Instruction Set Extensions
for the Advanced Encryption
Standard on a Multithreaded
Software Defined Radio
Platform

Christipher Jenkins*

Department of Electrical and Computer Enginering,
University of Wisconsin-Madison,

Madison, WI

E-mail: cdjenkins@wisc.edu

*Corresponding author

Suman Mamidi

Department of Electrical and Computer Enginering,
University of Wisconsin-Madison,

Madison, WI

E-mail: mamidi@cae.wisc.edu

Michael Schulte

Department of Electrical and Computer Enginering,
University of Wisconsin-Madison,

Madison, WI

E-mail: schulte@engr.wisc.edu

John Glossner

Sandbridge Technologies,
White Plains, NY
E-mail: jglossner@sandbridgetech.com

Abstract: Software-defined radio (SDR) is an emerging technology that facilitates
having multiple wireless communication protocols on one device. Previous work has
shown that current W-CDMA, GPS, GSM, and WiMAX applications can run on this
class of device while consuming significant processing power. Next generation wireless
networks require speeds in excess of 50Mbps. Some of the fastest AES software im-
plementations only achieve 20Mbps on our reference platform. In order to have secure
software-defined radio, the security processing gap must be addressed. This paper
presents instruction set architecture (ISA) extensions for the Sandblaster DSP. The
Sandblaster DSP is a multithreaded processor for SDR that issues multiple operations
each cycle and supports vector operations.

Keywords: AES; multithreaded; security; software defined radio; instruction set ex-
tensions; hardware design.

Reference to this paper should be made as follows: C. Jenkins, S. Mamidi, M. Schulte,
J. Glossner. (2007) ‘Instruction Set Extensions for the Advanced Encryption Standard
on a Multithreaded Software Defined Radio Platform’, International Journal on Em-
bedded Systems

Biographical notes: Christipher Jenkins is a Master’s student in the Department
of Electrical and Computer Engineering at the University of Wisconsin-Madison. His
work focuses on security extensions for software-defined radios.

1 Introduction

Mobile devices have evolved from using basic embedded
processors to multi-functional devices using dedicated dig-
ital signal processors (DSPs) and application specific in-
tegrated circuits (ASICs) to accomodate the growing de-
mand for smaller and faster embedded appliances. Many
of these devices, which primarily use dedicated DSPs and
ASICs, require new chip designs to efficiently implement
new wireless standards and specifications. The primary
disadvantage of this methodology is the cost to design and
manufacture new chips. Another proposed methodology is
to move the wireless baseband processing from dedicated
DSPs and ASICs into software on programmable domain-
specific processors. In this scenario, software updates can
add wireless standards, features, or improved algorithms
without a new device being needed. A current approach
to programmable communications systems is software de-
fined radio (SDR).

SDRs, which use a combination of software and hard-
ware to dynamically support multiple communications
standards, have been widely recognized as one of the most
important new technologies for wireless communication
systems [16]. SDRs enable the efficient implementation of a
diverse set of wireless communication systems by providing
the ability to change communication protocols and dynam-
ically update communications systems through over-the-
air software downloads [14]. Thus, SDRs can easily adapt
to emerging standards. As new standards become avail-
able, software updates can be used to enable new commu-
nication protocols without the need for new hardware. Al-
though the flexibility and programmability of SDRs make
them ideal for use in future wireless communication sys-
tems, several challenges must be addressed before SDRs
can be widely used in systems that require high levels of
security, confidentiality [3], and performance.

SDRs sometimes use multithreading to alleviate some of
the potential performance challenges of baseband process-
ing. Traditionally, a single thread runs on a processor for
some amount of time before the operating system (OS) re-
moves that thread to execute another. At any given time,
only one thread executes on the processor. Research has
shown that this execution style leads to ununsed functional
units and large context switch overhead [27]. Functional
units may go unused due to data dependecies or resource
hazards. On the other hand, multithreading allows in-
dependent threads to issue during the same cycle or on
alternate cycles without the need for context switching or
additional processors. The unused functional units can be
used by other threads, thus allowing higher throughput
and utilization.

