Genetic Programming on GPUs for
Image Processing

Simon Harding and Wolfgang Banzhaf
Department Of Computer Science
Memorial University
St John’s, Canada
(simonh, banzhaf)@cs.mun.ca

Abstract—The evolution of image filters using Genetic Pro- Il. GENETIC PROGRAMMING AND IMAGE FILTERS
gramming is a relatively unexplored task. This is most likey
due to the high computational cost of evaluating the evolved Genetic programming has been frequently used for image
programs. We use the parallel processors available on moder processing tasks, such as object recognition and feattiee-de
graphics cards to greatly increase the speed of evaluation. g, owever, there is relatively litle work in the liteae
Previous papers in this area dealt with noise reduction and @dge . ' . . .
detection. Here we demonstrate that other more complicated CONCerIng the evolution of filters. Where filters are evdive
processes can also be successfully evolved, and that we cafhe task is frequently limited to noise reduction and edge
“reverse engineer” the output from filters used in common detection.
graphics manipulation programs. Typically in the evaluation stage of evolved filters, a sig|
low resolution (256 x 256 pixel) image is used. This approach
can be expected to result in over-fitting to a particular immag
A common approach of the papers listed below is to produce
a hardware implementation. Execution of evolved programs

In this paper we tackle the challenge of reverse engineeriog an image is a time consuming operation, and without
image filters. By reverse engineering, we mean that we find tffe acceleration that can come from such an implementation,
mapping between an image and the output of a filter appliedw@uld be intractable. In contrast to the other approaches, w
it. The technique may not be the same as used by process, 3¢ a set of 16 images (256 x 256 pixels) split into training
produces similar results. The filters we investigate in plsiser and validation sets. Without the use of the GPU hardware,
are from the open source image processing program GIMP []ich a task would not be practical.
To perform the reverse engineering, we use Cartesian @enetiFor this work, we use a function set of floating point

Programming(CGP)[5] to evolve programs that act as filtergperations as they are convenient for the GPU platform,
These programs take a pixel and its neighbourhood from gBwever alternative approaches can be used.
image, and then compute the next value of this central pixe'-Previoust, an implicit representation of CGP has been used
We then run this convolution kernel on each pixel in an imagfyr evolving Gaussian noise removal [9]. The function ses wa
to produce a new image. As this process is computationagiited to four binary logical functions, as the authorsrpiad
expensive, we accelerate the evaluation of each kernel By move the approach to hardware. A different Boolean
executing it on a Graphics Processor Unit (GPU), i.e. the®idf,ction set was used by [13]. A mixture of integer and binary
card of a desktop computer. functions was employed in [8], again to evolve noise reduncti

We find that we can successfully take an image andfifters.
processed version of that image, and find a program thatrhe evolution of image filters using specialized, parallel
replicates the filter process used by GIMP. We evolve rardware, such as FPGAs has been demonstrated. For exam-
number of filters and combinations of filters, and show thale, Vasicek and Sekanina used an FPGA based approach[13].
this approach appears to generalise well. CGP represented the configuration for logic blocks inside th

The task is interesting for genetic programming reseasch@&PGA. This limited the functions to digital operations such
for a number of reasons. First, we can produce results teat as OR, AND, XOR and shifting. The entire algorithm was
of practical use. We can also compare the evolved approacheplemented on an FPGA and its associated PowerPC proces-
to human designed solutions, which provides a useful meassor. The authors conclude that the FPGA evaluates indilsdua
of how well these programs work - and gives us the oppa@2 times faster than a PC with a Celeron processor 2.4GHz.
tunity to demonstrate solutions that may be superiour.ly,astSimilarly, Kumar et al. also evolved FPGA configurations [4]
image processing is computationally expensive, and this Har noise removal in images, although in this case the exact
traditionally added complications to the implementatiéth@ performance, in terms of speed up, compared to a traditional
evolutionary algorithms. CPU is unclear.

I. INTRODUCTION

should be run. After iterating the program once, the new enag

is copied back and used as the source image, so that it can
be operated on by subsequent iterations. An instructiohen t
function set allows the evolved program to know what itenati

it is currently on, and potentially use this information ticedt
program flow.

