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CODES FROM ZERO-DIVISORS AND UNITS IN GROUP RINGS

PAUL HURLEY∗ AND TED HURLEY†

Abstract. We describe and present a new construction method for codes using encodings from group rings. They consist
primarily of two types: zero-divisor and unit-derived codes. Previous codes from group rings focused on ideals; for example
cyclic codes are ideals in the group ring over a cyclic group. The fresh focus is on the encodings themselves, which only under
very limited conditions result in ideals.

We use the result that a group ring is isomorphic to a certain well-defined ring of matrices, and thus every group ring
element has an associated matrix. This allows matrix algebra to be used as needed in the study and production of codes,
enabling the creation of standard generator and check matrices.

Group rings are a fruitful source of units and zero-divisors from which new codes result. Many code properties, such as
being LDPC or self-dual, may be expressed as properties within the group ring thus enabling the construction of codes with
these properties. The methods are general enabling the construction of codes with many types of group rings. There is no
restriction on the ring and thus codes over the integers, over matrix rings or even over group rings themselves are possible and
fruitful.

1. Introduction. We present techniques for construction of codes from encodings in group rings, re-
sulting in two new types of codes that we call zero-divisor codes and unit-derived codes. Many existing codes
use zero-divisors of special group rings. All cyclic codes, such as BCH, Golay, Hamming and Reed-Solomon
are special types of zero-divisor codes of the group ring of the cyclic group.

The use of group rings for the construction of codes has, to date, been concerned with the ideals contained
within. As cyclic codes are ideals in the group ring over the cyclic group, this has lead to considering the
natural generalisation of cyclic codes as being ideals (e.g. [8]). Indeed, a group ring code has been defined
(e.g. [6]) as an ideal in a group ring. A group ring is often called a group algebra when the ring is a field.

Codes from group ring encodings, presented here, are submodules in the group ring and only in certain
restrictive cases are they ideals in a group ring. Indeed the unit-derived codes are never ideals. The methods
for obtaining generator and check matrices apply in all cases.

We use an isomorphism between a group ring and a certain ring of matrices to enable the straightforward
production of check and generator matrices for the codes directly from zero-divisors and units. The interplay
between the group ring construction and the corresponding matrix construction is extremely fruitful, allowing
immediate calculation (algebraically) of generator and check matrices for these codes.

Looking at group ring encodings expands the space of possible codes, and, we believe, offers a simple
and intuitive approach

Properties of codes from group ring encodings, such as self-duality or having a sparse parity-check matrix
(namely LDPC) often have an easy algebraic description as properties in zero-divisor or unit-derived codes
within group rings and this description can be exploited for the construction and analysis of these examples.
We present a number of examples of these LDPC and self-dual zero-divisor and unit-derived codes.

It is also possible to obtain convolutional codes from unit-derived and zero-divisor codes from group
rings and this is the subject of a companion work. Also of note is that the underlying algebraic structure of
group rings often allows the calculation of distance directly.

The explicit examples presented are necessarily of a short length. The methods, however, are completely
general and can be used to construct codes with longer lengths. The algebra can then be used to derive
properties of these codes or to construct long length codes with some desired property.

1.1. Overview and layout. We begin, in Section 2, with a description of the basic algebra, defining a
group ring RG and zero-divisors and units. We use the result that RG is isomorphic to a certain ring of n×n
matrices over the ring R where n is the order of the group G – see [7] . These matrices are called RG-matrices
over R. This connection is used later to derive generator and check matrices. Examples of RG-matrices for
different groups G are given – these include circulant matrices, block-type circulant matrices, Toeplitz-type
matrices, and Walsh-Toeplitz matrices.

Section 3 defines a code from a group ring encoding. In Section 4, the procedure for obtaining zero-divisor
codes is presented, showing how generator and check matrices may be obtained.
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Then the concept of unit-derived codes, which are particularly elegant and simple, is described in Sec-
tion 5. Obtaining generator and check matrices from units is straightforward, there is much flexibility from
which to generate the code, and the invertibility of units offers particular promise for exploitation.

The algebraic group ring descriptions enable new codes and series of codes with particular properties or
of a particular type to be constructed. The group ring description may often be used to analyse, or deduce
properties of, the codes.

There is no restriction on the ring R in the group ring RG and what is required is either a zero-divisor
or a unit within the group ring. Thus, the construction of codes over systems other than fields is possible. In
particular, integral codes together with their generator and check matrices may be constructed using units
in group rings over the integers.

Example codes are shown in Section 6, starting with some illustrative self-dual codes. Examples of
codes when working in group rings over dihedral groups are then given in Section 6.2 (for example an
explicit construction of a (62, 30, 12) code, which is one of best known distance). Using encodings directly
and the RG-matrix structure, as shown in this work, is new. Previous examinations of codes using dihedral
groups worked exclusively using ideals.

In Section 6.3 we describe examples of codes designed to have a sparse check matrix – LDPC (Low
Density Parity Check) codes. Most techniques to date obtain LDPC codes by randomisation, but there
are recent developments using algebraic techniques (which have advantages such as immediate generator
matrices and structure to exploit). We show that some of these implicitly operate in a group ring. Then we
propose a regular LDPC code from a group ring of a direct product of groups - from either a zero-divisor or
unit-derived code.