In current cellular systems, encryption is often done in
software as the necessary data rates can be achieved on
a programmable processor. As bit rates increase, security
for wireless data presents a new set of challenges not com-
monly found in general purpose processors (GPPs). One
of the most formidable challenges is the security process-
ing requirements. For example, a typical secure communi-

cation channel provides authentication and key exchange
(RSA, DSA, ECC) to setup a transfer with symmetric-
key encryption (3DES, AES, RC4) and message integrity
(SHA, MD4, MD5) during the bulk of the transfer. For ex-
ample, a 10Mbps transfer, using 3SDES and SHA, requires
653.1 millions of instructions per second (MIPS) on the
StrongARM SA-1110 processor [23]. This is beyond the
performance of many embedded processors [1, 18]. High-
Speed Downlink Packet Access (HSDPA) [22] is a cur-
rent high-end cellular protocol with data rates of up to
14.4Mbps. While there are dedicated solutions which can
reach this speed, these solutions require dedicated silicon
area that cannot be reused.

Next generation mobile networks are expected to exceed
50 Mbps [5]. Well below this data rate, the advanced en-
cryption standard (AES) becomes a bottleneck in software,
and an efficient solution must be developed to meet this
growing demand. We chose to accelerate AES as it is the
current government standard for encrypting confidential
data [19]. Likewise, AES is the new standard for encryp-
tion in wireless devices using Wi-Fi Protected Access 2
(WPA2 or 802.11i) [20]. Hence, prevelance in multiple
standards and government requirements makes AES a use-
ful protocol to accelerate. While much work has been done
to show that sufficient baseband processing capabilities are
available in SDRs [25], instruction set architecture (ISA)
support for secure SDR, has not been a focus of previous
research.

This paper prsents a hardware design and instruction
set extensions for AES processing on a multithreaded SDR
platform, the Sandbridge SB3010 System. Our design sat-
isfies the microarchitecture constraints of our SDR plat-
form. These constraints are: 1) the ability to operate ef-
ficiently in a multithreaded microarchitecture, 2) encryp-
tion and decryption have similar performance, 3) no hidden
state is added to the programming model, 4) a through-
put of at least 50Mbps at the highest cipher level, and 5)
small area compared to the DSP core. All of these goals
are achieved though an efficient AES processing solution
for multithreaded SDRs. To the best of our knowledge,
this is the first time instruction set extensions for AES on
a multithreaded SDR platform have been proposed and
analyzed.

The rest of the paper is organized as follows: Section
2 describes the AES algorithm and its processing require-
ments. Section 3 presents our proposed implementation
for AES acceleration. Section 4 demonstrates the perfor-
mance and design characteristics of our solution. Section
5 provides conclusions and discusses future work.

2 Background on AES

AES is the current government standard for encrypting
electronic data [19]. AES performs encryption and decryp-
tion on 128-bit blocks partitioned into four 32-bit columns
known as the state. The AES algorithm is composed of
byte transformations that occur over several rounds. Each

ENCRYPTION

QOriginal Cipher Moadified Cipher
i Ordering
RoundXOR Initial Round RoundXOR
L L
N-1 Rounds W
SubBytes ShiftRows
-V
RoundXOR
L4 ®

Final Round

SubBytes

ShiftRows

RoundXOR

_w| ShiftRows
.

Figure 1: AES Encryption Algorithm

round uses a different key, known as a round key, that
is extracted during a key expansion process, which usu-
ally occurs before the cipher takes place. The number of
rounds depends on the key length, which can be 128 bits
(10 rounds), 192 bits (12 rounds), or 256 (14 rounds) bits.

Regardless of the key length, the AES encryption and
decryption algorithms follow the same structure as, shown
in Figures 1 and 2. The initial round is simply an XOR of
the plaintext data with the original key. The rest of the
rounds are equivalent transformations with a slight varia-
tion during the final round. The four transformation that
make up each round of the encryption core are: SubBytes,
ShiftRows, MixColumns, and RoundXOR. For decryption
they are: InvSubBytes, InvShiftRows, RoundXOR, and
InvMixColumns. (Inv)ShiftRows rotates (left) right each
corresponding row in the state by 0, 1, 2, or 3 bytes.
(Inv)SubBytes does a byte substitution on each byte in the
state based on a multiplicative inverse and (inverse) affine
transform in the Galois field GF(2%). (Inv)MixColumns
multiplies each column independently by a predefined
polynomial over GF(28). RoundXOR is the same for both
encryption and decryption and is simply the bitwise XOR
of the state and the round key. More details on the AES
algorithm are given in [19].