Ill. EXPERIMENT OVERVIEW

The original input images (Figure 1) were combined to-
gether to form a larger image. A filter was applied using GIMP.
We then used the evolutionary algorithm to find the mapping
between the input image and the output images. The fithess
function attempts to minimize the error between the desired
output (the GIMP processed image) and the output from the
evolved filters.

The genetic programming technique is described fully in
the following section. Section V describes the implemeotat
of this algorithm and the fitness function on the GPU. The
parameters and function set are given in Section VI. The
choice of function set is determined by the functions atédéa
in the MS Accelerator API.

Fig. 1. The training and validation image set. All images presented IV. CARTESIAN
simultaneously to the GPU. The first column of images is usedompute
the validation fitness, the remaining twelve for the tragnfitness. Each image GENETIC PROGRAMMING

is 256 by 256 pixels, with the entire Image containing 10241624 plxels Cartes|an Genet|c Programn‘ung was Onglna”y developed
by Miller and Thomson [5] for the purpose of evolving digital

) o) circuits and represents a program as a directed graph. One
Since FPGA based approaches are limited to binary opr the benefits of this type of representation is the implicit

erations, using a GPU we are able to work using floating_,;se of nodes in the directed graph. The technique is also
point numbers - which makes direct comparison difficulimilar to Parallel Distributed GP, which was independentl
FPGA implementations also suffer from the need for spestialijeyeloped by Poli [6], and also to Linear GP developed by
hardware and software skills. _ Banzhaf[15]. Originally CGP used a program topology defined
Evolved image filters have already been applied to a reg) 5 rectangular grid of nodes with a user defined number of
world problem [7]. There programs were evolved to produGgs and columns. However, later work on CGP always chose
filters that could detect the changes between two images, {Qe number of rows to be one, thus giving a one-dimensional
the detection of mud slides. The programs had to be inse@sitioyol0gy, as used in this paper. In CGP, the genotype is a
to noise and other artifacts in the supplied images. Anaiker fixed-length representation and consists of a list of intege
for genetic programming in image operations is for automatyhich encode the function and connections of each node in
feature extraction [12]. However, we consider these tyffes @e directed graph.
applications to be distinct from the one presented inthi®epa cgp uses a genotype-phenotype mapping that does not
require all of the nodes to be connected to each other, mregult
A. Our Approach in a bounded variable length phenotype. This allows areas of
The approach we employ here is similar to the one ihe genotype to be inactive and have no influence on the
reference [2], where noise reduction filters were evolved. phenotype, leading to a neutral effect on genotype fitness
this paper we expand that work, but into a more generadlled neutrality. This unique type of neutrality has been
purpose approach. investigated in detail [5], [14], [16] and found to be extrgn
In [2] we used 4 images for our training, and none fdbeneficial to the evolutionary process on the problems stldi
validation. Here we use 16 different images (Figure 1), thatEach node in the directed graph represents a particular
are largely taken from the USC-SIPI image repository. Witfunction and is encoded by a number of genes. The first
12 used for fitness evaluation, and 4 for validation. Thisvel gene encodes the function the node is representing, and the
us to be confident that evolved filters will generalise wel. Aremaining genes encode the location where the node takes its
we are employing the GPU for acceleration, we are able to tésputs from, plus one parameter that is used as a constant.
all the images at the same time (see section V) and obtain bbtnce each node is specified by 4 genes. The genes that
the fitness score and the validation score at the same timespecify the connections do so in a relative form, where the
In this work, we allow the filters to be iterated. Evolutiorgene specifies how many nodes back to connect[3]. If this
is allowed to determine how many times the evolved prograaddress is negative, a node connects to an input. Modulo

arithmetic is used to handle conditions where the index goesThe image filter is made of an evolved program that takes a
beyond the number of inputs. pixel and its neighbourhood (a total of 9 pixels) and comgute
The graph is executed by recursion, starting from the outphie new value of that centre pixel. On a traditional processo
nodes down through the functions, to the input nodes. In thise would iterate over each pixel in turn and execute the
way, nodes that are unconnected are not processed and doemolved program each time. Using the parallelism of the GPU,
effect the behavior of the graph at that stage. For efficienegany pixels (in effect all of them) can be operated on simulta
nodes are only evaluated once with the result cached, eveneabusly. Hence, the evolved program is only evaluated once.