Relationships to well-known codes is explored in Section 7. For example, we show that when we specialise
to the zero-divisor codes of group rings on cyclic groups which are ideals we get the cyclic or polynomial
codes; one is not restricted to ideals and so even in the group ring of the cyclic group, the zero-divisors codes
can define codes other than those which are termed cyclic. The (restrictive) conditions under which one of
these codes (for general group rings) is an ideal in the group ring are also derived in this section.

2. Group rings. Only basic, necessary definitions and results on group rings are provided. For further
information on group rings and related algebra, please see [12].

Let G be a group and R a ring1. The group ring RG is a ring consisting of the set of all summations

u =
∑

g∈G

αgg, where αg ∈ R. Consider also v =
∑

g∈G

βgg. Addition is defined term-by-term,

u+ v =
∑

g∈G

(αg + βg)g,

while multiplication is a convolution-like operation,

uv =
∑

g,h∈G

αgβh gh.

This can be written, since G is a group, as:

uv =
∑

g∈G

(

∑

h∈G

αhβh−1g

)

g.

For example, if G is a finite cyclic group, multiplication is the circulant convolution.
G acts as a basis for the module RG over the ring R. In effect, every element of RG is a vector

composed of elements of the ring R, with the ith component associated with the group element gi; addition
is of components and multiplication is obtained from the group multiplication together with the distributive
law.

The following definition applies in general to any ring but we shall be particularly interested in cases
where the ring is a group ring.

1The ring can be arbitrary; in all cases dealt with here, the ring R has an identity.
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Definition 2.1. For any ring R a non-zero element z ∈ R is a zero-divisor2 if and only if there exists
a non-zero r ∈ R such that zr = 0. For any ring R with identity an element u ∈ R is a unit if and only if
there exists an element v ∈ R such that uv = 1 = vu. 3 When this v exists it is often written as u−1.

Sometimes R is a field in the group ring RG, but is not restricted to such, and then RG is called a group
algebra. However, other rings such as when R = Z, the integers, cases where R has zero-divisors or where R
itself is a group ring, have also proved useful.

2.1. Group rings and matrices. Let {g1, g2, . . . , gn} be a fixed listing of the elements of G. The

RG-matrix of w =

n
∑

i=1

αgigi ∈ RG, is in Rn×n, the ring of n× n matrices over R, and defined as,

M(RG,w) =











αg
−1

1
g1

αg
−1

1
g2

. . . αg
−1

1
gn

αg
−1

2
g1

αg
−1

2
g2

. . . αg
−1

2
gn

...
...

...
...

αg
−1
n g1

αg
−1
n g2

. . . αg
−1
n gn











(2.1)

The first column is, in essence, labelled by g1, the second by g2 etc.; the first row is in essence labelled by g−1
1 ,

the second by g−1
2 etc. Each row and each column is a permutation, determined by the group multiplication,

of the initial row.
The first important result, proven in [7], is that a group ring RG is isomorphic to a ring of RG-matrices

over R, a subring of Rn×n, the ring of n× n matrices over R.
Theorem 2.2. Given a listing of the elements of a group G of order n there is a bijective ring homo-

morphism σ : w 7→ M(RG,w) between RG and the n× n RG-matrices over R.
This result means that the group ring and the ring of matrices are interchangeable. One can thus exploit

results from matrix algebra and group rings as needed.
For every u ∈ RG, its RG-matrix σ(u) is denoted by the corresponding capital letter U .
The next useful result, shown also in [7], is that in a group algebra, every element must be a unit or zero

divisor, and that there is a method to determine which.
Theorem 2.3. Let R be a field. A non-zero u ∈ RG is a zero divisor if and only if det(σ(u)) = 0, and

otherwise a unit.
Thus, when R is a field, an element u ∈ RG is a zero-divisor if and only if rankU < n and is a unit if

and only if rankU = n. Additionally, it can easily be shown that a finite ring with identity contains only
zero-divisors and units.

The isomorphism between group rings and the RG-matrices allows the generator and check matrices for
the group ring codes, to be defined in Section 3, to be immediately derived from the group ring description.

Many of the results stated here hold for infinite groups with corresponding infinite RG-matrices.

2.1.1. Examples of RG-matrices. In the cyclic group ring case the matrices are the circulant matri-
ces [3]. All cyclic codes can be generated from singular circulant matrices.

The RG-matrix types which turn up as isomorphic to certain group rings include Toeplitz-type matrices,
Walsh-Toeplitz matrices and circulant matrices, Toeplitz combined with Hankel-type matrices and block-type
circulant matrices.

In the general finite abelian group case, RG is isomorphic to certain block circulant matrices that, when
R is commutative, commute and are normal. In the case of an elementary abelian 2-group of rank m and
order 2m, where the matrix size is 2m × 2m, the RG-matrices are the Walsh-Toeblitz matrices over R. In

the case of the dihedral group the RG-matrices are of the form

(

A B
B A

)

where A is a (general) circulant

matrix and B is a reverse circulant matrix.
Further details on these examples of RG−matrices appear in [7].

2Strictly speaking we have defined a left zero-divisor but in all situations here when an element is a right zero-divisor it will
also be a left zero-divisor.

3In many situations uv = 1 automatically implies vu = 1.
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2.2. Element properties. Many concepts and properties of matrices turn out to have useful equiv-
alents in the group ring context. These are inherent to the group ring itself, existing independent of any
group listing chosen to establish the isomorphism, while maintaining consistency with their equivalent matrix
evocation.

We first define the transpose of a group ring element.

Definition 2.4. The transpose of an element u =
∑

g∈G αgg in RG is uT =
∑

g∈G αgg
−1, or equiva-

lently, uT =
∑

g∈G αg−1g.

