
Transaction management across data stores 

Ricardo Jimenez-Peris Marta Patiño-Martinez* 
LeanXcale, 
IMDEA Software Institute, 
Campus de Montegancedo, Madrid, Spain 
Email: rjimenez@leanxcale.com 

Universidad Politécnica de Madrid, ETSIINF, 
Campus de Montegancedo, Madrid, Spain 
Email: mpatino@fi.upm.es 
* Corresponding author 

Iván Brondino 
LeanXcale, 
IMDEA Software Institute, 
Campus de Montegancedo, Madrid, Spain 

Email: ivan.brondino@leanxcale.com 

Valerio Vianello 
Universidad Politécnica de Madrid, ETSIINF, 
Campus de Montegancedo, Madrid, Spain 
Email: vvianello@fi.upm.es 

Abstract: Companies have evolved from a world where they only had SQL databases to a world where they use different kinds of data 
stores such as key-value data stores, document-oriented data stores and graph databases. This scenario rose new challenges such 
as data model heterogeneity and data consistency. There could be inconsistencies in case of failures during business actions 
requiring to update data scattered across different data stores due to the lack of transactional consistency across data stores. In this 
paper we propose an ultra-scalable transactional management layer that can be integrated with any data store with multi-versioning 
capabilities. This layer has been developed in the context of the FP7 CoherentPaaS European Project where it was integrated with six 
different data stores, three NoSQL data stores and three SQL-like databases. We particularly focus on the ultra-scalable transaction 
management API and how it can be easily integrated in any versioned data store. 

1 Introduction 

Companies have evolved from a world where they only had 
SQL databases to a world where they use different kinds of 
data stores such as key-value data stores, document-oriented 
data stores and graph databases. The reason why they have 
started to introduce this diversity of persistency models is 
because different NoSQL technologies bring different data 
models with associated query languages and/or APIs. 
However, they are confronted now with a problem in which 
they have the data scattered across different data stores. 
This problem lies in that one a business action requires to 
update the data, the data reside in different data stores, and 
they are subject to inconsistencies in the advent of failures 
and/or concurrent accesses. These inconsistencies appear 
due to the lack of transactional consistency that was 
guaranteed in their traditional SQL databases but it is not 
guaranteed within the NoSQL data stores neither across data 
stores and databases. A second problem that appears in this 
polyglot persistence environments is that applications 
cannot correlate data across data stores without replicating 
the functionality of the database at the application level. 
CoherentPaaS comes to remedy this situation. 

CoherentPaaS provides an ultra-scalable transactional 
management layer that can be integrated with any data store 
with multi-versioning capabilities. The layer has been 
integrated with six different data stores. It has been 
integrated with three different kinds of NoSQL data stores: 
a document-oriented, MongoDB, a key-value, HBase, and a 
graph database, Sparksee. It has also been integrated with 
three databases, an OLTP SQL database, LeanXcale, a 
columnar ROLAP SQL database, MonetDB, and an 
in-memory MOLAP active database, ActivePivot. 

CoherentPaaS also addresses the issue of querying 
across data stores. This is the topic of a different paper 
(Kolev et al., 2016). 

In what follows, we describe this generic ultra-scalable 
transactional management layer and focus on its API and 
how it can be integrated in different ways with different 
data stores and databases. 

2 Transactions and ACID properties 

2.1 Why transactions 

Transactions are a very important abstraction to program 
database applications since they remove two very hard 
problems for application developers. The first one is dealing 
with concurrency. Programming concurrent applications is 
complex, requiring highly qualified engineers and it is also 
quite error prone with errors difficult to reproduce and to 
debug. Transactions solve this problem by providing 
implicit concurrency control. Developers just need to 
bracket with transactions the access to the database that they 
want to have implicit concurrency control, for instance, the 
operations for making a money transfer between two bank 
accounts. The implicit concurrency control provided by 
transactions provides isolation across different users and/or 
applications accessing the shared data on the database. The 
second problem that transactions solve is to guarantee data 
consistency in the advent of failures. Programming an 
application that has to tolerate failures and guarantee the 
consistency of the persisted data is very hard and extremely 
complex, totally out of scope for regular business 
application developers. Transactions fully solve this issue 
by guaranteeing data consistency across all operations 
executed within a bracketed transaction. In the next section, 
we describe in more technical detail the properties provided 
by transactions, so-called ACID properties. 