3 Proposed AES Implementation

To speed up AES for high bandwidth use, we target data
rates of 50Mbps and higher. One of our goals is to pro-
vide AES functional units suitable for use inside of a pro-
grammable SDR, as opposed to an ASIC or custom chip

DECRYPTION
QOriginal Cipher

Modified Cipher
Ordering

RoundXOR

Inv
ShiftRows

- Inv
SubBytes
Inv
~¥| MixColumns
RoundXOR
Inv
- ShiftRows
Inv
SubBytes

Initial Round

N-1 Rounds

Final Round

Figure 2: AES Decryption Algorithm

Name and Format Description
roundXOR vrd, vra, vrb Performs RoundXOR
shift_rows vrd, vra ShiftRows

box_mi d b
sbox_mix_xor vrd, vra, vr RoundXOR.

Performs SubBytes, MixColumns, and

sbox_xor vrd, vra, vrb

Performs SubBytes and RoundXOR

shift_rows_inv vrd, vra Performs Inverse ShiftRows

Performs InvSubBytes,
Columns, and RoundXOR

sbox_mix_xor_inv vrd, vra, vrb

InvMix-

sbox_xor_inv vrd, vra, vrb

Performs InvSubBytes and RoundXOR

Table 1: Proposed ISA Extensions

design. The main reason for low performance in the AES
algorithm stems from the need for byte manipulations on
processors with 16, 32, or 64-bit datapaths. Three of the
four transformations in AES manipulate data at the byte
level. Hence, compilers must insert additional instructions
to perform byte manipulation. While SIMD support may
help for some byte operations, some of the algorithmic ma-
nipulations such as (Inv)SubBytes, (Inv)ShiftRows, and
(Inv)MixColumns cannot be easily vectorized and are not
well supported on conventional embedded processors. For
increased throughput, either specialized instructions or in-
creased processor clock rate must be employed. Target
peformance can be achieved by increasing the clock speed,
but to keep low power, the clock speed is not increased
beyond a certain threshold. Since opcode space is often an
issue in embedded systems, we introduce just seven new
instructions. These instructions are summarized in Table

1.

I-Cache
| 64KB

|| 64B Lines

| Data Memory
64KB

U ssancs

DIR
LRU Replace

Bus/Memory
Interface

4W (2-Active)

| l i

Instruction Fetch
and Branch Unit

Integer and Load/
Store Unit

SIMD Vector Unit

Figure 3: Sandblaster DSP Core

3.1 SB3010 SDR Platform

The SB3010 SDR Platform contains four Sandblaster DSP
cores, an ARM processor, and input and output peripher-
als found on many wireless handheld devices. Each core is
multithreaded, runs eight threads simultaneously [15], and
is paritioned into three units, as shown in Figure 3. These
are an instruction fetch and branch unit, an integer and
load/store unit, and a SIMD vector unit. Integer opera-
tions have up to two source operands and one destinatin
operand, and vector operations have up to three source
operands and one destination operand. Vector operations
process sets of four vector elements simultaneously. To
save on program memory, the SB3010 uses compound in-
structions which can issue up to three operations per cycle.
To support eight hardware threads, the architecture uses a
uniquire form of interleaved multithreading (IMT) known
as token thread triggering (T?) [15]. Each thread occupies
one pipeline stage per cycle. Each cycle each thread ad-
vances forward until it has passed through all eight stages.
Each thread appears to itself as running on a single-cycle
processor. By using T3 complex dependency hardware can
be removed to reduce power and area.

The SIMD vector processing unit (VPU) conists of four
vector processing elements (VPEs), a shuffle unit, a reduc-
tion unit, and an accumulator register file, as shown in Fig-
ure 4. The VPU simultaneously performs arithmetic and
logic operations on 16-bit and 32-bit fixed-point data types
in each VPE. It takes one cycle to load 16-bit data and
two cycles to load 32-bit data. The VPU allows up to four
execution cycles, which is hidden due to the T3 microar-
chitecture of the Sandblaster DSP. Our AES ISA exten-
sions are implemented in the vector processing unit. The
Sandblaster toolchain uses an optimizing ANSI C com-
piler [25] to generate code for the DSP core. It provides a
fast cycle count accurate simulator [25, 10], which uses the
Sandbridge architecture Description Language (SaDL) to
specify the underlying architecture. The compiler supports