This is consistent with the matrix definition of transpose. For a given listing G = {g1, . . . , gn}, let U be
the RG-matrix of u. The entry (i, j) of the RG-matrix of uT is α(g−1

i
gj)−1 = αg

−1

j
gi
, so UT is the RG-matrix

of uT.

The transpose uT has also been called the canonical antiautomorphism of u [15], denoted u. When
dealing with the cyclic groups, it has been referred to as a transpose [9], and it is associated with the
reciprocal polynomial.

Definition 2.5. We say that u ∈ RG is symmetric if and only if uT = u.

Clearly, the definition is consistent as u is symmetric if and only if U is a symmetric matrix.

2.3. Some Notation. We shall denote Wu = {xu : x ∈ W} and uW = {ux : x ∈ W}.

The notation x is used to indicate that x is a vector as opposed to an element of the group ring. For
x = (α1, α2, . . . , αn) ∈ Rn, the mapping ζ(x) =

∑n

i=1 αigi = x is an element in RG according to a given
listing of G. ζ−1(x) denotes the inverse map.

3. Codes from group ring encodings. Let RG be the group ring of the group G over the ring R. A
listing of the elements of G is given by G = {g1, g2, . . . , gn}. Suppose W is a submodule of RG, and u ∈ RG
is given.

Definition 3.1. Let x ∈ W . A group ring encoding is a mapping f : W → RG, such that f(x) = xu
or f(x) = ux. In the latter case, f is a left group ring encoding. In the former, it is a right group ring
encoding.

A code C derived from a group ring encoding is then the image of a group ring encoding, i.e. for a given
u ∈ RG, C = {ux : x ∈ W} or C = {xu : x ∈ W}.

Multiplication need not necessarily commute in a group ring. Allowing non-commutative groups enables
the construction of non-commutative codes.

Definition 3.2. If xu = ux for all x then the code {xu : x ∈ W} is said to be commutative; and
otherwise non-commutative.

When u is a zero-divisor, it generates a zero-divisor code and when it is a unit, it generates a unit-derived
code.

There is no restriction on the ring R. It can be a field, but the techniques we describe are more general,
and enable codes over other rings such as the integers Z, rings of matrices or others.

In practice, the submodule W has dimension r < n. It can have the basis {g1, g2, . . . , gr}. Other
submodules also turn out to be useful, e.g. as generated by {gk1

, gk2
, . . . , gkt

} with 1 ≤ t < n where
{k1, k2, . . . , kt} is a subset of {1, 2, . . . , n}.

For unit-derived codes, there is complete freedom in the choice of W (and hence r). Zero-divisor codes,
as we show in Section 4, have restrictions placed on what W can be in order for a one-to-one map from the
code back to W to exist.

When RG is finite and has an identity, only zero-divisors and units are contained in RG. This is also
true when R is a field by Theorem 2.3. We note, in passing, that in other cases it is possible to generate
codes from group ring encodings which are neither zero-divisors nor units, producing a so-called non-zero
divisor code. Investigation of the properties of such codes is under investigation.

4. Codes from zero-divisors. We now concentrate on constructing codes from zero-divisors in a given
group ring RG.

Assume G is of order n with listing {g1, g2, . . . , gn}. The code will be of length n and its dimension will
depend on the choice of the submodule W . The presentation will first deal with details from the group ring,
and then incorporate the matrix algebra relationship.
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Let u be a zero-divisor in RG, i.e. uv = 0 for some non-zero v ∈ RG. Let W be a submodule of RG
with basis of group elements S ⊆ G.

As defined in Section 3, a resultant zero-divisor code is C = {ux : x ∈ W} = uW or C = {xu : x ∈ W} =
Wu. The code is thus constructed from a zero-divisor u, a submodule W and, for RG non-commutative,
a choice over left or right encoding. We shall describe the case of right-encoding, that is C = Wu. The
left-encoding case is similar but here we need to consider vu = 0.

We say that u is a generator element of the code C = Wu relative to the submodule W . It is of
course possible that C has another generator element and indeed may also be defined in terms of a different
submodule W .

The case when Wu = RGu is the particular traditional case where the code is a left ideal – see Section 7
for a more complete discussion on this. This is the case where rankU has the same rank or dimension as
Wu.

When u is a zero-divisor then there is an element v 6= 0 with uv = 0 and thus y ∈ C satisfies yv = 0. It
may happen that such an element v which will also determine the code.

Definition 4.1. v ∈ RG is said to be a (left) check element for a zero-divisor code C when y ∈ C if and
only if vy = 0. We can then write C = {y ∈ RG : vy = 0}.

We shall show that given a zero-divisor u and the code C there is a set v1, v2, . . . , vt of elements in RG
such that y ∈ C if and only if yvi = 0 for 1 ≤ i ≤ t.

Zero-divisor codes with a single check element are particularly useful and exist in many cases.
We have defined codes in RG as generated by a zero-divisor and relative to a submodule W . We note

that in addition to using a zero-divisor as a generator, codes can also be constructed by using a zero-divisor
instead directly as a check element, regardless of whether it has a single generating element or not.

Definition 4.2. Suppose T is a submodule of RG. Define Tv = {x ∈ T |xv = 0} and say Tv is the
check zero-divisor code relative to T .