they are connected to multiple times. Although the evolved program actually evaluates the entire
To clarify, figure 2 shows an example CGP program appliéghage at once, we can break down the problem and consider
as a filter. The genotype for such a graph would be: what is required for each pixel. For each pixel, we need a
ADD 2 6 4.35 program that takes it and it's neighbourhood, and calcslate
MIN 17 2.3 new pixel value. Therefore, the evolved program requires as
MULT 3 8 3.2 many inputs as there are pixels in the neighbourhood and a
ADD 12 -54 single output. In the evolved program, each function has two
MAX 2 13 1.23 inputs and one output. These inputs are floating point nusnber

In addition, each individual in our population also storas dhat correspond to the grey level values of the pixels. Figur
integer that specifies the number of times filter is appligds T 2 illustrates a program that takes a 9 pixel sub image, and
iteration counter is bounded between 1 and 5. computes a new pixel value.

We chose to use CGP as in addition to having experience iftMapping the image filtering problem to the parallel architec
using it, it provides some features such as bounded length piure of the GPU is relatively straightforward. It is impartdo
grams and shared sub-trees that are useful on the constraffePreciate that the GPU typically takes 2 arrays and praoiaice
GPU platform. These can reduce the amount of memory (atfl by performing a parallel operation on them. The openatio

processing) required to perform a given task. is element-wise, in the same way as matrix operations. To
clarify, consider 2 arraysa = [1,2,3]b = [4,5,6]. If
V. GPU IMPLEMENTATION we perform addition, we get = [5,6,9]. With the SIMD
A. General Requirements architecture of the GPU, it is difficult to do an operationisuc

Graphics processors are specialized stream processars @Seadd the first element of one array to the second of another.
to render graphics. Typically, the GPU is able to perfornio do such an operation, the second array would need to be
graphics manipulations much faster than a general purpsdfted to move the e]ement in the second position to the first
CPU, as the graphics processor is specifically designed td:_or_the |mage_f|lter|ng,we need to take a sub |magefrom the
handle certain primitive operations. Internally, the GRuh¢ Main image as inputs for a program (our convolution kernel)
tains a number of small processors that are used to perforf€€ping in mind the matrix like operations of the GPU.
calculations on 3D vertex information and on textures. hes T0 do this we take an image (e.g. the top left array in Figure
processors operate in parallel with each other, and woskand shift the array one pixel in all 8 possible directiortsis
on different parts of the problem. First the vertex proce§foduces a total of 9 arrays (labeled (a) to (i) in Figure 3).
sors calculate the 3D view, then the shader processors paintaking the same indexed element from each array will return
this model before it is displayed. Programming the GPU the neighbourhood of a pixel. In the figure, the neighboudhoo
typically done through a virtual machine interface such 4% Shaded grey and a dotted line indicates how these elements
OpenGL or DirectX which provide a common interface t@r€ aligned. The GPU runs many copies of the evolved
the diverse GPUs available thus making development eaB{Pgram in parallel, and essentially each program can only
However, DirectX and OpenGL are optimized for graphicaCt on one array index. By shifting the arrays in this way, we
processing, hence other Application Programming Integachave lined up the data so that although each program can only
(APIs) are required to emply the GPU as a general purpoi@€ @ given array position, by looking at the set of arrays (or
device. Here we use the Microsoft Accelerator tool to previdhore specifically a single index in each of the arrays in tite se
a layer of abstraction between the evolutionary algoritima ait can have access to the a given pixel and its neighbourhood

the underlying API, drivers and hardware [11], [10]. becoming the inputs to our evolved program.
. . For example, if we add array e to array i the new value of
B. Running Filters on a GPU the centre pixel will be 6 - as the centre pixel in e has value
Running the filters on the GPU will allow us to apply thés and the centre pixel in i has value 1.
kernel to every pixel (logically, but not physically) sintahe- It is important to note that the evolutionary algorithm tse

ously. The parallel nature of the GPU will allow for multipleremains on the CPU, and only the fitness function is run on
kernels to be calculated at the same time. This number wile GPU.

be dependent on the number of shader processors available.

