Particle Swarm Optimization

of Memory usage in
Embedded Systems

José L. Risco-Martin*

Department of Computer Architecture and Automation,
Complutense University of Madrid, Madrid, Spain
E-mail: jlrisco@dacya.ucm.es

*Corresponding author

Oscar Garnica

Department of Computer Architecture and Automation,
Complutense University of Madrid, Madrid, Spain
E-mail: ogarnica@dacya.ucm.es

Juan Lanchares

Department of Computer Architecture and Automation,
Complutense University of Madrid, Madrid, Spain
E-mail: julandan@dacya.ucm.es

David Atienza

Embedded Systems Laboratory (ESL)

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
E-mail: david.atienza@epfl.ch,

Department of Computer Architecture and Automation,
Complutense University of Madrid, Madrid, Spain

E-mail: datienza@dacya.ucm.es

J. Ignacio Hidalgo

Department of Computer Architecture and Automation,
Complutense University of Madrid, Madrid, Spain
E-mail: hidalgo@dacya.ucm.es

Abstract: In this paper, we propose a dynamic, non-dominated sorting, multi-
objective particle-swarm-based optimizer, named Hierarchical Non-dominated Sort-
ing Particle Swarm Optimizer (H-NSPSO), for memory usage optimization in embed-
ded systems. It significantly reduces the computational complexity of others Multi-
Objective Particle Swarm Optimization (MOPSO) algorithms. Concretely, it first uses
a fast non-dominated sorting approach with O(mN?) computational complexity. Sec-
ond, it maintains an external archive to store a fixed number of non-dominated par-
ticles, which is used to drive the particle population towards the best non-dominated
set over many iteration steps. Finally, the proposed algorithm separates particles into
multi sub-swarms, building several tree networks as the neighborhood topology. H-
NSPSO has been made adaptive in nature by allowing its vital parameters (inertia
weight and learning factors) to change within iterations. The method is evaluated
using two real world examples in embedded applications and compared with existing
covering methods.

Keywords: Embedded Systems; Dynamic Memory Optimization; Particle Swarm Op-
timization; Multi-Objective Optimization; Evolutionary Computation.

Biographical notes: José L. Risco-Martin is is an Assistant Professor in Complutense
University of Madrid, Spain. He received his Ph.D. from Complutense University of
Madrid in 2004. His research interests are computational theory of modeling and simu-
lation, with emphasis on DEVS, dynamic memory management of embedded systems,
and net-centric computing.

1 INTRODUCTION

Optimizations with multiple objectives are needed in a
great variety of real-life optimization problems. In these
problems there are several conflicting objectives to be op-
timized and it is difficult to achieve the best solution. A
multi-objective optimization problem is solved, when all
its Pareto-optimal solutions are found. Indeed, the goal
of multi-objective optimization is to find a set of opti-
mal solutions in one simulation run, in contrast to classi-
cal optimization methods, which generally find one of the
Pareto optimal solutions by converting the initial multi-
objective optimization problem into a single-objective one.
Unfortunately, it is impossible to find the whole set of
Pareto-Optimal Solutions of a continuous front. Never-
theless, since the decision makers only require a restricted
amount of well-distributed solutions along the Pareto-
Optimal Front (POF), the task of multi-objective opti-
mization methods can be simplified to find a relatively
small set of solutions.

In elitist Multi-Objective Evolutionary Algorithm
(MOFEA) and Multi-Objective Particle Swarm Optimiza-
tion (MOPSO) methods, the elite solutions are transferred
by an archive to the next generation, and the archive of the
last generation is the output of the method. Consequently,
restricting the size of the archive affects the diversity of
solutions and the computational time. Therefore, most
MOEA and MOPSO methods try to restrict the amount
of solutions in the output, while keeping a good diversity
along the POF.

Diversity of output solutions is studied by applying
methods like niching, clustering or truncation by several re-
searchers Deb (2001), Zitzler (1999). However, these tech-
niques often need a high computational time and at last
we only have a restricted number of solutions in the out-
put Zitzler (1999). On the other hand, the multi-objective
methods can reach a large set of non-dominated solutions,
if they are executed for a large number of generations.
Thus, although they also imply a high computational time,
the decision maker has the flexibility to choose among sev-
eral solutions from the whole POF.

In this paper, we address the problem of finding the
POF by applying MOPSO. MOPSO methods have the
property that the particles move towards the POF dur-
ing generations. Consequently, by running a MOPSO
with a restricted archive size, it is possible to find a well-
distributed set of non-dominated solutions very close to
the POF Mostaghim and Teich (2003). In this work, we
exploit this knowledge to propose another MOPSO, called
Hierarchical Non-dominated Sorting Particle Swarm Opti-
mizer (H-NSPSO), which covers the gaps between the non-
dominated solutions. The particles in the population of
the H-NSPSO are divided into sub-swarms after each gen-
eration by using the fast non-dominated sorting method
in Deb et al. (2002), and subsequently these sub-swarms
take the responsibility to recover the POF. To this aim, we
maintain in H-NSPSO an external archive to store a fixed

Copyright (© 200x Inderscience Enterprises Ltd.

number of non-dominated particles, the inertia weight and
learning factors are modified between iterations, and a mu-
tation operator is applied to each particle. This method
is validated on different test functions and compared with
other state-of-the-art approaches for a real world applica-
tion in the domain of embedded systems design. Results
show that H-NSPSO outperforms other evolutionary algo-
rithms in terms of quality of the generated aproximation
set, under the assumption that the hypervolume metric
reflects the decision maker’s preferences.