Note that Tv is a submodule of RG and in the case where T = RG we have that Tv is actually a left
ideal. It only makes sense to consider the case where v is a zero-divisor in which case Tv 6 0. In some cases
this code will have a single generator matrix but in any case it will be possible to describe a set of generator
elements,

4.1. Modules. Here we are now restricting our attention to the case when R is a field. Some of the
results hold over integral domains and also for rings in general but we do not deal with these complications
here.

(In the unit-derived codes, Section 5, we do not have the same restrictions.).

Definition 4.3. A set of group ring elements T ⊂ RG is linearly independent if, for αx ∈ R,
∑

x∈T αxx = 0 only when αx = 0 for all x ∈ T . Otherwise, T is linearly dependent. We define rank(T )
to be the maximum number of linearly independent elements of T . Thus rank(T ) = |T | if and only if T is
linearly independent.

Note that a zero-divisor code C = Wu, where W is generated by S, is the submodule of RG consisting
of all elements of the form

∑

g∈S αggu. The dimension of this submodule is thus rank(Su).
If Su is linearly dependent then there exist a subset S′u of Su which is linearly independent and

generates the same module as Su. 4 Let W ′ to be the submodue of W generated by S′ and then the code
C = Wu = W ′u, and S′u is linearly independent.

The maximum dimension a code for a given zero-divisor u is r = rank(Gu).
The zero-divisor codes are thus (n, k) codes for where k = rank(Su) and k ≤ r = rank(Gu). As pointed

out for a given u and a given W it is always possible to find a submodule W ′ of W which may be W itself
such that W ′ is generated by S′ with S′u linearly independent and Wu = W ′u. One way of finding S′ inside
S is explained below using the matrix U of u and finding an appropriate basis for the matrix consisting of
the relevant rows of U corresponding to the elements of Su.

A way of finding an (n, t) zero-divisor code is to find t linearly independent rows i1, i2, . . . , it of U .
Then S = gi1 , gir2, . . . , git is such that Su is linearly independent and generates an (n, t) code. The case
t = rank(U) is the code RGu and can be obtained from considering (any) t = rank(U) linearly independent

4It is here we require that R be a field.
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rows of U . The codes with t < rank(Su) can be considered as ‘shortened’ codes. Their generator and check
matrices are easly obtained by methods described below.

Notice that to say Su linearly independent is equivalent to saying that W contains no zero-divisors of u.
For G the cyclic group Cn = {1, g, g2, . . . , gn−1}, let r be the first value such that {u, gu, g2u, . . . , gru}

is linearly dependent. Then r is the rank(u), and any subset of S = {1, g, g2, . . . , gr−1} can be chosen to
generate W . The proof of this is straighforward and is given in Section 7.4 below. Shortened cyclic codes
are obtained by choosing a subset of this set S.

4.2. Equivalent Codes in Rn. The established relationship between the group ring and matrices
in Section 2.1 enables us to express the code in terms of matrices, and to derive generator and check
matrices for an equivalent code. More precisely, we shall define two equivalent codes in the module Rn, the
second of which has generator/check matrices of the usual form.

Let U be the RG-matrix of u, and W be a submodule with basis
S = {gi1 , gi2 , . . . , gir} such that Su is linearly independent. As previously stated, C = Wu is a code defined
on RG. A (n, r) code E can be defined from Rr to Rn as follows. Let w = (α1, α2, . . . , αr) ∈ Rr be the
vector to be encoded. Using the basis S, we write w as x ∈ Rn with αj in position ij for 1 ≤ i ≤ r and zero
everywhere else.

x can then be mapped to an element in W by x = ζ(x) =

r
∑

j=1

αjgij and a codeword xu ∈ C equated

with a codeword in E given by ζ−1(xu) = xU .
In summary, we obtain the (n, r) code E = {xU : x ∈ Rr} in Rn equivalent to C. Considering codewords

as xU ∈ E where x ∈ Rn as described proves, as we will show, convenient for analysis purposes.
For any n× n matrix A let a1, a2, . . . , an denote the rows of A in order.
Generator for matrix-generated code. We can derive a generator matrix A for a code from Rr to Rn

called the matrix-generated code, and given by D = {xA : x ∈ Rr}. It is equivalent to codes C and E .
The codewords in E consist of linear combinations of the rows ui1

, ui2
, . . . , uir

of U . Let A be the r × n
matrix consisting of the i1, . . . , ir rows of U . We will show in Lemma 4.6 that the rows of A are linearly
independent if and only if Su is.

4.2.1. Linear independence. We now tie up the relationship between linear (in)dependent rows of
the RG-matrix U and the linear (in)dependence of the set Su.

Suppose S = {gi1 , gi2 , . . . , gir} inside G = {gi, g2, . . . , gn} and that U is obtained from this listing of G.
Specifically, it is established that the rows {ui1

, ui2
, . . . , uir

} of U are linearly independent if and only if Su
are.

Theorem 4.4. Suppose U has rank t. Let S ⊂ G be a set of group elements such that |S| = t+1. Then
Su is linearly dependent.

Proof. Let the rows of U be u1, u2, . . . , un in order.
Suppose Su = {gj1u, gj2u, . . . , gjt+1

u}. Any t+1 rows of U are dependent so there exists αj1 , αj2 , . . . , αjt+1

not all zero such that
t+1
∑

k=1

αjkujk
= 01×n. Let A be the RG-matrix with first row having αjk in the jthk position

for 1 ≤ k ≤ t+ 1 and zeros elsewhere.
Then A is the RG matrix corresponding to the group ring element a = αj1gj1 +αj2gj2 + . . .+αjt+1

git+1
.