Load Data
Store Data

,,,,,,,,,, 84-bit Load Bus
— — - - 64-bit Store Bus

VPEO VPE1

Shuffle
Unit

VPE Interface

Load _ | | Shufle
Data | [Data Out
Shuffle
Data In

VPE2 VPE3 VPER

Store

—l r Data

Reduction Unit

Accumulator
Register File

Reduction
Unit Data

Accumulator Data

Figure 4: SIMD Vector Unit

32-bit Block Input Data

w
I
=
@
5}
(0]
\;’
(Inv) 24
SubBytes
(Inv)
Shift Rows
(Inv) Mix
Columns
Key (4 bytes) ; RoundXOR i24

)

| 32-bit Block Output Data

Figure 5: AES Hardware Design in each VPE

instrinsics, which are user-defined functions supported at
the ISA level in the Sandblaster simulator, to model new
instructions.

3.2 AES Module Design

As stated in the Section 1, five main constraints guided
our design. To operate efficiently in a multithreaded mi-
croarchitecture, we provide AES instruction set extensions.
ASIC designs add hidden state to the programming model,
and we want full visibility how instructions affect the pro-
cessor state. The AES algorithm allows some transforma-
tion re-ordering while maintaining correctness as shown
in Figures 1 and 2. We used two manipulations which
allowed for a more efficient design. First, we re-ordered

_24 / VPE 1

Shift
Rows
Shuffle
Network

£
VPE2| 24 24 VPE 3
;246) i'
24

Figure 6: (Inv)ShiftRow shuffle network connecting VPEs

‘ JE— 32-bit Block InputData Encipec |

(Inv)Sbox (Inv)Sbox (Inv)Sbox f (Inv)Sbox

s =k 4F AF

‘ 32-bit Block Output Data ‘

Figure 7: (Inv)SubBytes unit inside each VPE

(Inv)ShiftRows and (Inv)SubBytes transformations. This
allows the main encryption loop to be divided into two
parts (instructions), as shown in Figure 5. The first part,
shown on the right, is simply the (Inv)ShiftRows function,
which shifts out three bytes and shifts in the correspond-
ing three bytes from the other VPEs as shown in Figure
6. The second part, shown on the left, implements the
(Inv)SubBytes, (Inv)MixColumns, and RoundXOR func-
tions. The state of AES, as mentioned before, is parti-
tioned into four columns. The Sandblaster vector unit is
well-suited for AES as its vector registers contain four 32-
bit elements, which matches the size of each column of the
AES state. Thus, each column is operated on indepen-
dently for the the second part.

Each VPE contains four tables as shown in Figure 7.
The tables contain both forward and inverse Sbox lookups.
The Sbox lookups perform the (Inv)SubBytes transforma-
tion. Each byte of the VPE word is used an an index into
the table, and a 1-bit selector chooses the output depend-
ing on if encryption or decryption is being performed. Each
table contains 512 bytes, which corresponds to 8Kbytes (16
tables total) for the entire design. The MixColumns block
uses the architectural design of (Inv)MixColumns as de-
fined in [13].

Each VPE contains four MixColumns Compute boxes
as shown in Figure 8. Each MixColunms Compute box
performs a Galois field multiplication operation on each
byte depending on the Enc/Dec bit. The XOR logic tree
XORs the appropriate output of each MixColumns Com-

Enc/Dec 32-bit Block Input Data Enc/Dec ‘
1 1 M
8 8 | 8y 8 |»
- N w
MixColumns MixColumns MixColumns MixColumns

Compute Box Compute Box

N0 1

Compute Box

il

Compute Box

| XOR Tree

| 32-bit Block Qutput Data

Figure 8: MixColumns unit inside each VPE

pute box to produce the correct byte to complete the
(Inv)MixColumns operation. Lastly, the resulting four
bytes are finally XORed with the round key for that VPE.

Our design depends on using the equivalent reverse ci-
pher as defined in the NIST standard [19]. Hence, we do
not use the same set of round keys for both encryption and
decryption. However, by transforming the round keys and
switching InvMixColumns and RoundXOR (Figure 2), en-
crpytion and decryption use the same design and require
the same latency to process a block. In a pure software
implementation with table lookups only for the sbox, de-
cryption takes longer than encryption [11].

