lower overhead and higher
efficiency (i.e., we propose hyper-requesting to reduce
request turnaround time). A CUDA application might entail
calling thousands of CUDA APIs (Shi et al., 2012), whereas
only one ‘call’ is required to access the FPGA accelerator in
pvFPGA. The overhead on GPU virtualisation solutions
average 11%, whereas pvFPGA overhead is near zero when
a DomU uses a large data pool (e.g., 4 MB) for data
transfer. Also, no GPU virtualisation solutions include a
scheme to supply DomUs with different maximum data
transfer bandwidths. The coprovisor efficiently multiplex
requests to access the FPGA accelerator at the device driver
layer, and pvFPGA can provide different maximum data
transfer bandwidths for DomUs by regulating the size of the
shared data pools.

6 Conclusions and future works
In this paper, we present an ameliorated design of pvFPGA,
which is a leading edge system design solution of
virtualising an FPGA-based hardware accelerator by a
VMM on the x86 platform. The proposed accelerator design
can be used for accelerating various applications, regardless
of the application computation latencies on the FPGA. A
streaming pipeline technique is adopted in pvFPGA for
efficient data transfer between the server and the FPGA
accelerator. We discuss the concept of streaming pipeline
hazards, and several solutions for solving streaming pipeline
hazards are covered in this paper. Additionally, we propose
a technique called hyper-requesting, which enables portions
of two requests to be simultaneously processed on the
FPGA accelerator through DMA context switches, to
achieve request level parallelism.

An important future direction of our work is to integrate
partial reconfiguration into pvFPGA. With partial
reconfiguration, various accelerator applications can be
preconfigured as partial bitstream files, and be dynamically
swapped into either app1 or app2 in Figure 2(a) according
to a DomU’s request, which will accomplish runtime
general purpose computing. Another future direction of our
work is to extend pvFPGA to a cluster environment, where
each node in the cluster is equipped with an FPGA

192 W. Wang et al.

accelerator. When the coprovisor recognises that there are
too many requests in the queue for the native FPGA
accelerator, while the FPGA accelerators in other servers
are underutilised, some of the requests can be scheduled
through an extra TCP/IP mechanism to the idle FPGA
accelerators in remote physical machines. This would also
raise some load balancing issues that need to be solved.

References
Agrawal, D., Das, S. and Abbadi, A.E. (2011) ‘Big data and cloud

computing: current state and future opportunities’, in
Proceedings of the 14th International Conference on
Extending Database Technology, EDBT’11, pp.530–533.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I. and Warfield, A. (2003) ‘Xen and
the art of virtualization’, in Proceedings of the 19th ACM
Symposium on Operating Systems Principles, SOSP’03,
pp.164–177.

Brodtkorb, A.R., Hagena, T.R. and Sætra, M.L. (2013) ‘Graphics
processing unit (GPU) programming strategies and trends in
GPU computing’, Journal of Parallel and Distributed
Computing, Vol. 73, No. 1, pp.4–13.

Bugnion, E., Devine, S., Rosenblum, M., Sugerman, J. and
Wang, E.Y. (2012) ‘Bringing virtualization to the x86
architecture with the original VMware workstation’,
ACM Transactions on Computer Systems, Vol. 30, No. 4,
pp.12:1–12:51.

Byma, S., Steffan, J.G., Bannazadeh, H., Garcia, A.L. and
Chow, P. (2014) ‘FPGAs in the cloud: booting virtualized
hardware accelerators with OpenStack’, International
Symposium on Field-Programmable Custom Computing
Machines, FCCM’14, May, pp.109–116.

Canny, J. and Zhao, H. (2013) ‘Big data analytics with small
footprint: squaring the cloud’, in Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’13, pp.95–103.

Che, S., Li, J., Lach, J. and Skadron, K. (2008) ‘Accelerating
compute intensive applications with GPUs and FPGAs’, in
Proceedings of the 6th IEEE Symposium on Application
Specific Processors, SASP’08, pp.101–107.

Chisnall, D. (2007) The Definitive Guide to the Xen Hypervisor,
Prentice Hall, New Jersey, USA.

Chung, E.S., Milder, P.A., Hoe, J.C. and Mai, K. (2010)
‘Single-chip heterogeneous computing: does the future
include custom logic, FPGAs, and GPGPUs’, in Proceedings
of the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO’10, pp.225–236.