Using the Microsoft Accelerator architecture, it will agpe

to be completely parallel, although internally, the task

broken down into chunks suitable for the GPU.

Output

Section of input image Evolved program

Inputs

Fig. 2. In this example, the evolved program has 9 inputs t- ¢bearespond to a section of an image. The output of the pnogtatermines the new colour
of the centre pixel. Note that one node has no connectiongstolitput. This means the node is redundant, and will notds during the computation.

1 2 3 Input image
4 5 6
7 8 9

Fig. 3. Converting the input image to a set of shifted imagésva the element-wise operations of the GPU access a pilita neighbourhood. The
evolved program treats each of these images as inputs. Banps, should the evolved program want to sum the centrd phe its top-left neighbour, it
would add (e) to (i).

C. Fitness Function array by another mask. This mask contains 1s for each pixel

For the fitness function, we compute the average of tife the training images, and 0 for pixels we do not wish to
absolute difference between the target image and the im&§&sider. We then sum the content of the array, and divide by
produced using CGP. The lower this error, the closer offfe number of pixels to get the fitness value. o
evolved solution is to the desired output. _ A similar mask can then be used to find the validation

Using the GPU, we can obtain both the training anf{ness.
validation fitness at the same time. This reduces some of the
overhead of moving images and evolved programs to the GPU,
and returning the fitness.

We take the output from the evolved program, subtract The algorithm used here is a simple evolutionary algorithm.
it from our desired output and then its absolute value e have a population of size 25. The mutation rate is set to
calculated. This provides an array containing the diffeesof be 5%, i.e. each gene in the genotype will be mutated with
the two images. Next a mask is applied to remove the edgaebablity 0.05. We do not use crossover. The iteration tun
where the sub-images meet. This is done because when ithalso mutated with a 5% probability. The counter is mutated
images are shifted, we will be overlapping data from différe by adding a random number in the range -2 to 2. The counter
images, and could introduce undesirable artifacts to thed# is bounded between 1 and 5.
computation. Edges are removed by multiplying the diffeeen Selection is done using a tournament selection of size 3.
array by an array containing Os and 1s. The 1s label whéfee 5 best individuals are promoted to the next generation
we wish to measure the difference. without modification. The CGP graph is intialised to contain

To calculate the training error, we multiply the differencd00 nodes (it is important to note that not all nodes will be

V1. GENETICALGORITHM
AND PARAMETERS

[Function Description
ITERATION Returns the current iteration index
ADD Add the two inputs
SUB Subtract the second input from the first
MULT Multiply the two inputs
DIV Divide the first input by the second
ADD CONST Adds a constant (the node’s parameter) to the first input
MULT CONST | Multiplies the first input by a constant (the node’s paramete
SUB CONST Subtracts a constant (the node’s parameter) to the first inpu
DIV CONST Divides the first input by a constant (the node’s paramete
SQRT Returns the square root of the first input
POW Raises the first input to the power of the second input
COos Returns the cosine of the first input
SIN Returns the sin of the first input
NOP No operation - returns the first input
CONST Returns a constant (the node’s parameter)
ABS Returns the absolute value of the first input
MIN Returns the smaller of the two inputs
MAX Returns the larger of the two inputs
CEILING Rounds up the first input
FLOOR Rounds down the first input
FRAC Returns the fractional part of number, x - floor(x)
LOG2 Log (base 2) of the first input
RECIPRICAL | Returnsl/firstinput
RSQRT Returns1/+/ firstinput
TABLE |

CGP FUNCTION SET

used in the generated program). In contrast, the best evolved program for applying both
Evolution was allowed to run for 50,000 evaluations. erosion and dilation twice, both contain 17 instructionsd(a
Table | shows the available functions. The functions ogeradgain require 5 iterations). It is unclear why these program
upon floating point numbers. should need to be so much more complicated.