3.3 VEX Architecture and Simulator

For completeness, we also model a high-end DSP using the
VLIW-Example (VEX) architecture and use this model to
determine the performance of AES without instruction set
support [7]. VEX is a 32-bit clustered VLIW processor
based on the HP/ST Lx ST200 [6] family of embedded
VLIW processors. A cluster is defined as a collection of
registers and associated functional units in a tightly cou-
pled configuration. The VEX architecture can be config-
ured to contain multiple clusters, but for our design we
model a high-end VLIW processor that has one cluster
and can issue up to four operations per cycle. The simula-
tor allows defining the number and type of funtional units,
latencies, and other architecture parameters that are com-
mon to embedded environments. Scheduling of operations
is done statically by the compiler and the execution strictly
adheres to program order. Our VEX processor configura-
tion parameters are shown in Table 2.

General Purpose Registers 64
Branch Units 4

Issue Width 4

Total Store Operations 1
Total Load Operations 1
Integer ALU Slots 2

CPU Features

Instruction cache size 64 KB 4-
way

Line size 256 bytes

Miss penalty 40 cycles

Store Miss Penalty 56 cycles
WB Miss Penalty 102 cycles

L1 Cache Config

Prefetch units 1
Multiply slots 1
Memory slots 2
Prefetch enabled
Stream buffer disabled

System specs

Table 2: VEX Processor Configuration Parameters

3.4 Methodology

Often, encryption and decryption are executed using a sin-
gle thread. Using more than one thread gives an increase
in throughput, but in most SDR systems, as many threads
as possible should be available for baseband and multi-
media processing needs. To test the potential of our de-
sign, we chose the StrongARM SA-1110 processor as our
baseline [2]. The StrongARM SA-1110 is representative
of current embedded cores which can perform AES en-
cryption/decryption for most of today’s cellular standards.
Next, we ran C code! [9] on VEX [21]. Then, we ran the
same C code on the Sandblaster DSP for three AES im-
plementations; unrolled loops, conventional loops, and an
optimized swap method.

For testing our ISA extensions, the C code for rounds is
replaced by eqivalent intrinsics. No other code was modi-
fied, except for the swap optimization. The swap optimiza-
tion removes a bottleneck from the original code. During
the AES loop a copy method is employed to copy over
data so pointer references do not have to change—allowing
the same function to be called again without changing the
argument order to the function. We used a property of
XOR to swap pointer values instead of the expensive cost
of copying data. The properties is as follows,

pl and p2 are pointer values stored in x and y respec-
tively

T=zdy=plPp2;

y=ydDzr=p20Opl®p2=npl;

r=x®y =plPp2adpl =p2;

Thus, three XOR operations, swap the pointer values pI
and p2.

Prior to running the above tests, we coded a model of

LOur configuration used a fast AES implementation with 4 lookup
tables

Unit Delay (ns) | Area (um?)
(Inv)SubBytes 1.14 50816
(Inv)MixColumns 0.77 6698
RoundXOR 0.05 657
AES VPE Unit 2.28 61206
VPU (Inv)Shift Rows Shuffle Unit 0.05 1667
VPU Total (calculated) 2.28 246491

Table 3: Area and Delay Estimates

the hardware in C to verify functional correctness. We also
coded our own AES implementation in C using instrinsics.
This was done to see how the compiler maps our intrin-
sics to determine if hand optimizations are needed after
inserting intrinsics. For each test, we ran the algorithm
over 256KB of data, and key generation occurred prior to
encryption/decryption.

4 Results and Analysis

We modeled our AES hardware design using Verilog and
synthesized it using Synopsys Design Compiler and LSI
Logic’s GFIx-p 0.11 micron standard cell library to ob-
tain area and delay estimates, which are presented in Ta-
ble 3. The (Inv)SubBytes and (Inv)MixColumns units
correspond to the units shown in Figures 7 and 8, re-
spectively. The AES VPE unit corresponds to the units
shown in Figures 5. The (Inv)ShiftRows Shuffle Unit has
only a minor impact on the overall area as it primar-
ily performs routing and is not combinational. The AES
entire VPE Unit, which implements the (Inv)SubBytes,
(Inv)MixColumns, and RoundXOR transformations, has
slightly more area than a 16-bit x 16-bit multiplier imple-
mented in the same technology. The majority of the area is
due to the (Inv)SubBytes lookup-tables. The Sandblaster
DSP has a cycle time of 1.67ns and up to four execution cy-
cles. Based on Table 3, our design will have to be pipelined,
but only requires two stages and meets the latency require-
ments of the microarchitecture. The shuffle unit timing
depends purely on routing delay and Table 3 shows that it
does not cause any timing issues.