The remainder of the paper has the following structure.
Definitions of PSO and a brief background are given in
Section 2. In Section 3, the proposed H-NSPSO method is
studied. Section 4 explains the experimental results when
applying it to a real world problem of embedded systems
design. In Section 5 we summarize the main conclusions
of this work.

2 BACKGROUND

2.1 Multi-objective optimization

Multi-objective optimization aims at simultaneously op-
timizing several contradictory objectives. For such kind
of problems, a single optimal solution does not exist, and
compromises have to be made. Thus, without any loss of
generality, we can assume the following formulation of the
m-objective minimization problem:

2= (f1(@), f2(Z), ... fm(T))

reX

Minimize
subject to (1)
where & = [x1, X2, ... x,] is the vector of decision variables,
fi:R*—=R,i=1,2,...,m , are the objective functions
and X C R" is the feasible region in the decision space.
A solution ¥ € X is said to dominate another solution
¥y € X (denoted as & < %) if the following two conditions
are satisfied:

Vi€{1,2,...,m},fi(f) sz(g)
3i€{1727""m}7fi<f)<fi(g) (2)

If there is no solution which dominates ¥ € X, ¥ is
said to be a Pareto Optimal Solution (POS). The set of all
elements of the search space that are not dominated by any
other element is called the Pareto Optimal Front (POF) of
the multi-objective problem: it represents the best possible
solution with respect to the contradictory objectives. A
multi-objective optimization problem is solved, when its
complete POS is found.

2.2 Particle swarm optimization

Particle Swarm Optimization (PSO) is a heuristic search
technique that simulates the movements of a flock of birds
that aim at finding food Eberhart and Shi (1998). The

relative simplicity of PSO and the fact that is a population-
based technique have made it a natural candidate to be
extended for multi-objective optimization.

Moore and Chapman proposed the first extension of the
PSO strategy for solving multi-objective problems in an
unpublished manuscript from 1991 Moore and Chapman
(1999). There are currently over twenty five different pro-
posals of multi-objective PSOs (or MOPSOs) reported in
the literature Reyes-Sierra and Coello (2006).

In PSO, particles are “flown” through a hyper-
dimensional search space. Changes to the position of the
particles within the search space are based on the social-
psychological tendency of individuals to emulate the suc-
cess of other individuals.

The position of each particle is changed according to its
own experience and its neighbors. Let #;(t) denote the
position of particle p;, at time step t. The position of p;
is then changed by adding a velocity ¥;(t) to the current
position, i.e.:

Zi(t) = Z;(t — 1) + U3 (t)

(3)

The velocity vector reflects the socially exchanged infor-
mation and, in general, is defined in the following way:

gi(t) = Wu(t-1)
+Clr1 (fpbest - fz(t - 1))
+C27'2 (fleader - fz(t - 1))

(4)

where:

o W is the inertia weight. It is employed to control the
impact of the previous history of velocities.

e (7 and C5 are the learning factors. C is the cognitive
learning factor and represents the attraction that a
particle has toward its own success. Cs is the social
learning factor and represents the attraction that a
particle has toward the success of its neighbors.

e r1,r; € [0,1] are random values.

® Tppest i the personal best position of particle 4,
namely, the position of the particle that has provided
the greatest success.

® Tleader 1S the position of the particle that is used to
guide particle ¢ towards better regions of the search
space.

Particles tend to be influenced by the success of any
other element they are connected to. These neighbors are
not necessary particles close to each other in the decision
variable space, but instead are particles that are close to
each other based on a neighborhood topology, which de-
fines the social structure of the swarm.

We can define for instance a fully-connected graph or
star topology Engelbrecht (2002), which connects all the
members of the swarm to one another. In this case, Zicqder

Figure 1: Tree network topology (each circle represents a
particle). All particles are arranged in a tree, and it is
influenced by its own best position so far and by the best
position of its parent.

in equation (5) is defined by the position of the best particle
of the entire swarm.

We can also define a tree network is shown in Figure 1.
In this topology, all particles are arranged in a tree and
each node of the tree contains exactly one particle Janson
and Middendorf (2005), and Zjeqder is the first particle in
the tree. A particle is influenced by its own best position so
far (Zppest) and by the best position of the particle that is
directly above in the tree (parent). If a particle has found a
solution that is better than fpbestpwm at the parent node,
both particles are exchanged. As a result, this topology of-
fers a dynamic neighborhood. This structure is also called
hierarchical topology, where Zicqder = fpbestparm -

We refer the interested reader to Kennedy (1999) for a
complete survey of other neighborhood topologies.