Also AU is an RG-matrix whose first row consists of zeros and hence AU = 0n×n. Thus au = 0 and therefore
{gi1u, gi2u, . . . , gir+1

u} is linearly dependent as required.
Then from the last theorem it follows that we may take S to have r elements such r ≤ rankU . For if

r > rankU then Su is generated by r elements S′u (where S′ ⊂ S), and the code is given by C = W ′u where
W ′ is the module generated by S′.

Alternatively, assuming U has rank ≥ r, one can choose or find r linearly independent rows ui1
, ui2

, . . . , uir

of U and then construct S by reference to these, let
S = {gi1 , gi2 , . . . , gir} and then Su is linearly independent.

Define Gj to be the RG-matrix corresponding to the group element gj ∈ G – this is consistent with the
notation for the RG-matrix corresponding to gj . Then Gj is the matrix whose first row has a 1 in the jth

position and zeros elsewhere. It is then clear that GjU is the RG-matrix with first row uj .
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Lemma 4.5. Suppose u1, u2, . . . , us are the first rows (or first columns) of the RG-matrices U1, U2, . . . , Us

respectively. Then α1u1 + α2u2 + . . .+ αsus = 0 if and only if α1U1 + α2U2 + . . .+ αsUs = 0.
Proof. Suppose α1u1 + α2u2 + . . . + αsus = 0. Let U = α1U1 + α2U2 + . . . + αsUs. Then U is an

RG-matrix whose first row consists of zeros and hence U = 0.
On the other hand it is clear that if α1U1 +α2U2 + . . .+αsUs = 0 then α1u1 +α2u2 + . . .+αsus = 0.
Lemma 4.6. {gi1u, gi2u, . . . , giru} is linearly independent if and only if

{ui1
, ui2

, . . . , uir
} is linearly independent.

Proof. Follows immediately from Lemma 4.5. .
Suppose then rankU = r and that {ui1

, ui2
, . . . , uir

} is linearly independent. Then by Lemma 4.6, Su
is linearly independent. It is also clear in this situation that C = RGu, the right ideal generated by u.

4.3. Check elements and matrices. Throughout this section(4.3), the code under question is (n, r)
where r = rankU . In Section 4.4, we describe how to obtain check conditions for (n, k) codes where
k < rankU .

Clearly cv = 0 for any codeword c. The most convenient situation is when the code C (and thus for
codes D, E) has a (single) check element, i.e. that y ∈ C is a codeword if and only if yv = 0. Equivalently,
V checks E provided y ∈ E if and only if yV = 0 if and only if Y V = 0, where y is the first row of Y . We
now examine these requirements for a check element.

4.3.1. Check elements. Definition 4.7. For a zero-divisor u with rankU = r, say u is a principal
zero-divisor if and only if there exists a v ∈ RG such that uv = 0 and rankV = n− r.

This is the situation for example when RG is a principal ideal domain as when G is a cyclic group – see
Section 7 for a discussion and proof of this in the cyclic group ring case.

It is also possible in other cases that for a given zero-divisor u there is a v with uv = 0 and rankU +
rankV = n; for example if u2 = 0 or uuT = 0 and rankU = n

2 , in which case rankUT = n
2 also.

Suppose that uv = 0 and rankV = n − r. Then y is a codeword if and only if yv = 0 if and only if
Y V = 0. This is not immediately obvious and depends on the fact that U and V are RG-matrices; the proof,
in stages, is shown below.

Lemma 4.8. Let y be the first row of an RG-matrix Y . Suppose also V is an RG-matrix. Then Y V = 0
if and only if yV = 0.

Proof. Suppose yV = 0. Then Y V is an RG-matrix with first row consisting of zeros. Hence Y V = 0.
On the other hand if Y V = 0 then clearly yV = 0.

Theorem 4.9. Let C = {xu : x ∈ W} where W is generated by S such that Su is linearly independent
and |S| = rankU = r. Suppose further that uv = 0 in the group ring RG so that rankV = n− r. Then y is
a codeword if and only if yv = 0.

Proof. (We need to show that yv = 0 if and only y = αu for some α ∈ W .) If y is a codeword then
y = xu for some x ∈ W and hence yv = 0.

Suppose on the other hand yv = 0. Now UV = 0 where U has rank r and V has rank n − r. The
null-space of V is the set of all (row) vectors x such that xV = 0. Since V has rank n− r, by linear algebra
the rank of the null-space of V is r. Since U has rank r the rows of U generate the null-space of V .

Since also Y V = 0 the rows of Y are in the null-space of V and hence the rows of Y are linear
combinations of the rows of U . In particular y = aU where y is the first row of Y and a is a 1 × n vector.
Let Q be the RG-matrix whose first row is a; RG matrices are uniquely defined by their first row. Then
QU is an RG-matrix whose first row is y, the first row of Y . Hence Y = QU . From this it follows that
w = qu (where q is the group ring element corresponding to the RG-matrix Q). We need to show that

qu ∈ C. Let q =
n
∑

i=1

αigi. Suppose gj occurs in this sum with non-zero coefficient and gj 6∈ S. Then

{gi1u, gi2u, . . . , giru, gju} is linearly dependent by Theorem 4.4, the first r of which is linearly independent.
Hence gju is in C as required.

Corollary 4.10. C = {xu : x ∈ W} has a single check element if and only if u is a principal
zero-divisor.