VII. REsuLTS B. Emboss, Sobel and Neon
The results for evolving each filter are summarised in Table

II. In the following sections, the best validation result isd detect We ch i ve th diff { tvpdmas t
shown, alongside the output of the target filter from GIMmp29¢€ detectors. Ve chose to evolve these diflerent typereas
utputs are very different. Emboss is a directional filtdreve

We include examples of the evolved programs to illustrafd
the type of operations that evolution found to replicate tt%s Sobel and Neon are not. We found that all three types of
lliters could be accurately evolved.

target filters. Due to space constraints, we are unable bodac

such analysis for every filter type. For implementation af thWFi?.u:je 8hshov;/]s th? reﬁult of evol\gngh the elmb(;)ss figter.
original filters, there is extensive coverage in the literatand f'Ie ind when t,lat V'Sl;]a y co(;ngaré t efevot:{e eén r?ss
also in the source code for GIMP. ilter is very similar to that used by GIMP (for this and the

other sample images here, the most representative andlyisua
A. Dilatation and Erosion useful sub image is used). The evolved program to evolve this
Figure 4 shows the result of evolving the 'Dilate’ filter. Infilter contains 20 nodes:
'Dilate2’ (figure 5), the filter is applied twice. Figure 6 shke Output = ABS(MIN(-0.3857,
the result of evolving the 'Erode’ filter. In 'Erode2’ (figuid, POW(SQRT(>/((Is+RSQRT(;))-0.863))/s))
the filter is applied twice. + CEIL(MIN(((Z3-19)*+(11-17))
We can analyse the evolved program to determine how th&29.65,FRACI5))))
filter works. For erosion, the best evolved program containsFigure 9 shows the result of evolving the neon filter.
8 operations and requires 5 iterations to run. The evolvedGIMP has two versions of the Sobel filter. Figure 10 shows
expression is: the result of evolving a normalized 'Sobel’ filter. In "SoBel
Output = Max (Log (Ig) , (Figure 11), the target was the standard Sobel filter. The
Min (Ig+ (Min(I3,17)-Max(I,1g)), standard Sobel filter receives poor error rates, however the
Floor(11))) visual comparison is very good. It would appear that the
Wherel; to I are the input pixels, as shown in figure 3.evolved output is scaled differently, and hence the pixel in
The best dilation program contains 4 instructions, andragdéensities are different. If both images are normalized gttrer
requires 5 iterations. The evolved program is : is reduced. However, our fitness function does not normalize
Output = Max(Max(y, automatically, and leaves this task to evolution.
Max(I1,15)),Max(l3,17)) The evolved Sobel filter is quite complicated:

The Emboss, Sobel and Neon filters are different types of

Filter | Best error| Avg Validation Error [Avg Validation Evals| Avg Train Error | Avg Train Evals |

Dilate 0.57 0.71 2422 0.67 3919

Dilate2 | 5.84 6.51 11361 6.10 39603
Emboss | 3.86 8.33 15517 7.41 34878
Erode 0.56 0.78 3892 0.73 4066

Erode2 5.70 6.72 26747 6.64 40559
Motion 2.08 2.32 29464 2.24 43722
Neon 1.32 2.69 15836 241 35146
Sobel 8.41 22.26 26385 20.12 45744
Sobel2 1.70 3.82 19979 3.55 39155
Unsharp | 5.85 5.91 301 5.61 37102

TABLE 1l

RESULTS PER EVOLVED FILTER ‘BEST ERROR IS THE LOWEST ERROR SEEN WHEN TESTING AGAINST THE VALIDATIOMMAGES. ' AVG VALIDATION
ERROR IS THE AVERAGE OF THE BEST VALIDATION ERROR 'AVG VALIDATION EVALS’ IS THE AVERAGE NUMBER OF EVALUATIONS REQUIRED TO FIND
THE BEST VALIDATION ERROR. 'AVG TRAIN ERROR IS THE AVERAGE OF THE LOWEST ERROR FOUND ON THE TRAINING IMAGE 'AVG TRAIN EVALS’

IS THE AVERAGE NUMBER OF EVALUATIONS REQUIRED TO FIND THE BES TRAINING FITNESS. EACH EXPERIMENT WAS REPEATED FORRO TRIALS.