4.1 Performance

As shown in Figure 9, the result of our proposed design
shows a dramatic improvement over previous optimized
software implementations of AES across all key lengths.
In this figure, ARM BC and ARM V2 are based on results
for the StrongARM SA-1110 processor given in [2]. The
VEX architecture uses the configuration shown in Table 2.
The speedups, shown relative to a Strong-ARM SA-1110
processor, assume a single thread executing AES at a com-
mon clock rate. The C code on the Sandblaster DSP barely
outperforms the ARM without ISA extensions. With our
new instructions, speedup ranges from 3.75 to over 10 com-

pared to the reference ARM BC code.

Speedup vs Cipher Direction (Average)

11.00

10.00

OARMBC

9.00
EARM V2

8.00

BVEX

7.00

@SB C code looj
6.00 ?

5.00 0SB C code swap

Speedup

4.00 0O SB code unrolled

3.00

B SB instrinsic loop

2.00

m SB instrinsic swap

1.00

B SB intrinsic unrolled

0.00
ENCRYPTION

DECRYPTION
Cipher Direction

Figure 9: Average SpeedUp Across All Ciphers

Version Cipher Direction | SpeedUp
SB C code loop Encryption 3.33
SB C code loop Decryption 3.33
SB C code swap Encryption 4.52
SB C code swap Decryption 4.52
SB C code unrolled Encryption 5.54
SB C code unrolled Decryption 5.52

Table 4: Average Speed Up Across All Ciphers

Table 4 shows the speedup due to ISA extensions for
encryption and decryption solely on the SB3010. These
results show the speedup after removing the round func-
tion and replacing it with our new instructions. The
speedup takes into account setting up loop parameters
(where needed), loading new key data each round, and
all system-specific instructions for entering and exiting the
main loop. Code using conventional loops ran the slowest
as addititonal time is spent on branching and performan-
ing copy operations. Using the optimized swap method
improves performance by an average of 9.6% across all ci-
pher lengths for our test C code from [9]. With our in-
structions the same optimization gains us an average per-
formance improvement of 49.1%. To extract more perfor-
mance, the target system needs to employ efficient coding
techniques and compiler optimizations when using our ex-
tensions. When unrolling the entire loop, we obtained the
best performance both running standard C code and the
same code with our instructions. No swap optimization is
used when unrolling a loop as copying pointer data is not
needed. Table 5 shows the decrease in code size for each
version of AES code with and without the new extensions.
Even with unrolling the entire loop, using the new pro-
posed instructions results in a smaller footprint than using
the swap optimization with a loop for native C code.

As stated in Section 3.4, we created a light-weight ver-
sion of AES C code using instrinsics to determine how
efficiently the compiler maps intrinsics. Based on view-
ing the assembler output, we noticed that the compiler
produces extra instructions. These extra instructions pro-

Encryption Decryption
Version C code | Intrinsics | C code | Intrinsics
SB C code loop 2008 760 2016 760
SB C code swap 1704 808 1704 808
SB C code unrolled 7768 1408 7800 1416

Table 5: Code Size in bytes for AES-128 on the SB3010

vided memory consistency (st a, 1d a), but also reduced
performance by 40 to 50%. After removing these memory
consistent instructions, we verified the data output of our
custom AES code to ensure the removal of these instruc-
tions did not affect the output. Therefore, to fully benefit
from these new instructions, the compiler must be able
to generate optimized code with these new instructions or
some hand modifications to the compiler generated assem-
bly code must be performed.

4.2 Comparison to Related Work—ASICs

Other approaches have been applied to the AES algorithm
to achieve high performance. [12] presents an ASIC capa-
ble of achieving optical link throughput speeds of 30Gbps
to 7T0Gbps. While the design is efficient, the area require-
ments for the design are not practical for use with typical
software-defined radios. Likewise, key scheduling would
mostly be moved to software as performance for key gen-
eration becomes less important as more data is encrypted.

[24] presents a small, area-efficient AES encryption en-
gine. SDRs may be paired with ASICs, but typically the
ASIC state is not visible to the processor meaning an addi-
tonal API needs to be supported by the compiler to allow
access to the ASIC. Depending on the particular SDR, the
ASIC design may not scale well or fit into the datapath of
the DSP. The latency (7.62ns) of this design may also not
be suitable for multithread DSPs.