2.2 ACID properties 

A transaction can be described formally as a sequence of 
data operations that are executed in an atomic way. 
Transactions provide the so-called ACID properties 
(Bernstein et al., 1987), namely: 

• Atomicity: It provides all-or-nothing semantics in the 
advent of failures. That is, the effect of a transaction 
should be ‘all’ it if succeeds (then it is said that the 
transaction committed) or nothing if it does not succeed 
(then it is said that the transaction aborted or rolled 
back). 

mailto:rjimenez@leanxcale.com
mailto:mpatino@fi.upm.es
mailto:ivan.brondino@leanxcale.com
mailto:vvianello@fi.upm.es


• Consistency: It is provided by the application. The 
application code in a transaction should guarantee that 
if provided with a consistent state of the database, it 
should produce a new consistent state of the database. 

• Isolation: It provides synchronisation atomicity. It 
provides the illusion that the user is executing the 
transaction alone in the system even if multiple 
transactions are executed concurrently. 

• Durability: It guarantees that the updates of a 
successful (committed) transaction are not lost 
even in the advent of failures. 

2.3 Implementation of transactional properties 

Transactional properties are attained by a combination of 
different protocols. Atomicity provides the ability to undo 
aborted transactions. Durability provides the ability to redo 
successful transactions. Both atomicity and durability 
require having redundancy at the data level, typically in the 
form of a log, that is, they are implemented on top of a 
logging mechanism. The log has to be complemented with a 
recovery protocol that it is executed upon recovery after a 
failure. The recovery protocol is executed before the 
database becomes available after a failure and is in charge 
of restoring the database consistency by undoing updates of 
aborted transactions and redoing updates of committed 
transactions to start with a fully consistent database state. 

Isolation requires having implicit concurrency control. 
The highest level of isolation is known as serialisability 
(Berenson et al., 1995). Serialisability guarantees that the 
concurrent execution of transactions is equivalent to a serial 
execution of them. Therefore, the result is as if there was 
not concurrency at all. That is, as if all reads and writes of a 
transaction would happen at a single point in time. 

However, it is well-known that serialisability reduces 
dramatically the potential concurrency due to the conflicts 
between predicate reads (e.g., select where SQL statement) 
and writes. Basically, a predicate read conflicts with any 
write on the same table unless the predicate is made 
exclusively over indexed columns and the predicate can 
exploit the index ordering (equalities or inequalities over 
indexed columns). For this reason, other isolation levels 
have been proposed such as the ANSI isolation levels and 
snapshot isolation. Other ANSI isolation levels reduce too 
much the isolation resulting in many potential anomalies. 
However, snapshot isolation (CumuloNimbo Project, 
http://cumulonimbo.eu) has become very popular because it 
only introduces a single anomaly known as write skew that 
many applications do not trigger. There has been described 
several methods on how to attain serialisability on top of 
snapshot isolation (Fekete et al., 2005; Cahill et al., 2008). 

Snapshot isolation basically splits the synchronisation 
atomicity of a transaction in two points, the start of the 
transaction at which all reads happen logically, and the end 
of the transaction at which all writes happen logically. 
Snapshot isolation provides a very high isolation level 
thanks to the fact that transactions read from a snapshot of 

the database with the state as it was when the transaction 
was started. Snapshot isolation requires using multi-version 
concurrency control. This mechanism lies in instead of 
storing a single version of each data item, a new version is 
created when a transaction that updated the item commits. 
Therefore, for a single data item multiple versions of it can 
exist at a given time. These versions need to be labelled in a 
way that they enable to choose the right version for a given 
transaction that tries to read a data item. Typically, logical 
timestamps are used for this labelling. 

Snapshot isolation avoids all read-write conflicts 
including the aforementioned one between predicate reads 
and writes. However, it still forbids write-write conflicts. 
This requires for checking those conflicts with some 
conflict management system. 

3 CoherentPaaS transactional processing 

In this section, we present the CoherentPaaS transactional 
processing. We present first a centralised naive 
implementation and then the holistic transactional 
processing. 

3.1 Centralised transactional processing 

We consider a transaction to be a sequence of read and write 
operations on data records. A read operation can read 
individual records or collections of records selected by 
means of an arbitrary predicate. We present a solution 
based on snapshot isolation (Jiménez-Peris et al., 2012; 
CumuloNimbo Project, http://cumulonimbo.eu) that avoids 
conflicts between reads and writes and has been well-
established both for traditional relational database systems 
as well as transaction solutions on top of key-value data 
stores. Many commercial database systems provide 
snapshot isolation as their highest isolation level, such as 
Oracle. 