3 HIERARCHICAL NON-DOMINATED SORTING PSO

Our hierarchical version of the Non-dominated PSO, i.e.,
H-NSPSO is introduced in this section.

H-NSPSO applies the main mechanisms of the NSGA-
IT Deb et al. (2002). Similarly, Xiaodong Li proposed a
Non-dominated PSO (NSPSO) algorithm Li (2003). His
approach is based on a fully- connected topology and in-
corporates the behavior of the NSGA-II to the PSO algo-
rithm. In the NSPSO algorithm, once a particle has up-
dated its position, instead of comparing the new position
only against the Zpp.s: position of the particle, all the Zppest
positions of the swarm and all the new positions recently
obtained are combined in just one set (given a total of 2V
solutions, where N is the size of the swarm). Then, the
approach selects the best solutions among them to define
the next swarm (by means of a non-dominated sorting).
This approach also selects the leaders randomly from the
leaders set (stored in an external archive) among the best
of them, based on two different mechanisms: a niche count

- Front 3
Pareto - e / . FFONE 2
Optimal e, e Front1
Front
fy

Figure 2: In this example particles of a swarm popula-
tion are classified into 3 successive non-dominated fronts.
Particles are arranged in several trees (subswarms).

and a nearest neighbor density estimator.

H-NSPSO introduces three modifications to NSPSO: (1)
instead of a star topology, our algorithm makes use of
a hierarchical topology dividing the population into sub-
swarms, (2) we design a procedure to estimate the value
of the inertia weight based on the crowding distance and
learning factors, and (3) a mutation operator is applied.

3.1 Hierarchical topology

In H-NSPSO all particles are arranged in several tree net-
works that define the neighborhood structure. Each par-
ticle is neighbored to itself and the parent in the tree. We
construct the trees by means of the fast non-dominated
sorting algorithm proposed in Deb et al. (2002).

Figure 2 illustrates the process. First we sort the entire
population according to the level of non-domination. To
this end, we apply the fast non-dominated sorting algo-
rithm proposed in Deb et al. (2002), obtaining three fronts
in Figure 2. Front 1 is the best non-dominated set, since
all particles in Front 1 are not dominated by any other
particles in the entire population. Front 2 is the best non-
dominated set when Front 1 is removed from the popula-
tion, and so forth. Thus, the fast non-dominated sorting
procedure applied to a population returns the list of non-
dominated fronts. The overall complexity of this sorting
algorithm is O(mN?), where m is the number of objectives
and N is the size of the population. Next, we construct
the trees according to the distribution of particles over the
three fronts. Starting from Front 3 and Front 2, we assign
to each particle in Front 3 a parent in Front 2. Then, the
process is repeated for Fronts 2 and 1. If there exist just
one front, then the NSPSO topology is applied as in Li
(2003).

The design of multi-objective optimization algorithm
not only requires good convergence quality, but also de-
mands the appropriate distribution quality of the founded
solutions in the whole objective space. Hence, we make
use of a dynamic setting of inertia weight, learning factors
and a mutation operator.

3.2 Dynamic setting of inertia weight

The inertia weight (W) value plays a crucial role in the
convergence quality of particle swarm optimization algo-
rithms. It controls the effect of the historic speed on the
present one, and balances the use of the global research
and the partial one. In particular, in H-NSPSO we make
use of the crowding distance used in NSGA-II to calculate
the inertia weight of each particle. Thus, the crowding
distance serves in our case as an estimate of the size of
the largest cuboid shape enclosing the particle i without
including any other particle in the population.

Also, we allow the value of W to decrease from W (0) to
W (T'). The value of inertia weight at iteration ¢ is obtained
as:

t- efcd

T

W(t) = (W(T) - W(0)) +W(0)- e~ (5)
where T is the maximum number of iterations, t is the
iteration number and cd is the crowding distance.

As a result, we can conclude from equation (5) that iner-
tia weight W is [0, W(0)]. Particle’s inertia weight with the
smallest crowding distance tends to be W(0) when ¢t = 0
and W(T) when t = T, and those with larger crowding
distance tend to be 0. Such behavior promotes diversity,
since a small crowding distance results into a large density
of particles.

3.3 Learning factors

In the velocity update equation (5), higher values of C
ensure larger deviation of the particle in the search space,
while the higher values of C5 imply the convergence to
the leader. To incorporate better compromise between the
exploration and exploitation of the search space in PSO,
time variant acceleration coefficients have been introduced
in Ratnaweera et al. (2004). We also exploit this concept
in the design of H-NSPSO. Thus, we ensure a better search
for the POS in the following way: C is allowed to decrease
from its initial value C1(0) to C1(T"), whereas Co can be
increased from C3(0) to Ca(T'). Using the following equa-
tion as in Ratnaweera et al. (2004), the values of C; and
(5 are evaluated as follows:

Cilt) = (C1(T) = Ca(0)) - 75 + 1 (0)
Colt) = (Co(T) = Co(0)) 7 +Ca(0) (6)