A=1; -1 At present, it is unclear of the relationship of this figure to
B = Iy - MAX(11,LOG(A)) Floating Point Operations Per Second. Executing the edolve
OUTPUT = 2.0 * (MIN(MAX(ABS(B)+FRAC(1)+ABS(2.0 * programs using the CPU bound reference driver, we obtain
A), only 1.2 million GPOps, i.e. a factor of 100 times slower than
MAX(FLOOR(LOG3(A)),2.0 * B)), the GPU. However, using the reference driver incurs siganitic
(CEIL(FRAC(I5)) * -0.760)+127.24)) overhead and may not be an accurate reflection of the true

The best evolved program for Sobel2 was considerakdpeed of the CPU.
shorter: The high processing rate suggests that this technique may

Output = Max (ABS({y - 1) * 0.590), also be suitable for real time image processing, and the
POW(; - 17,SQRT(0.774)) / -2.245) possibility of continual adaptation. We hope to explores thi

Again, both programs required 5 iterations. This suggegisoblem in a future paper.
there is some bias in the algorithm to increase the number ofVe also investigated the performance of applying a small

iterations to the maximum allowed. number of images, i.e. 4 instead of 16. We found that the
_ processing time was the same, suggesting that there is& larg
C. Motion blur overhead of moving images to the GPU.

Figure 12 shows the result of evolving the motion filter. The
output of the evolved filter did not match the desired target
very accurately. Although there is a degree of blurringsit i
not as pronounced as in the target image. Motion blur is a;, qig paper we have demonstrated that it is possible to
relatively subtle effect, and as the target and input ima@ges 5o genetic programming to reverse engineer image progessi
quite similar, it is likely that evolution will become trap@ in - 5144rithms. We have also demonstrated that such techniques
a local minima. are well suited for implementation on GPUs. Using the GPU
D. U greatly speeds up evaluation, and allows for a more robust

. Unsharp 4 :

fitness test - as multiple images, with different properties

Figure 13 shows the result of evolving the 'Unsharpen’filtegan be used. The increased evolutionary power also allowed
Unsharpen was the most difficult filter to evolve. We suspegs the opportunity to investigate the evolution of some more
this is due to the Gaussian blur that needs to be applied @fonventional filters that have yet to be used as problems in
part of the procedure. It is difficult to see how, with the @ntr the genetic programming community.
function set, such an operation can evolve. We will need toye expect that our technique could be used to reverse
rectify this in future work. engineer proprietary image processing algorithms. Assgmi
that a user has access to the unprocessed version of the, image
it should be possible to discover an algorithm that repdisat

Using the Graphics Processor greatly decreases the ev#éhhe original processing technique. Such a system could be
ation time per individual. On our test system (NVidia 880@ractical in providing open source versions of closed ssurc
GTX, AMD Athlon 3500+, Microsoft Accelerator API), we products. Another possible use is to optimise existing hand
obtained approximately 145 million Genetic Programmindesign processes. By first designing a procedure by hand, the
Operations Per Second (GPOps), and a peak performanceaystem could then be used to find an equivalent filter. It shoul
324 Million GPOps. The processing rate is dependent on the possible to evolve filters that require fewer operations,
length of the evolved programs. Some filters benefit more froms the GP would automatically be able to reduce multiple
the GPU implementation than others. conventional convolutions into a single program.

IX. CONCLUSIONS

VIIl. GPU PERFORMANCE

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

(23]

[14]

[15]

Filter | Peak GPOps| Avg GPOps]

Dilate 116 62

Dilate2 281 133
Emboss | 254 129
Erode 230 79

Erode2 | 307 195
Motion 280 177
Neon 266 185
Sobel 292 194
Sobel2 280 166
Unsharp | 324 139