4.3 Comparison to Related Work—ISA Extensions

The design in [8] provides RISC-style ISA extensions.
While these extensions are similar to ours, there are some
important differences. First, their table sizes range from
8K to 32K depending on the wordsize of the machine. 8K
is feasible, but 32K in the datapath may not be practical
for an embedded SDR processor. Our design uses 8K for
an equivalent 128-bit word size processor. With their ar-
chitecture, each round takes twelve instructions while ours
takes only two.

[17] uses extended Sboxes to integrate the SubBytes
and MixColumns operations into a single instruction for a
RISC-like processor. Their pipeline decomposes the Sbox
function into its components to support both encryption
and decryption in the same pipeline. However, they require
36 instructions each round. This would equate to 36 cycles
on our SDR processor if these extensions were put inside
of the integer unit (the type of unit the extensions were
designed for). This corresponds to approximately 360 cy-
cles for encryption/decryption using a 128-bit key. Based

on the dymanics of our platform, this produces around
27Mbps which falls below our design goal. This paper
states it can hit 640Mbps, but that is with 1-GHz, 2-way
super scalar MIPS processor. The power required for 1-
GHZ operation would no longer keep the SB3010 a low-
power device.

[26] demonstrates various extensions to help accelerate
AES processing. These extensions range from simple byte-
level Sbox support to word-size hardare support for byte
rotations, SubBytes, and (Inv)MixColumns transforma-
tions. These extensions are optimized for 32-bit proces-
sors. Likewise, some extensions work better depending on
if the state is stored in column-oriented or row-oriented
packed format. Our extensions are better suited for taking
advantage of the parallel nature of AES. Also, [26] may
require bytes to be placed in a specific manner to use some
of the extensions efficiently. Our extensions do not require
any specialized byte-level placement, except the state is
placed in column-oriented packed format. Lastly, in [26]
some instuctions require an intermediate state not visible
to the programmer, while ours does not add any additional
non-visible state.

5 Conclusions and Future Work

Most current cellular systems provide data rates of 2Mbps
or less. Next generation cellular networks will have data
rates of at least 50Mbps. Even efficient software imple-
mentations of AES cannot achieve the necessary through-
put for encryption and decryption on embedded proces-
sors. Therefore, to achieve these data rates for consumer
devices, a better solution must be developed. Our pro-
posed ISA extensions provide the needed throughput while
maintaining the current microarchitecture pipeline of the
SB3010 platform.

Our next goal is to reduce the area of the sboxes as they
make up most of the area. Work proposed in [17] sug-
gests to use an inverse table as opposed to a sbox table.
This approach still requires the same number of instruc-
tions, but may reduce the size of the lookup table from
512 bytes to 256 bytes while adding negligible area for (in-
verse)affine transform boxes. Also, since we have not used
all of the execution stages available in our target architec-
ture, a compact implemtation [4, 24] of the sbox may give
us a smaller area, but have a latency that can still match
the microarchitecture. Finally, we plan to investigate, if
any, redudant instructions (st a, 1d a) can be identified
and removed from the three different coding styles (loops,
no loops, swap). In the realm of embedded computing,
hand-optimization is normal, so doing such optimizations
to obtain more performance is quite practical. We believe
that 100 Mbps and higher is possible by carefully specify-
ing our instrinsics in a more compiler-friendly manner or
hand-optimizing assembly code to get the added perfor-
mance benefits.

REFERENCES

[1] ARM. Product backgrounder. Technical report, Jan
2005. http://www.arm.com/miscPDFs/3823.pdf.

[2] Kubilay Atasu, Luca Breveglieri, and Marco Mac-
chetti. Efficient AES implementations for ARM based
platforms. In Proceedings of the 2004 ACM sym-
posium on Applied computing, pages 841-845, New
York, NY, USA, 2004. ACM Press.

[3] A. Brawerman and J. A. Copeland. Towards a fraud-
prevention framework for software defined mobile de-
vices. FEURASIP Journal on Wireless Communica-
tions and Networking, 5(3):401-412, August 2005.

[4] D. Canright. A very compact s-box for AES. Crypto-
graphic Hardware and Embedded Systems, pages 441—
455, 2005.

[5] Nortel R&D Community. Focus on broadband
wireless access. Nortel Technical Journal, 2, Jul 2005.

http://www.nortel.com/corporate/news/collateral /ntj2.pdf.