3.4 Mutation operator

In general, when the velocities of the particles are almost
zero, it is not possible to generate new solutions which
might lead the swarm out of this state. This behavior can
lead to the whole swarm being trapped in a local optimum
from which it becomes impossible to escape. However,
since the leader attracts all members of its sub-swarm, it
is possible to move the sub-swarm away from a current

location by mutating a single particle, if the mutated par-
ticle becomes the new leader. This mechanism potentially
provides a means both of escaping local optima and of
speeding up the search Stacey et al. (2003). Consequently,
the use of a mutation operator is very important to avoid
local optima and to improve the exploratory capabilities of
PSO. To this end, when a solution is chosen to be mutated,
each component is then mutated (randomly changed) or
not with certain probability. Moreover, different mutation
operators have been proposed in the literature, which mu-
tate components of either the position or the velocity of
a particle. In the case of H-NSPSO, we have employed a
mutation operator that randomly changes the position of
a particle in the population.

3.5 H-NSPSO algorithm

Overall, the proposed H-NSPSO can be summarized in the
following algorithm:

Algorithm 1: H-NSPSO::Main()

for k =1 to popSize do
Tk, s the position of particle k, X, its lower bound
and Zy the upper bound. Uy is the velocity;
for i =1to n do
T (i) = rand(ZL (i), Zu (i));

Uy (1) = 0;
end
end
t=0;

while t < T do
childpop = pop.clone();
childpop.assignCrowdingDistance();
childPop.assignTopologyAndLeaders();
foreach particle p in childPop do
p.updateParameters(¢, T');
p-updateVelocity AndPosition();
p.mutate();
p.evaluate();
p-updatePersonalBest();
end
childPop.add(pop);
pop=childPop.reduceNSGA2();
t=t+1;
end

As the previous algorithm shows, initially, a random
swarm pop is created. Next, we iterate the following pro-
cedure until the termination condition is satisfied: First,
we create a copy of pop, called childPop. Then, we assign
the crowding distance to each particle in the swarm. When
all the crowding distances are set, we apply the proposed
topology. Consequently, the fast non-dominated sorting al-
gorithm is employed, dividing particles into non-dominated
fronts. After that, we assign leaders according the follow-
ing algorithm:

Algorithm 2: Pop::assignTopology AndLeaders()

fronts=Pop.fastNonDominatedSort();
if |fronts| = 1 then
assignLeadersAsInNSPSO();

return;
end
1= 2;

while ¢ < |fronts| do

frontParent=frontsli-1];

frontChild=fronts][i];

ratio = |frontChild|/|frontParent|;

=1

while j < |frontChild| do
pChild=frontChild][j];

p = j/ratio;
pChild.leader=frontParent[p].clone();
J=J+1

end

1 =1+ 1;

end

In this case, we utilize the crowding distance to calculate
the inertia weight W using equation (5). By means of
equation (6) we calculate the learning factors (Cy and Cy).
In the following steps we apply the common functions of
the PSO algorithm, including the mutation operator.

Next, we combine the previous swarm pop with the cur-
rent one childPop into the new swarm, which contains 2NV
particles. Finally, the solutions of the combined swarm are
sorted according to >,, , as defined in NSGA-II, and the
first N points are selected. Regarding the complexity of
one cycle of the entire algorithm, the basic operations be-
ing performed and the worst case complexities associated
with them are the following ones:

e The crowding distance assignment is O(mNlogN)

e The non-dominated sort and leaders assignment has
a complexity of O(mN?), and

e The sorting phase based on >, is O (2Nlog (2N))

As a result, the overall complexity of the complete algo-
rithm is O(mN?).

4 MEMORY OPTIMIZATION

For having a comparison with the previous proposed H-
NSPSO, a real world example on embedded applications
design is studied here. In this section, we compare our
algorithm with other state-of-the art results.

Latest multimedia embedded devices are enhancing their
capabilities and are able to run applications reserved to
powerful desktop computers (e.g., 3D games, video play-
ers). As a result, one of the most important problems de-
signers face nowadays is the integration of a great amount
of applications coming from the general-purpose domain
in a compact and highly-constrained device. One major

. Ph 1 Phase 2 Phase 3
Table 1: DDT library ase ase ase
Applicati Hardware H-NSPSO, NSGAI
DDT Description pplicaiicy parameters | SPEA2, NSPSO, OMOPSO
AR Array l : + : l
AR(P) Array of pointers Profiling
SLL Singly-linked list App. profiling > EIS— > Algorithm
DLL Doubly-linked list ' ; 7 l
SLL(O) Singly-linked list with roving pointer :
- - - - - DDTs Final
DLL(O) Doubly-linked list with roving pointer : o
properties Application
SLL(AR) Singly-linked list of arrays 4 s
DLL(AR) Doubly-linked list of arrays
SLL(ARO) | Singly-linked list of arrays and roving pointer .) S
DLL(ARO) | Doubly-linked list of arrays and roving pointer Figure 3: DDTs optimization fow.

task of this porting process is the optimization of the dy-
namic memory subsystem. Thus, the designer must choose
among a number of possible dynamically-allocated data
structures or Dynamic Data Types (DDTs) implementa-
tions Antonakos and Mansfield (1999) (dynamic arrays,
linked lists, etc.) the best one in each case, according to
the specific restrictions of the target device and typical
embedded design metrics.