We assume a multi-version system where each write 
operation wi(xi) of transaction Ti on record x creates a new 
private version x, and each read operation ri(xj) of 
transaction Ti reads the latest version of x, xj created by a 
committed transaction Tj such that j < i and there is no other 
committed transaction Tz, such that j < z < i. With such a 
multi-version system, snapshot isolation requires the 
snapshot read and snapshot write properties. Snapshot read 
requires that a transaction Ti reads a snapshot of the 
database that reflects the latest committed versions of all 
records as of start time of Ti. In particular, this means that if 
Ti performs a read ri on x, then it reads either the private 
version Ti previously created (read your own writes) or it 
reads the version xj created by Tj such that Tj was the last 
transaction to write x and commit before Ti started. 
Snapshot write requires that no two concurrent transactions 
(i.e., neither committed before the other started) update the 
same entity. If this happens one of the two transactions will 
abort (typical strategies are either the first committer wins, 
or the first updater wins). When a transaction commits, the 
commit timestamp is increased and all the private versions 

http://cumulonimbo.eu
http://cumulonimbo.eu


of a transaction are tagged with that commit timestamp. If 
the transaction aborts, private versions are discarded. 

In Figure 1, we illustrate a possible execution of 
transactions under snapshot isolation in a centralised 
system. The system is split into a query engine layer that 
parses and executes SQL queries, the data store layer that 
maintains the records (i.e., buffer and file system), and the 
transaction manager. In the figure, the actions associated 
with the transaction manager are indicated as blue boxes, 
the ones associated with the data store layer with brown 
boxes. 

In most snapshot isolation implementations, the 
transaction manager maintains a counter that is used to tag 
transactions with start and commit timestamps. The value of 
the counter reflects the commit timestamp of the last 
committed transaction. 

Figure 1 Transaction processing with snapshot isolation 
(see online version for colours) 

At start time of a transaction Ti, the transaction manager 
(Txn Mng in the figure) assigns the current counter value, 
TS, (reflecting the last committed transaction) as start 
timestamp (ST). In the figure, the initial value of the counter 
is 1 (shown as TS = 1). When a transaction Ti wants to 
write a record x, the write operation will first perform a 
conflict check with the transaction manager. A conflict 
occurs, if there is a concurrent transaction Tj, i.e., Tj has not 
committed yet or its commit timestamp is larger than Ti’s 
ST (C(Tj) > S(Ti)), and Tj has written x. If there is no 
conflict, the write can proceed, creating a new private 
version of x, so far only visible to Ti itself. If there is a 
conflict, Ti must be aborted to guarantee the snapshot write 

property. This simply means to discard the private versions 
Ti has created so far. When a transaction Ti requests to read 
a record x, the data store has to provide the record created 
by transaction Tj with commit timestamp C(Tj), such that 
C(Tj) ≤ S(Ti), and there is no version of x created by a 
transaction Tk such that C(Tj) < C(Tk) < S(Ti). This 
provides the snapshot read property. 

At commit time of transaction Ti, several things have to 
be accomplished. First, the transaction requests a commit 
timestamp C(Ti) to the transaction manager, which is done 
by assigning it the next counter value. Second, all record 
versions created by Ti must be labelled with C(Ti). Then, 
the changes must be made durable, which is typically 
performed by persisting the redo-log to stable storage. The 
changes also must be integrated into the data store. Only 
then, the commit is confirmed to the user. In principle, this 
commit processing has to be an atomic action. In particular, 
the increment of the counter in the transaction manager and 
the integration of the new versions into the data store are 
tightly related because once the new counter value C(Ti) is 
assigned as a ST to a new transaction Tk, Tk must be able to 
see the updates performed by Ti, i.e., the updates must be 
visible in the data store. 

While existing solutions might differ from above outline 
in the way timestamps are assigned or when conflict 
detection is done, the principle execution steps are 
conceptually similar. 

4 Transaction management in CoherentPaaS 

CoherentPaaS has a set of subsystems that play an important 
role in transactional processing. They are: holistic 
transactional manager, data stores and common query 
engine. We consider two kinds of data stores: 

1 data stores that fully delegate transactional processing 
to the holistic transactional manager 

2 data stores that perform internally transactional 
processing and only delegate coordination of the 
transaction to the holistic transactional manager for 
global transactions (transactions handled by 
CoherentPaaS). 