[6] P. Faraboschi, J. Fisher, G. Brown, G. Desoli, and
F. Homewood. Lx: A technology platform for cus-
tomizable VLIW embedded processing. In Proceed-
ings of the 27th Annual International Symposium on
Computer Architecture, June 2000.

[7] Joseph A. Fischer, Paolo Faraboschi, and Cliff Young.
Embedded Computing: A VLIW Approach to Archi-
tecture, compilers, and Tools. Elsevier, 2005.

[8] A. Fiskiran and R. Lee. Fast parallel table lookups to
accelerate symmetric-key cryptography. Proceedings
of the International Conference on Information Tech-
nology: Coding and Computing, pages 526-531, Apr

2005.
[9] Brian Gladman. AES and com-
bined encryption/authentication modes.

http://fp.gladman.plus.com/AES/.

J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill,
E. Hokenek, M. Schulte, and S. Vassiliadis. Sand-
bridge software tools. In 5th Workshop on Embed-
ded Computer Systems: Architectures, Modeling, and
Simulation, volume 3553, pages 269-278, Jul 2005.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. In Proceedings IEEE International Workshop
on Workload Characterization, pages 3—14, Washing-
ton, DC, USA, 2001.

[12] Alireza Hodjat and Ingrid Verbauwhede. Minimum
area cost for a 30 to 70 gbits/s AES processor.
IEEE Computer Society Annual Symposium on VLSI
Emerging Trends in VLSI Systems Design, 2004.

[13]

23]

Hua Li and Zac Firggstad. An efficient architec-
ture for the AES MixColumns operation. Department
of Mathematics and Computer Science University of
Lethbridge.

S. Mamidi, E. R. Blem, M. J. Schulte, J. Glossner,
D. Tancu, A. Tancu, M. Moudgill, and S. Jinturkar.
Instruction set extensions for software defined radio
on a multithreaded processor. In Proceedings of the
ACM International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems, pages
266—273, September 2005.

S. Mamidi, E. R. Blem, M. J. Schulte, D. Iancu
J. Glossner, A. Tancu, M. Moudgill, and S. Jinturkar.
Instruction set extensions for software defined radio.

Accepted for publication in the Internatinal Journal of
Embedded Systems, 2007.

M. Mehta, N. Drew, G. Vardoulias, N. Greco,
and C. Niedermeie. Reconfigurable terminals: An
overview of architectural solutions. IEEE Commu-
nications Magazine, 39:146-155, August 2001.

K. Nadehara, M. Tkekawa, and 1. Kuroda. Extended
instructions for the AES cryptography and their effi-
cient implementation. IEEE Workshop on Signal Pro-
cessing Systems, pages 152-157, Oct 2004.

University of Maryland. Technical report.
http://www.cs.umd.edu/class/fall2001 /cmsc411/proj0l
/arm/armchip.html.

National Institute of Standards and Tech-
nology. Announcing the advanced en-
cryption standard. Technical report.

http://www.csrc.nist.gov/publications/fips/fips197 /fips-
197 pdt.

National Institute of Standards and Technology. Es-
tablishing wireless robust security networks: A guide
to IEEE 802.11i. Technical report.

Hewlett Packard. VEX
http://www.hpl.hp.com/downloads/vex/.

toolchain.

Qualcomm. HSDPA for improved downlink
data transfer. Technical report, Oct 2004.
http://www.cdmatech.com/download library /pdf/
hsdpa_downlink_wp_12-04.pdf.

S. Ravi, A. Raghunathan, and N. Potlapally. Securing
wireless data: System architecture challenges. In In-
ternational Symposium System Synthesis, pages 195—
200, October 2002.

Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji
Munetoh. A compact Rijndael hardware architecture
with s-box optimization. In Proceedings of the 7th
International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages
239-254, London, UK, 2001. Springer-Verlag.

[26]

[27]

[25] M. J. Schulte, J. Glossner, S. Jinturkar, M. Moudg-

ill, S. Mamidi, and S. Vassiliadis. A low-power multi-
threaded processor for software defined radio. Journal
of VLSI Signal Processing, 41, 2005.

Stefan Tillich. Instruction set extensions for efficient
AES implementation on 32-bit processors. Crypto-
graphic Hardware and Embedded Systems, pages 270—
284, 2006.

Dean M. Tullsen, Susan Eggers, and Henry M. Levy.
Simultaneous multithreading: Maximizing on-chip
parallelism. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, pages
392-403, 1995.