4.1 The Dynamic Data Types exploration prob-
lem

A DDT is a software abstraction by means of which we
can manipulate and access data. The implementation of
a DDT has two main components. First, it has storage
aspects that determine how data memory is allocated and
freed at run-time and how this memory is tracked. Second,
it includes an access component, which can refer to two
different basic access patterns: sequential or iterator-based
and random access.

In our case we have classified the DDT implementations
in basic DDT and multi-layer implementations relevant for
embedded multimedia applications. Table 1 contains the
DDTs implemented Atienza et al. (2007).

Let us show an example of a DDTs exploration. Let us
suppose an initial code containing two variables, v! and
v2, instantiated as vector and list, respectively. After the
exploration process, one candidate solution gives vI to be
instantiated as Single Linked List (SLL) and v2 as Double
Linked List of Arrays (DLLAR). Such instantiation policy
tries to minimize memory accesses, memory usage and en-
ergy consumption of the final application. It is important
to stress that it is unmanageable for the designer to get a
totally complete exploration of all the possible DDT imple-
mentation combinations using the traditional way for real-
life complex applications. For example, in one of the appli-
cations analyzed, we optimized memory accesses, memory
usage and power consumption for 3128 variables.

In general terms, the application to optimize contains
a set of n variables V which are candidates to be instan-
tiated as a certain DDT from the set of possible imple-
mentation of DDTs library D presented in Atienza et al.

(2007), Daylight et al. (2004). Thus, the goal of our op-
timization flow is to obtain a set of pairs (variable, DDT)
or (U,cf),vi € V,d; € D,1 < i < n, such that minimizes
three objectives: memory accesses, memory usage and en-
ergy consumption. Additional constraints, such as mini-
mum and maximum values for all three objectives may be

defined.

The proposed optimization framework uses three differ-
ent phases to perform the automatic exploration of DDTs.
Figure 3 shows the different phases required to perform
the overall DDTs optimization. In the first phase, we gen-
erate an initial profiling of the iterator-based access meth-
ods to the different DDTs used in the application. In the
second phase, using this detailed report of the accesses,
we extract all the information needed by the optimiza-
tion phase. Finally, an exploration of the design space of
DDTs implementation is performed using the algorithm
selected. When the optimization process ends, it gives the
DDT instantiation policy, i.e., which variable should be
instantiated by which DDT. We also obtain the gain on
memory accesses, memory usage and energy consumption.
In addition to H-NSPSO, we have solved the problem using
other relevant MOEAs, i.e. NSGA-II, SPEA2 Zitzler et al.
(2002), OMOPSO Sierra and Coello (2005) and NSPSO.

We apply these algorithms to two multimedia embedded
applications. The first benchmark is VDrift, which is a
driving simulation game. The game includes 19 tracks, 28
cars, Al players, networked multiplayer mode, etc. Source-
forge (2007). We logged 49 variables in its source code.
The second benchmark is a 3D Physics Engine for elastic
and deformable bodies Kharevych and Khan (2002), which
is a 3D engine that displays the interaction of non-rigid
bodies. It includes 3128 dynamic variables in its source
code for which we select the optimal DDT implementa-
tion.

4.2 Optimization model

The optimization process takes as input all the parameters
obtained in the second phase in Figure 3 and minimizes
three objectives: memory accesses (M A), memory usage
(MU) and energy (E), defined by the following equation:

MA({]:J’) = fMA(Neaneerva)
MU(_‘vJ) = fMU(TevTT‘efaNe) (7)
E(ﬂa 3 = fE(erNw7N;Da7Hw)

where,

° (17, J) represents one candidate solution.

o N, (17, dj is the number of elements stored in the DDT
in the worst case.

e Ny (77,d‘> is the average of the number of elements

stored in the DDT.

e N, (U, J) is the number of read accesses.
o N, (17, dj is the number of write accesses.

o T, (17, J) is the size of the elements (in bytes)
o T,.r represents the size of the pointers, in bytes.
o Ny (17, (f) is the number of cache misses.

e Hw represents the effect that hardware parameters
(memory architecture, CPU power, line sizes, memory
access time, etc.) have on the optimization.