The holistic transactional manager provides all the 
transactional functionality for the first kind of data stores 
and transactional coordination for the second kind of data 
stores. The common query engine has a peculiar role. From 
the perspective of a CoherentPaaS application, it looks like 
a complex data store that provides multiple functionalities 
(i.e., the aggregation of all CoherentPaaS data stores). From 
the perspective of the holistic transactional manager, it 
looks as an interposed transactional coordinator. All 
components dealing with transactions do have a collocated 
local transaction manager (LTM) (see Figure 2). The LTM 
is accessed via an local transaction manager client 
(LTMClient) (similar to a JDBC driver for a database) that 
exposes the API to manage transactions and acts as an 
interface towards the holistic transactional manager. This 



means that the application, the common query engine and 
the data stores do have collocated LTMs. Data stores are 
accessed by means of a client proxy as well (a JDBC driver 
or the equivalent for the data store) that are also collocated 
with the client application and the common query engine. 
The common query engine itself also has its proxy client 
that it is collocated with the application (data stores do not 
this client since they never invoke directly the common 
query engine, simply reply to its requests). 

In the following sections, we describe how the 
application interacts with an LTMClient, the common query 
engine client (CQEClient) and the different data store 
clients. 

4.1 Transaction manager API 

In CoherentPaaS, an application may access the data stores 
either through the common query language (via the 
CQEClient) or directly through the data store clients. In 

both situations, the application will bracket the transactions 
explicitly. 

In order to execute a transaction the next steps must be 
performed: 

1 Initialisation of the LTMClient. 

2 Register the data store clients with the LTMClient. 

3 Get a transaction connection. 

4 Execute one or more transactions using the transaction 
connection. 

The first step enables to access the LTM, as it happens with 
a JDBC driver. The second step is performed to enable the 
LTM to propagate transparently the transactional context 
relieving the application from this burden. The third step 
provides the handle to manage transactions for a 
CoherentPaaS session. 

Figure 2 Interaction across subsystems involved in transactional management (see online version for colours) 



Figure 3 Registration 

Application LTMCIient 

LTMCIientltnnc = 
LTMCI ¡e nt.getl nstance Q 

DataStoreCliem CQFCIient 

reg¡ster[dsCI¡entl) 

dsC I ient l= créate Q 

registe r[th¡s] 

reg¡ster[cqecl¡ent) 

cqeclient = createQ 

registe r[th¡s) 

Figure 4 Getting a connection 

Application 

4.2 Initialisation and registration with the 
transaction manager 

The first step lies in initialising the system and registering 
with the transactional manager. Figure 3 shows how an 
application initialises the LTMClient. The application is 
going to access both to the data stores directly and through 
the common query engine. The application first requests an 
instance of the LTMClient using the getInstance() method. 
Internally the LTMClient connects to the LTM. Then, the 
application instantiates one or more data store clients 
(create) and registers (register) them with the LTMClient. 
This makes the LTMClient aware of the existence of the 
data store clients. 

The common query engine is treated as another data 
store. The application also requests an instance of the proxy 
client, the CQEClient, and registers it. 

4.3 Getting a transaction connection 

The application needs to obtain a transaction connection 
before submitting any transactional operation. The 
transaction connection (TxnCnx) is obtained from the 
LTMClient (LTMC) and is analogue to a JDBC connection. 
The transaction connection is in charge of keeping the 
transactional context (TxnCtx). It is also in charge of 
interacting with the LTMClient in a transparent way to the 
application. The application contacts directly the data store 
clients without being aware of existence of the transaction 
connection. The data store clients interact with the 
connection to perform all the interaction with the 
transactional management. There is a single transaction 
context active at a time per transaction connection. 

Figure 4 shows the interaction with the transaction 
connection (TxnCnx). First, the application requests the 



LTMClient a connection. The LTMClient returns a 
transaction connection. Now the application is able to 
execute transactions in CoherentPaaS. 