Cope, B., Cheung, P.Y.K., Luk, W. and Witt, S. (2005) ‘Have
GPUs made FPGAs redundant in the field of video
processing?’, in Proceedings of the 2005 IEEE International
Conference on Field-Programmable Technology (FPT’05),
pp.111–118.

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data
processing on large clusters’, Communications of the ACM,
Vol. 51, No. 1, pp.107–113.

Dowty, M. and Sugerman, J. (2009) ‘GPU virtualization on
VMware’s hosted I/O architecture’, ACM Operating Systems
Review, Vol. 43, No. 3, pp.73–82.

Eguro, K. and Venkatesan, R. (2012) ‘FPGAs for trusted cloud
computing’, in Proceedings of the 22nd International
Conference on Field Programmable Logic and Applications,
FPL’12, August, pp.63–70.

El-Araby, E., Gonzalez, I. and El-Ghazawi, T. (2008) ‘Virtualizing
and sharing reconfigurable resources in high-performance
reconfigurable computing systems’, in Proceedings
of the International Workshop on High Performance
Reconfigurable Computing Technology and Applications,
HPRCTA’08, pp.1–8.

Giunta, G., Montella, R., Agrillo, G. and Coviello, G. (2010) ‘A
GPGPU transparent virtualization component for high
performance computing clouds’, in Proceedings of
International Euro-Par Conference, EuroPar’10,
pp.379–391.

Gonzalez, I., Lopez-Buedo, S., Sutter, G., Sanchez-Roman, D.,
Gomez-Arribas, F.J. and Aracil, J. (2012) ‘Virtualization of
reconfigurable coprocessors in HPRC systems with multicore
architecture’, Journal of Systems Architecture, Vol. 58,
Nos. 6–7, pp.247–256.

Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N.,
Talwar, V. and Ranganathan, P. (2009) ‘GViM:
GPU-accelerated virtual machines’, in Proceedings of ACM
Workshop System-Level Virtualization for High Performance
Computing, HPCVirt’09, pp.17–24.

Hadoop [online] http://hadoop.apache.org/ (accessed 12 September
2015).

Huang, C.H. and Hsiung, P.A. (2013) ‘Virtualizable
hardware/software design infrastructure for dynamically
partially reconfigurable systems’, ACM Transactions on
Reconfigurable Technology and Systems, Vol. 6, No. 2,
pp.11:1–11:18.

Huang, C.H., Hsiung, P.A. and Shen, J.S. (2010) ‘Model-based
platform-specific co-design methodology for dynamically
partially reconfigurable systems with hardware virtualization
and preemption’, Journal of Systems Architecture, Vol. 56,
No. 11, pp.545–560.

Jain, A.K., Pham, K.D., Cui, J., Fahmy, S.A. and Maskell, D.L.
(2014) ‘Virtualized execution and management of hardware
tasks on a hybrid ARM-FPGA platform’, Journal of Signal
Processing Systems, Vol. 77, Nos. 1–2, pp.61–76.

Jan, K., Fan, C., Kuo, A., Yen, W. and Lin, Y. (2015) ‘A platform
based SOC design methodology and its application in image
compression’, International Journal of Embedded Systems,
Vol. 1, Nos. 1–2, pp.23–32.

Kivity, A., Kamay, Y., Laor, D., Lublin, U. and Liguori, A. (2007)
‘KVM: the Linux virtual machine monitor’, in Proceedings of
the Linux Symposium, pp.225–230.

Lagar-Cavilla, H.A., Tolia, N., Satyanarayanan, M. and de Lara, E.
(2007) ‘VMM-independent graphics acceleration’, in
Proceedings of the 3rd International Conference on Virtual
Execution Environments, VEE’07, pp.33–43.

Lee, P.S., Lee, C.S. and Lee, J.H. (2013) ‘Development of
FPGA-based digital signal processing system for radiation
spectroscopy’, Radiation Measurements, Vol. 48, No. 1,
pp.12–17.

Lübbers, E. (2010) Multithreaded Programming and Execution
Models for Reconfigurable Hardware, PhD dissertation,
Computer Science Department, University of Paderborn.