Corollary 4.11. y ∈ E if and only if yV = 0 if and only if Y V = 0 where Y is the RG- matrix with
first row y.
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4.3.2. General check conditions. Define the null-space of U to be Ker(U) = {x : Ux = 0} where x
is an n × 1 vector. Since U has rank r, the dimension of Ker(U) is n − r. Let v1, v2, . . . , , vn−r be a basis
for Ker(U); these vi are n× 1 column vectors. Let Vi be the RG-matrix with first column vi. Then clearly
UVi = 0 for 1 ≤ i ≤ n− r since UVi is the RG-matrix with first row consisting of zeros and hence must be
zero. Hence uvi = 0 where vi is the group ring element corresponding to the RG-matrix Vi.

Note that the null-space of U is easily and quickly obtained using linear operations on the rows of U .
The basis for the null-space may be read off from the row-reduced echelon form of U , which also puts the
generator in standard form. This is also very useful in producing a check matrix for the corresponding
encoding Rr → Rn – see Theorem 4.14 below.

Thus if y is a codeword then yvi = 0 for 1 ≤ i ≤ n − r. The following theorem may be proved along
similar lines to Theorem 4.9. Its proof is omitted.

Theorem 4.12. Suppose u is a zero-divisor, rankU = r and W is generated by S with r elements
such that Su is linearly independent. Let vi be defined as above. Then y ∈ C if and only if yvi = 0 for all
i = 1, . . . , n− r.

Corollary 4.13. Y is a codeword if and only if Y Vi = 0

Not all the vi are needed – just enough so that the corresponding matrices Vi contain a basis for the
null-space. In many cases a particular Vi of rank n − r can be found. The check conditions for the code E
follow:

Theorem 4.14. Let V̂ = (v1, v2, . . . , vn−r, 0, 0, . . . , 0) be the n × n matrix with first n − r columns
consisting of vi in order and then r columns with zeros. Then y ∈ E if and only if yV̂ = 0.

Proof. Clearly if y ∈ E then yV̂ = 0.

Suppose then yV̂ = 0. Define Ker(V̂ ) = {t ∈ Rn : tV̂ = 0}. Since V̂ has dimension n− r, the dimension

of Ker(V̂ ) is r. Now each row of U is in Ker(V̂ ) since UV̂ = 0. Since U also has rank r this implies the
rows of U generate Ker(V̂ ). Hence y is a linear combination of the rows of U . The rows ui1 , ui2 , . . . , uir

are linearly independent and hence are a basis for the row space of U which has dimension r. Hence
y = α1ui1 + α2ui2 + . . .+ αruir and is thus a codeword.

4.3.3. Generator from a check element. The argument above may also be used to obtain a generator
when we use a zero-divisor v ∈ RG to act as a check element and produce the code Tv = {y ∈: Tyv = 0},
regardless of whether the code has a single generating element or not.

Take the case T = RG. Suppose the resultant RG-matrix V has rank n− r. Then n− r of the rows of
V are linearly independent and the other rows of V are linearly combinations of these. Thus the code may
be considered a (n, r) code with check matrix of size (n− r) × n.

Define Ker(V ) = {x : xV = 0}. Then Ker(V ) has rank r. Let u1, u2, . . . , ur be a basis for Ker(V ). Form
the matrix Û with rows ui. Then we get the following:

Theorem 4.15. Û is a generator matrix of the code E.

Proof. The proof is similar to that of Theorem 4.14.

4.4. Check matrices when the dimension is less than the rank. We now take the case where
W is the submodule generated by S such that |S| = s < r = rankU . This generates an (n, s) code.

One way to create a check matrix for D is to apply standard row operations to obtain a basis for the
null-space of the generator A. However, it can also be obtained from the RG-matrices U and V by adding
certain r − s vectors to V as explained below.

Let Vn−r denote a submatrix of V consisting of n− r linearly independent columns.

Consider the indexing set T = {k1, k2, . . . , ks} (1 ≤ k1 < k2 < . . . < ks ≤ n) which defines S =
{gk1

, . . . , gks
}. Extend the set T to a set of linearly independent rows R = {k1, k2, . . . , ks, w1, . . . , wr−s} of

U .

Let Ur be the matrix formed from R with the rows in order. Then Ur has rank r and size r × n. There
exists an n× r matrix C such that UrC = Ir.

Delete the k1, k2, . . . , ks columns of C to get an n × (r − s) matrix, which we call Cr−s. We now add
this Cn−r matrix to Vn−r to get the matrix D. This D then has rank n− s and satisfies UrD = 0. It follows
that y ∈ D if and only if DTyT = 0.
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Thus DT is a check matrix for D, obtained by adding certain r− s columns from C, the right inverse of
Ur, to the matrix Vn−r.

4.5. Dual and self-check codes. By definition, a dual of a code C considered as vectors over Rn is
its orthogonal complement, namely C⊥ = {v ∈ Rn : 〈v, c〉 = 0, ∀c ∈ C}.

Let x, y ∈ RG. The inner (or dot) product, is given by term-by-term multiplication of the elements in
the ring R, namely 〈x, y〉 =

∑

g∈G αgβg where x =
∑

g∈G αg and y =
∑

g∈G βg.

Thus, the dual of a code from a group ring encoding is C⊥ = {y ∈ RG : 〈ux, y〉 = 0, ∀x ∈ W}. We now
show that the dual of a zero-divisor code has an easy form.