There are two ways of managing transactions and 
transactional context propagation. The transactional context 
can be propagated explicitly to the data stores by the 
application. However, it is more convenient, when feasible, 
to propagate it implicitly. In latter case, the application is 
relinquished from this responsibility. Here, we leverage the 
thread state management to allow data store clients to find 
out the connection associated to the application thread and 
the associated transactional context. Implicit propagation is 
the preferred way to manage transactional context 
propagation since it simplifies the application development. 
The explicit management is provided for those data stores 
that are not willing or cannot perform (they do not support 
sessions) the implicit transactional context propagation. 

4.4 Executing transactions in CoherentPaaS 

There are two ways to execute transactions in 
CoherentPaaS. The application may either access the data 
using the data stores directly or through the common query 
engine (or even a combination of both). In this section, we 
explain both scenarios, as they are slightly different from 
the point of view of the internal interactions in 
CoherentPaaS. 

4.5 Executing transactions using the data store 
clients 

In this section we show how an application executes 
transactions accessing the data stores directly. 

Figure 5 illustrates an example where the application 
executes a transaction using the CoherentPaaS Transaction 
Manager and two different data stores, DataStore1 and 
DataStore2. The figure shows the interactions once a 
transaction connection has been created. 

The application starts the transaction invoking 
the start primitive. Then, it reads a record X from 
DataStoreClient1, to do so, the application executes read(X) 
on DataStoreClient1 using the standard API provided 
by DataStore1. Internally, DataStoreClient1 asks the 
transaction connection (TxnCnx) for the transaction context 
(TxnCtx). DataStoreClient1 accesses the TxnCnx using a 
thread local variable. TxnCtx has the information related to 
the transaction, namely, the transaction id (TID) and 
the ST. DataStoreClient1 gets the ST from the TxnCtx 
(getStartTimestamp). Finally, DataStoreClient1 contacts the 
data store DataStore1 to read the right version (read(X, 
TS)). Read operations on different stores will be executed in 
the same way. 

Write operations are similar to read operations however, 
conflicts need to be checked. The DataStoreClient1 asks to 
the transaction connection, TxnCnx, for the transactional 

context. Then, it gets the ST from the transactional context, 
TxnCtx. The DataStoreClient1 asks again to the transaction 
connection, TxnCnx, to check if there is any write-write 
conflict (hasConflict) providing the identifier of the 
DataStoreClient1 and the key to be modified. If the data 
store provides write-write conflict detection, this invocation 
is not executed. If there is no conflict, DataStoreClient1 
requests the transaction context, TxnCtx, for the TID and 
stores in an internal buffer (writetoWriteSet) the write 
operation with key Y, value Y1 and the transaction identifier, 
TID. 

Finally, the transaction commits. To do so, the 
application invokes the commit procedure at the LTMC. 
The first step in the commit phase is to log the 
write-sets. The transaction connection, TxnCnx, requests 
every data store client involved in the transaction 
(DataStoreClient1 and DataStoreClient2) the write-set 
(getWS). DataStoreClient1 asks again for the transaction 
context to the connection, TxnCnx, which returns the 
commit timestamp CSj of the transaction. The clients of the 
data stores can provide either the writeset or a handle to the 
writeset in its internal log, if the data store does logging by 
itself. Once the LTMC collects all the writesets involved in 
the transaction, it provides the LTM the write-sets and they 
are all flushed to the CoherentPaaS log. Then, the 
transaction is marked as committed and the LTMC returns 
the control to the application. 

Finally, the LTMC asks every data store client involved 
in the transaction to apply the writeset (applyWS) to the 
corresponding data store in order to make the writeset 
visible to future transactions. Again, every involved data 
store client uses the transaction context, TxnCtx, from the 
transaction connection, to get the transaction identifier, TID. 
Then, the data store clients get the corresponding writeset 
and apply every change done by the transaction in the 
underlying data store. Once the write-set application phase 
finishes, the LTMC informs the LTM that the transaction is 
now durable and readable. The LTM will take into account 
to advance the snapshot counter when possible. 

4.6 Executing transactions from the common query 
engine 

In this section, we show how the application performs 
transactional access to the data stores through the common 
query engine. 

The application uses the LTMClient and the CQEClient. 
The CQEClient behaves as the data store clients in the 
previous section but, instead of executing data store 
requests, redirects the MdbQL queries to the common query 
engine (see Deliverable 3.1). The common query engine is 
in charge of parsing the queries and generating an execution 
plan that may access to the different data stores in 
CoherentPaaS. 