In equation (7), fara and farp were taken from Atienza
et al. (2007). Energy equation of the system is given by
equation (8), where ., is the system’s total execution time,
CPUyuy is the total processor power excluding the cache
power, Cy..p is the cache access energ, Cjines is the cache
line size, DRAM,..p is the active power consumed by
the DRAM, DRAM,..r is the DRAM latency time, and
DRAMpgnaw is the bandwidth of the DRAM.

fE = fex X CPUpow +
(Nr + Nw) X (]- - Npa) X CaccE +
(Nr + Nw) X Npa X C(accE X OlineS +

(Ny 4+ Ny) X Npg X DRAMycep %

<DRAMaccT + (8)

ClineS >
DRAMbandW
There exist four components in the energy equation (8).
The first term t., X CPUpoy, calculates the processor en-
ergy given that execution time takes ., amount of time.
The second term, (N, + Ny) X (1 — Npa) X Cyeep calcu-
lates the amount of energy consumed by the cache. The
third term, (N, + Ny) X Npg X Coeer X Clines calculates
the energy cost of writing to cache for each cache miss.
The last term, calculates the energy cost of the DRAM to
service all the cache misses.

Table 2: Coding a solution

di | da | ds | ... | dn
V1 (%) V3 Un

deD
’UjGV

The equation for calculating the system’s total execution
time t., is given by equation (9), where Cy .1 is the access
time of the cache.

tez = (Nr+Nw) X (1_Npa) XCaccT+
(N, + Nu) % Npg X DRAM ooy +

ClineS’
N, +Ny) X Nyg X ——————— +
() P4 DRAMyanaw

Tyus (9)

There exist four components in the system’s execution
time shown in equation (9). The first term (N, + N,,) X
(1 = Npa) X Cocer is for calculating the amount of time
taken for the processor to access the cache. The second
term (N, + Ny) X Npo X DRAM o1 calculates the amount
of time required for the DRAM to respond to each cache
miss. The third term calculates the amount of time taken
to fill a cache line on each cache miss. The bus commu-
nication time cost is supposed to be constant (Tpys). As
the bus communication time is expected to be similar to
other systems, such decision will not adversely affect the
final results.

Units for time variables in the equations are in seconds,
bandwidth is in Bytes/second, cache line size is in Bytes,
power variable is in Watts, and energy unit is in Joules.

Table 2 shows the representation of a candidate solution
(gray shaded cells). Each candidate solution represents the
set of DDT that should be used to instantiate all the cor-
responding variables in the application from Table 1. For
example, the second variable vo € V will be instantiated
by do € D. A candidate solution contains n integer fields,
where n is the number of the variables logged in the appli-
cation, n = size(V). The constraint a field must satisfy is
1< d; < size(D).

4.3 Experimental methodology

The model of the embedded system architecture consisted
of a processor with an instruction cache, a data cache,
and embedded DRAM as main memory. The data cache
uses a write-through strategy. We utilized processor en-
ergy from Catthoor et al. (2002), and the access time and
energy values for caches of 32KB and embedded 16MB
DRAM main memory from Shivakumar and Jouppi (2001)
and Hardee et al. (2004), respectively. The processor and
memory specification is described in Table 3.

Since the size of possible DDT implementations is large
and it is not possible to cover the exact set of the POF, we
compare the obtained Pareto Front (PF) with each other
using the hypervolume metric Zitzler et al. (2003). This

Table 3: System specification

Processor Energy 168mW, 100MHz
Embedded DRAM | 100MHz

Energy 19.5 mW
Latency 19.5 ns
Bandwidth 50MB/s

metric calculates the volume (in the objective space) cov-
ered by members of a nondominated set of solutions Q.
Let v; be the volume enclosed by solution ¢ €). Then, a
union of all hypercubes is found and its hypervolume (Hy)
is calculated.

Hy = Ulllez‘ (10)

The hypervolume of a set is measured relative to a ref-
erence point, usually the anti-optimal point or “worst pos-
sible” point in space. We do not address here the problem
of choosing a reference point, if the anti-optimal point is
not known or does not exist one suggestion is to take, in
each objective, the worst value from any of the fronts be-
ing compared. If a set X has a greater hypervolume than
a set Y, then X is taken to be a better set of solutions
than Y. Since this metric is not free from arbitrary scaling
of objectives, we have evaluated the metric by using nor-
malized objective function values using PISA Bleuler et al.
(2003). Note that in the case of PISA, a lower indicator
value corresponds to a better approximation set.

Finally, to compare the performance of five algorithms,
all parameters are set as follows:

e Population/Swarm size: 100 in the case of VDrift and
200 in the case of Physics.

e Number of iterations: 2000 for VDrift and 4000 for

Physics.

e Crossover: Real-parameter SBX crossover operator
(ne = 20). Crossover probability of 0.9 (as suggested
in Deb et al. (2002)) for NSGA-IT and SPEA2.

e Mutation: Polynomial mutation operator (n,, = 20),
with probability inversely proportional to the chro-
mosome length (as suggested in Deb et al. (2002))
for NSGA-IT and SPEA2. Uniform and non-uniform
mutation applied to H-NSPSO and OMOPSO, as sug-
gested in Sierra and Coello (2005).

e Coding strategy: Real encoding for all the five algo-
rithms.

e (1(0) = 2.5, C1(T) = 0.5, C2(0) = 0.5, and Co(T) =
2.5 (as suggested in Ratnaweera et al. (2004)) for H-
NSPSO. C; = 2.0 and C3 = 2.0 for NSPSO.

e W(0) = 0.7 and W(T') = 0.4 (as suggested in Bergh
(2002)) for H-NSPSO. W = 0.4 for NSPSO.