Theorem 4.16. Let u, v ∈ RG such that uv = 0. Let U and V be the RG-matrices of u and v
respectively, such that rankU = r and rankV = n − r. Let W be a submodule over a basis S ⊂ G of
dimension r such that Su is linearly independent and W⊥ denote the submodule over basis G \ S. Then the
code C = {xu : x ∈ W} has dual code C⊥ = {xvT : x ∈ W⊥} = {y ∈ RG : yuT = 0}.

Proof. Note that vT is a zero-divisor and that rankV T = n − r (because rankV = n − r), and that
W⊥ does not contain a zero-divisor of vT. Thus, there is a 1-1 map between W⊥ and {xvT : x ∈ W⊥}. It
remains to show it is the dual.

Let z 6= 0 be an element in RG. We need to prove that 〈xu, z〉 = 0, ∀x ∈ W if and only if z = yvT for
some y ∈ W⊥.

Suppose z = yvT, and let x, y ∈ RG.

Recall that x = ζ−1(x), y = ζ−1(y) are the vectors in Rn corresponding to x, y. Then, 〈xu, z〉 =

〈xu, yvT〉 = xU(V Ty)T = x(UV )yT = 0.

Conversely, suppose 〈xu, z〉 = 0, ∀x ∈ W . Without loss of generality, assume 1 ∈ W . Then 〈u, z〉 = 0
implies zuT = 0, and since uT is the check element for the code generated by vT, z = yvT for some y ∈ W⊥.

This is consistent with cyclic codes whereby the dual for a code with generator u and check v is usually
expressed as having the reciprocal (polynomial) gn−rvT (where the deg(v) = n− r) as generator [2]. Using
this as generator with W having basis {1, g, . . . , gr} yields the same code as generator vT with submodule
W⊥.

Of course, for the matrix-generated code D, one may obtain a code equivalent to its dual by interchanging
the generator and check matrices; see for example[10].

A condition for self-duality is an easy consequence.

Corollary 4.17. C⊥ = C if and only if uuT = 0 and rankU = n/2.

A self-dual zero divisor code is thus a code given by u with uuT = 0 and rankU = n/2. We say a code
given by u is self-check if u2 = 0, in which case it is equivalently self-dual, as the code and its dual are
equivalent.

4.5.1. Examples of zero-divisor self-dual codes. Group rings are a rich source of elements u such
that u2 = 0 or uuT = 0 or both. These will generate self-dual (or self-check) codes when rankU = n/2. See
Section 6.1 for specific examples.

5. Codes from units. In this section, we construct codes from units in group rings. Let u be a unit
in the RG, where G is of order n and listed G = {g1, g2, . . . , gn}. Let W be a submodule of RG generated
(as an R-module) by r group elements S = {gk1

, gk2
, . . . , gkr

} with r < n.

As defined in Section 3, the unit-derived code is C = {ux : x ∈ W} or C = {xu : x ∈ W}. The code
is thus constructed from a unit u, a submodule W and, when RG does not commute, a choice over left or
right encoding. Assume in what follows that the encoding is on the right (x 7→ xu). The left-encoding case
x 7→ ux is similar, following, with minor adjustments, the same general procedure.

Now c is a codeword (i.e. in C) if and only if cu−1 ∈ W i.e. if and only if the coefficients of G \ S in
cu−1 are zero. Notice that multiplying a codeword by the inverse of the unit recovers the original.

A unit-derived code can also be considered a mapping from Rr to Rn. First, map a vector x =

(α1, α2, . . . , αr) ∈ Rr by λW (x) =

r
∑

i=1

αigki
to an element x ∈ W . Then a codeword xu ∈ C is obtained
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which may be written xu =

n
∑

i=1

βigi. This gives an encoding x 7→ (β1, β2, . . . , βn) which is a map from

Rr → Rn.
We also associate each unit-derived code with an equivalent code which we call the matrix-generated

code D. This is a code from Rr to Rn and has an r × n generator matrix A extracted from the RG-matrix
U , and a check matrix that extracted from V . If A is such a generating matrix, then D = {xA : x ∈ Rr}.
The distinction between codes C and D is one of convenience. They are equivalent, exhibiting the same
properties. This procedure is conceptual and any practical implementation works on producing D or C
directly, depending on what is desired.

5.1. Generator and Check Matrices. Let us now examine the check and generator matrices that
result from a unit-derived code. Suppose uu−1 = 1 in the group ring and let U,U−1 respectively be the
corresponding n× n RG-matrices.

First, consider W to be the submodule generated by {g1, g2, . . . , gr} with r < n (i.e. has as basis the
first r elements in the chosen listing of G). We later deal with the case when W has a general basis of group

elements. An element in W is thus of the form x =

r
∑

i=1

αigi.

Divide U =

(

A
B

)

into block matrices where A is r×n and B is (n−r)×n. Similarly, let U−1 =
(

C D
)

where C is n× r and D is n× (n− r).
Now AD = 0 as UU−1 = I. It is easy to see that A is a generator matrix for the matrix-generated code.

We now show that DT is a check matrix.
Theorem 5.1. Let y ∈ Rn and D = {xA : x ∈ Rr}. Then y ∈ D if and only if yD = 0.
Proof. If y = xA for some x ∈ Rr, then clearly yD = 0. If, on the other hand, yD = 0,

y = yU−1U = y
(

C D
)

(

A
B

)

=
(

yC yD
) (

A B
)

=
(

yC 0
)

(

A
B

)

= yCA.

Now yC is in Rr and y = yU−1U = xA for some x ∈ Rr as required.