Neiger, G., Santoni, A., Leung, F., Rodgers, D. and Uhlig, R.
(2006) ‘Intel virtualization technology: hardware support for
efficient processor virtualization’, Intel Technology Journal,
Vol. 10, No. 1, pp.3:167–3:178.

 pvFPGA: paravirtualising an FPGA-based hardware accelerator towards general purpose computing 193

Northwest Logic Corporation (2010) DMA Back-End Core
User Guide [online] https://nwlogic.com/products/docs/
DMA_Back-End_Core.pdf (accessed 12 September 2015).

Okuyama, T., Ino, F. and Hagihara, K. (2012) ‘A task parallel
algorithm for finding all-pairs shortest paths using the GPU’,
International Journal of High Performance Computing and
Networking, Vol. 7, No. 2, pp.87–98.

Owens, J.D., Luebke, D. and Govindaraju, N. (2007) ‘A survey of
general-purpose computation on graphics hardware’,
Computer Graphics Forum, Vol. 26, No. 1, pp.80–113.

Ravi, V.T., Becchi, M., Agrawal, G. and Chakradhar, S. (2011)
‘Supporting GPU sharing in cloud environments with a
transparent runtime consolidation framework’, in Proceedings
of the International Symposium on High Performance
Distributed Computing, HPDC’11, pp.217–228.

Rostrup, S., Srivastava, S. and Singhal, K. (2013) ‘Fast and
memory-efficient minimum spanning tree on the GPU’,
International Journal of Computational Science and
Engineering, Vol. 8, No. 1, pp.21–33.

Sabeghi, M. and Bertels, K. (2009) ‘Toward a runtime system for
reconfigurable computers: a virtualization approach’, in
Design, Automation and Test in Europe, DATE’09,
pp.1576–1579.

Shi, L., Chen, H. and Sun, J. (2012) ‘vCUDA: GPU accelerated
high performance computing in virtual machines’, IEEE
Transactions on Computers, Vol. 61, No. 6, pp.804–816.

Silva, M.L. and Ferreira, J.C. (2006) ‘Support for partial run-time
reconfiguration of platform FPGAs’, Journal of Systems
Architecture, Vol. 52, No. 12, pp.709–726.

Taibo, J., Gulias, V.M., Montero, P. and Rivas, S. (2011)
‘GPU-based fast motion estimation for on-the-fly encoding of
computer-generated video streams’, in Proceedings of the
21st International Workshop on Network and Operating
Systems Support for Digital audio and Video, NOSSDAV’11,
pp.75–80.

Tian, X. and Benkrid, K. (2010) ‘High-performance quasi-Monte
Carlo financial simulation: FPGA vs. GPP vs. GPU’, ACM
Transactions on Reconfigurable Technology and Systems,
Vol. 3, No. 4, pp.1–22.

Walters, J.P., Chaudhary, V., Cha, M., Guercio Jr., S. and Gallo, S.
(2008) ‘A comparison of virtualization technologies for
HPC’, in Proceedings of the 22nd International Conference
on Advanced Information Networking and Applications,
AINA’08, pp.861–868.

Wang, W., Bolic, M. and Parri, J. (2013) ‘pvFPGA: accessing an
FPGA-based hardware accelerator in a paravirtualized
environment’, in Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis,
CODES+ISSS’13.

Xilinx Corporation (2010) Virtex-6 FPGA Integrated Block
for PCI Express [online] http://www.xilinx.com/products/
intellectual-property/v6_pci_express_block.html#overview,
(accessed 12 September 2015).

Xilinx Corporation (2011a) LogiCORE IP Fast Fourier
Transformv7.1 [online] http://www.xilinx.com/support/
documentation/ ip_documentation/xfft_ds260.pdf (accessed
12 September 2015).

Xilinx Corporation (2011b) LogiCORE IP FIFO Generator
v8.2 [online] http://www.xilinx.com/support/documentation/
ip_documentation/fifo_generator/v8_2/fifo_generator_ds317.
pdf (accessed 12 September 2015).

Yamaoka, K., Morimoto, T., Adachi, H., Koide, T. and
Mattausch, H.J. (2006) ‘Image segmentation and pattern
matching based FPGA/ASIC implementation architecture of
real-time object tracking’, in Proceedings of the 2006 Asia
and South Pacific Design Automation Conference,
ASP-DAC’06, pp.176–181.

Notes
1 Streaming pipeline hazards are different from data hazards in

an instruction pipeline, since there are no data dependencies
between the two blocks of data that cause streaming pipeline
hazards.