VDrift

VDrift H-NSPS0 MSGA-II MSPSO OMOPS0 SPEAZ

H Mem. Accesses B Mem. Usage M Energy

Physics3D

(=T -]

Physics3D

H-NSPS0 MSGA-II MSPS0O OMOPS0 SPEAZ

H Mem. Accesses B Mem. Usage M Energy

Figure 5: Comparison of the real application with results
obtained by our design framework (logarithmic scale).

4.4 Results

We have explored DDTs for VDrift and Physics with
each of the five algorithms proposed (H-NSPSO, NSGA-II,
NSPSO, OMOPSO and SPEA2). The hypervolume values
are calculated by averaging results of 30 trials. Figure 4
depicts the first attainment surfaces obtained for both ap-
plications.

With respect to VDrift, Figure 4 shows that the sur-
faces for H-NSPSO, OMOPSO and SPEA?2 outperform the
surfaces offered by NSPSO and NSGA-II. Regarding H-
NSPSO, OMOPSO and SPEA2, no significant differences
can be detected, as occurs in the case of Physics, where all
the obtained surfaces are incomparable.

For comparison reasons we present Figure 5 to illustrate
the optimization process that our methodology performs.
In this test, each application is evaluated with their original
DDTs and compared to the combination proposed by our
framework. The figure shows clearly the achieved level of
optimization and final gains after applying the proposed
optimization flow in Figure 3. It should be noted that
H-NSPSO offered the best gain in at least two objectives.

Table 4 shows the hypervolume or S-metric obtained
for VDrift and Physics. In both cases, H-NSPSO algo-
rithm reaches better values compared to the other MOEAs.
Thus, the result set from H-NSPSO algorithm is taken to
be a better set of solutions than those obtained from other
algorithms.

WDRIFT (HNSPSO) VORIFT (NSGAI) WDRIFT (NSPS0)

e,
e
':!'f'vv,’;',gfijlaig,';;;
Wit ;”I}?, [l
o

g L8111

i
e
bk

i

L

Uiy
.
e
I

o

]

an

Figure 4: First attainment surfaces obtained for VDrift and Physics using H-NSPSO, NSGA-II, NSPSO, OMOPSO
and SPEA2.

5 CONCLUSIONS Pareto-optimal front (often observed in the multi-objective
PSOs). An external archive has been maintained to store
In the present article, a novel multi-objective PSO algo- the non-dominated solutions found during H-NSPSO ex-
rithm, called H-NSPSO, has been presented. H-NSPSO is ecution. The selection of the leader is done from this
adaptive in nature with respect to its inertia weight and archive, where all particles are arranged in several tree net-
learning factors. This adaptation enables it to attain a works that define the neighborhood structure. H-NSPSO
good balance between the exploration and the exploita- has been compared in a real world application: the op-
tion of the search space. The crowding distance is used to timization of Dynamic Data Types in embedded applica-

compute the inertia weight, promoting diversity. A mu- tjons. Results show that H-NSPSO offers better results
tation Operator haS been incorporated in H—NSPSO to re- Wlth respect to the Other four algorithms tested.
solve the problem of premature convergence to the local

Table 4: Hypervolume metric for VDrift/Physics.

Algorithm VDrift Physics 3D
H-NSPSO || —1.1784 +£0.0092 || —1.1992 £0.1715
NSGA-II —0.9356 + 0.0231 —1.1600 £ 0.1902
NSPSO —1.1360 + 0.0363 || —1.1830 4+ 0.1074
OMOPSO —1.1657 + 0.0114 —0.7215 4 0.2449
SPEA2 —1.1492 4+ 0.0374 —0.9002 £+ 0.1899
ACKNOWLEDGMENT

This work has been supported by Spanish Government
grants CICYT TIN2005-5619 and MEC Consolider Inge-
nio CSD0O0C-07-20811 of the Spanish Council of Science
and Technology.

REFERENCES

Antonakos, J. L. and Mansfield, K. C. (1999). Practical
Data Structures using C/C++. Prentice Hall.

Atienza, D., Baloukas, C., Papadopoulos, L., Poucet, C.,
Mamagkakis, S., Hidalgo, J. I., Catthoor, F., Soudris,
D., and Lanchares, J. (2007). Optimization of dynamic
data structures in multimedia embedded systems using
evolutionary computation. In SCOPES ’07: Proceed-
ingsof the 10th international workshop on Software &
compilers for embedded systems, pages 31-40, New York,
NY, USA. ACM.

Bergh, F. V. D. (2002). An analysis of particle swarm
optimizers. PhD thesis, University of Pretoria, Pretoria,
South Africa, South Africa.

Bleuler, S., Laumanns, M., Thiele, L., and Zitzler, E.
(2003). PISA - a platform and programming language
independent interface for search algorithms. In Fonseca,
C. M., Fleming, P. J., Zitzler, E., Deb, K., and Thiele,
L., editors, Evolutionary Multi-Criterion Optimization
(EMO 2003), Lecture Notes in Computer Science, pages
494-508, Berlin. Springer.

Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer,
E., Kjeldsberg, P. G., Achteren, T. V., and Omnes, T.
(2002). Data access and storage management for embed-
ded programmable processors. Kluwer Academic Pub-
lishers.

Daylight, E. G., Atienza, D., Vandecappelle, A., Catthoor,
F., and Mendias, J. M. (2004). Memory-access-aware
data structure transformations for embedded software

with dynamic data accesses. IEFE Transactions on
VLSI Systems, 12:269-280.

Deb, K. (2001). Multiobjective Optimization using Evolu-
tionary Algorithms. John Wiley and Son Ltd.

10

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.
(2002). A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. [EEE Transactions on Evolutionary
Computation, 6(2):182-197.

Eberhart, R. C. and Shi, Y. (1998). Comparison between
genetic algorithms and particle swarm optimization. In
Porto, V. W., Saravanan, N., Waagen, D., and Eibe, A.,
editors, Proceedings of the Seventh Annual Conference
on Fvolutionary Programming, pages 611-619. Springer-
Verlag.

Engelbrecht, A. (2002). Computational Intelligence: An
Introduction. Halsted Press, New York, NY, USA.

Hardee, K., Jones, F., Butler, D., Parris, M., Mound, M.,
Calendar, H., Jones, G., Aldrich, L., Gruenschlaeger,
C., Miyabayashil, M., Taniguchi, K., and Arakawa, I.
(2004). A 0.6v 205mhz 19.5ns trc 16mb embedded dram.
In IEEE International Solid-State Circuits Conference
(ISSCC).

Janson, S. and Middendorf, M. (2005). A hierarchical par-
ticle swarm optimizer and its adaptive variant. Systems,
Man, and Cybernetics, Part B, IEFE Transactions on,
35(6):1272-1282.

Kennedy, J. (1999). Small worlds and mega-minds: ef-
fects of neighborhood topology on particle swarm per-
formance. In Proceedings of the 1999 Congress on Evo-
lutionary Computation, 1999. CEC 99.

Kharevych, L. and Khan, R. (2002). 3d physics
engine for elastic and deformable bodies. Available:
http://www.cs.umd.edu/Honors/reports/kharevych.html.
University of Maryland, College Park.

Li, X. (2003). A non-dominated sorting particle swarm op-
timizer for multiobjective optimization. In Canti-Paz,
E., Foster, J. A., Deb, K., Davis, D., Roy, R., O’Reilly,
U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wil-
son, S., Harman, M., Wegener, J., Dasgupta, D., Pot-
ter, M. A., Schultz, A. C., Dowsland, K., Jonoska, N.,
and Miller, J., editors, Genetic and Evolutionary Com-
putation — GECCO-2003, volume 2723 of LNCS, pages
37-48, Chicago. Springer-Verlag.

Moore, J. and Chapman, R. (1999). Application of parti-
cle swarm to multiobjective optimization. Department
of Computer Science and Software Engineering, Auburn
University.

Mostaghim, S. and Teich, J. (2003). Strategies for finding
good local guides in multi-objective particle swarm opti-
mization (MOPSO). In 2003 IEEE Swarm Intelligence
Symposium Proceedings, pages 26-33, Indianapolis, In-
diana, USA. IEEE Service Center.

Ratnaweera, A., Halgamuge, S. K., and Watson, H. C.
(2004). Self-organizing hierarchical particle swarm opti-
mizer with time-varying acceleration coefficients. Evolu-
tionary Computation, IEEE Transactions on, 8(3):240—
255.

Reyes-Sierra, M. and Coello, C. A. C. (2006). Multi-
objective particle swarm optimizers: A survey of the
state-of-the-art. International Journal of Computational
Intelligence Research, 2(3):287-308.

Shivakumar, P. and Jouppi, N. P. (2001). Cacti 3.0: An in-
tegrated cache timing, power, and area model. Technical
Report 2001/2, Compaq Computer Corporation.

Sierra, M. R. and Coello, C. A. C. (2005). Improving pso-
based multi-objective optimization using crowding, mu-
tation and epsilon-dominance. In EMO, pages 505-519.

Sourceforge (2007). Vdrift racing simulator. Available:
http://sourceforge.net/projects/vdrift.

Stacey, A., Jancic, M., and Grundy, I. (2003). Particle
swarm optimization with mutation. In Proceedings of the
Congress on Fvolutionary Computation, CEC0S., vol-
ume 2, pages 1425-1430.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjec-
tive Optimization: Methods and Applications. PhD the-
sis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA2:
Improving the strength pareto evolutionary algorithm
for multiobjective optimization. In Proceedings of the
Evolutionary Methods for Design, Optimization and
Control with Application to Industrial Problems, pages
95-100, Barcelona, Spain.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and
da Fonseca, V. (2003). Performance assessment of multi-
objective optimizers: an analysis and review. Fvolution-
ary Computation, IEEE Transactions on, 7(2):117-132.

11