Figure 5 Transaction execution accessing the data stores 



Figure 6 Transaction execution with the common query engine 

In this setup, the LTMClient is deployed both at the 
application side and also at the common query engine side. 
The LTMClient deployed at the application side acts as a 
proxy between the application and the LTMClient deployed 
at the common query engine. The LTMClient co-located 
with the common query engine is in charge of solving the 
requests to the data store client and communicates with its 
LTM. From the transactional point of view, this is a 
delegated (or interposed) coordinator of the transaction. 

Figure 6 illustrates this scenario. The figure presents the 
steps after the LTMClient is created and a transaction 
connection is obtained. The application starts the transaction 
invoking startTransaction from TxnCnx. This invocation 
creates a transaction context and binds it to the connection. 
Then, the application requests the execution of a query, 
‘update X where X > 1 set X + 1’, to the CQEClient. The 
CQEClient redirects the request to the CQE server. This 
invocation includes the transaction context (TxnCtx) as a 



parameter. The CQE server requests a connection to its 
LTMClient and binds the transaction context received as a 
parameter to the new transaction connection (bind). The 
CQE parses the query and finds that two operations will be 
executed, read the value of X and then increment it. 

At this point, the CQE plays the same role that the 
application did in the previous section. That is, the CQE 
requests operations to the data store clients within a 
transactional context. Once the CQE finishes the execution 
of the query, it returns the control the CQEClient and the 
CQEClient returns the control to the application. When the 
application invokes the commit operation on the transaction 
connection, the commit is redirected to the LTMClient 
located at the CQE server. That LTMClient will coordinate 
the commit phase just like in the previous scenario. Once 
the commit phase is over, the LTMClient informs the 
LTMClient deployed at the application side that the 
transaction has committed. 

5 Conclusions 

In this paper, we have presented how holistic transactional 
management, transactions across multiple data stores, 
has been achieved in CoherentPaaS. With this holistic 
transaction management now it becomes possible to get the 
same transactional consistency guarantees within NoSQL 
data stores and across data stores and it was possible 
within a single transactional SQL database. With this 
functionality, now it becomes possible to store each data 
item under the most appropriate data model, relational, 
key-value, document, graph, …, without sacrificing the data 
consistency. By combining these holistic transactions with 
MdsQL, then data can also be queried across data stores and 
therefore fully solving the issues that has emerged in 
polyglot persistency environments. 

Acknowledgements 

This research has been partially funded by the European 
Commission under project CoherentPaaS and 
LeanBigData (Grants FP7-611068, FP7-619606), the 
Madrid Regional Council (CAM), FSE and FEDER under 
project Cloud4BigData (Grant S2013TIC-2894), and the 
Spanish Research Agency MICIN under project 
BigDataPaaS (Grant TIN2013-46883). 

References 

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E. and 
O’Neil, P. (1995) ‘A critique of ANSI SQL isolation levels’, 
SIGMOD Rec., May 1995, Vol. 24, No. 2, pp.1–10, doi: 
10.1145/568271.223785. 

Bernstein, P.A., Hadzilacos, V. and Goodman, N. (1987) 
Concurrency Control and Recovery in Database Systems, 
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 
USA, ISBN: 0-201-10715-5. 

Cahill, M.J., Röhm, U. and Fekete, A.D. (2008) ‘Serializable 
isolation for snapshot databases’, Proceedings of the 2008 
ACM SIGMOD International Conference on Management of 
Data, pp.729–738. 

CumuloNimbo Project [online] http://cumulonimbo.eu (accessed 
14 November 2016). 

Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P. and Shasha, D. 
(2005) ‘Making snapshot isolation serializable’, ACM 
Transactions on Database Systems, Vol. 30, No. 2, 
pp.492–528, doi: 10.1145/1071610.1071615, 
ISSN: 0362-5915. 

Jiménez-Peris, R., Patiño-Martínez, M., Magoutis, K., Bilas, A. 
and Brondino, I. (2012) ‘CumuloNimbo: a highly-scalable 
transaction processing platform as a service’, ERCIM NEWS 
No. 89, Special Theme Big Data, April, pp.34–35. 

Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., 
Pau, R. and Pereira, J. (2016) ‘CloudMdsQL: querying 
heterogeneous cloud data stores with a common language’, 
Distributed and Parallel Databases, Vol. 34, No. 4, 
pp.463–503, doi: 10.1007/s10619-015-7185-y. 

http://cumulonimbo.eu