TABLE Il

MAXIMUM AND AVERAGE GENETIC PROGRAMMING OPERATIONSPER SECOND (GPOPS) OBSERVED FOR EACH FILTER TYPE

REFERENCES European Conference on Genetic Programming (EuroGP 2008), volume

)))) 4971, pages 182-193. Springer Berlin, 2008.
GNU. Gnu image manipulation program (GIMP). www.gimgo2008. [16] T. Yu and J. Miller. Neutrality and the evolvability obblean function
[Online; accessed 21-January-2008]. landscape. In J. F. Miller and M. T. et al., editoRroc. of EuroGP

S. Harding. Evolution of image filters on graphics prom®s units 2001, volume 2038 ofLNCS, pages 204—217. Springer-Verlag, 2001.
using cartesian genetic programming. IIBEE World Congress on

Computational Intelligence, WCCI 2008, Hong Kong, China, June 1-

6, 2008, volume 5050 ofLecture Notes in Computer Science, pages
1921-1928. Springer, 2008.

S. Harding, J. F. Miller, and W. Banzhaf. Self-modifyinzartesian
genetic programming. In H. Lipson, edit@dECCO, pages 1021-1028.
ACM, 2007.

P. N. Kumar, S. Suresh, and J. R. P. Perinbam. Digital enfilger
design using evolvable hardware. [l0IS’ 05: Proceedings of the Fourth
Annual ACIS International Conference on Computer and Information
Science (ICIS 05), pages 483-488, Washington, DC, USA, 2005. IEEE
Computer Society.

J. F. Miller and P. Thomson. Cartesian genetic prograngmin R. Poli
and W. B. et al., editorsRroc. of EuroGP 2000, volume 1802 ofLNCS,
pages 121-132. Springer-Verlag, 2000.

R. Poli. Parallel distributed genetic programming. In DBorne,

M. Dorigo, and F. Glover, editor$yew Ideas in Optimization. McGraw- Fig. 4. Dilate: Evolved filter and GIMP filter
Hill, 1999.

P. Rosin and J. Hervas. Image thresholding for landstideection by
genetic programmingAnalysis of multi-temporal remote sensing images,
pages 65-72, 2002.

K. Slan and L. Sekanina. Fitness landscape analysis awage filter
evolution using functional-level cgj.ecture Notesin Computer Science,
2007(4445):311-320, 2007.

S. L. Smith, S. Leggett, and A. M. Tyrrell. An implicit ctext represen-
tation for evolving image processing filters. In F. Rothlalif Branke,
S. Cagnoni, D. W. Corne, R. Drechsler, Y. Jin, P. Machado, &:.dkiori,
J. Romero, G. D. Smith, and G. Squillero, editoApplications of
Evolutionary Computing, EvoWorkshops2005: EvoBIO, EvoCOMNET,
EvoHOT, EvolASP, EVOMUSART, EvoSTOC, volume 3449 ofLNCS
pages 407-416, Lausanne, Switzerland, 30 Mar.-1 Apr. 28p&nger
Verlag.

D. Tarditi, S. Puri, and J. Oglesby. Accelerator: usd®a parallelism
to program GPUs for general-purpose usesASPLOSXII: Proceed-
ings of the 12th international conference on Architectural support for Fig. 5. Dilate twice: Evolved filter and GIMP filter
programming languages and operating systems, pages 325-335, New

York, NY, USA, 2006. ACM.

D. Tarditi, S. Puri, and J. Oglesby. Msr-tr-2005-184elerator: Using

data parallelism to program GPUs for general-purpose uBeshnical

report, Microsoft Research, 2006.

L. Trujillo and G. Olague. Synthesis of interest poimtettors through

genetic programming. IGECCO '06: Proceedings of the 8th annual

conference on Genetic and evolutionary computation, pages 887-894,

New York, NY, USA, 2006. ACM.

Z. Vacek and L. Sekanina. Evaluation of a new platform ifoage

filter evolution. InProc. of the 2007 NASA/ESA Conference on Adaptive

Hardware and Systems, pages 577-584. IEEE Computer Society, 2007.

V. K. Vassilev and J. F. Miller. The advantages of larajse neutrality in

digital circuit evolution. InProc. of ICES volume 1801, pages 252—-263.

Springer-Verlag, 2000.

G. Wilson and W. Banzhaf. A comparison of cartesian genpro-

gramming and linear genetic programming. Rroceedings of the 11th