Thus DT is a check matrix for the matrix-generated code D: y is a codeword if and only if DTyT = 0 if

and only if yD = 0. The r × n generator matrix A and (n − r) × n check DT produced from this unit and
submodule have full allowable rank, r and n− r respectively.

Units in group rings result in non-singular matrices, enabling the construction of codes from units. Any
non-singular matrix could also produce a code by the above arguments, although of course one could not
exploit the underlying algebraic structure of a group ring.

When W is generated by a general basis S = {gk1
, gk2

, . . . , gkr
}, the generator and check matrices are

obtained by ‘extracting’ from and ‘adding’ to certain rows and columns from U and U−1. A generator matrix
results from the r×n matrix consisting of the k1, k2, . . . , kr rows of U . Additionally, let D be the (n− r)×n
matrix obtained by deleting the k1, k2, . . . , kr columns of V . Then DT is a check matrix.

5.2. Constructing unit-derived codes. The generator and check matrices for the matrix-generated
code D are immediate from the construction. However, working with the unit-derived code C itself can be
advantageous. For example, using the group ring check conditions directly may be the best method for
decoding.

In summary, unit-derived code of length n and dimension r can be constructed quite freely as follows.
Choose a group G of order n and a ring R over which the code will be defined. Typically, R is a field but
this is not a requirement; codes over the integers, rings of matrices or other rings are also useful.

Find a unit u in the group ring RG and its inverse u−1. As previously mentioned, if R is a field or RG
of finite order,

every element in RG is either a zero-divisor or a unit. When R is a field, there is a straightforward
algorithm to determine which. Generation of units is therefore not difficult.

Any basis for a submodule W consisting of r group elements will generate a code, e.g. the first r elements
{g1, g2, . . . , gr} according to a listing of G.
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It can proves advantageous to choose another, appropriate, basis, to say increase the minimum distance
of the code or optimise some other criteria. This freedom of basis nicely leads to the concept of an optimal
one for a given unit u ∈ RG and dimension r — a so-called best-basis:

argmax
S⊂G,|S|=r

min
x∈W (S)

wt(xu)

where W (S) denotes the submodule generated by S and wt(y) the number of nonzero coefficients of y.
This flexibility in choice of r and W and the full ranks obtained are major advantages of a unit-derived

code over one derived from a zero-divisor.

5.3. Derivation of Units. Group rings are a rich source of units. Units exist and are known in RG,
where R can be any ring and not just a field, and from these, codes of different types and makes can be
constructed. Once a unit is known there is still a choice on the submodule/dimension for the code and codes
of different dimensions may be obtained from a particular unit.

To fully describe a unit-derived code in terms of generator and check conditions we need a unit and its
inverse. The inverse may be known from the algebra; general formulae for certain units, and their inverses,
in group rings are known. Please consult [12] and the references therein. In the cases of group rings over
cyclic groups it is worth noting that the Euclidean Algorithm, which is extremely fast, may be used to obtain
an inverse as then RG ∼= R[x]/〈xn − 1〉. A variation of the Euclidean Algorithm may also be used to find
inverses in RG when G is a dihedral group.

Computer Algebra packages such as GAP, MAGMA which are particularly useful for handling groups,
may in addition be used to find units in group rings; for example, there exist function such as DihedralGroup()
and DirectProduct() which return dihedral groups and direct product of groups respectively.

The combination of units in a group ring is also a unit. This can be exploited to produce new units
which are not of the same form as the originals and from which new codes can be derived. Thus, for example,
bicyclic units could be combined with alternating units, Hoeschmann units etc. to give new types of units.

5.4. Dual and Orthogonal Codes. Recall from Section 4.5 that the dual of a code from a group ring
encoding is C⊥ = {y ∈ RG : 〈ux, y〉 = 0, ∀x ∈ W} and the concept of the transpose of a group ring element
(Definition 2.4). We now show that the dual of a unit-derived code can be generated from (u−1)T.

Theorem 5.2. Let W be a submodule with basis of group elements S ⊂ G and W⊥ be the submodule
with basis G \ S. Let u ∈ RG be a unit such that uu−1 = 1. Then the dual code of C = {xu : x ∈ W} is
C⊥ = {x(u−1)T : x ∈ W⊥}.

Proof. Let z 6= 0 be an element in RG. We need to show that 〈xu, z〉 = 0, ∀x ∈ W if and only if
zuT ∈ W⊥.

Note that 〈xu, y(u−1)T〉 = 〈x, y〉. Thus, if zuT ∈ W⊥, then, for all x ∈ W , 〈xu, z〉 = 〈x, zuT〉 = 0.
Conversely, if zuT ∈ W , pick a g ∈ S that has a non-zero coefficient γ in zuT. Then, 〈gu, z〉 = 〈g, zuT〉 =

γ 6= 0.
Strict equivalence of a unit-derived code and its dual, whereby C = C⊥, requires that for all x ∈ W ,

xuuT ∈ W⊥, which imposes an impractical restriction. However, it is natural to say that a unit-derived
code is self-dual if C and C⊥ are equivalent codes, or equivalently, that the resultant matrix-generated codes
D and D⊥ are equal.

Definition 5.3. An unit u ∈ RG is orthogonal if and only if its inverse is uT (i.e. uuT = 1).
It is easy to see that the RG-matrix from an orthogonal unit u is an orthogonal matrix. From the

above, it can also be seen that an orthogonal unit combined with a submodule of dimension n/2 generates
a self-dual unit-derived code.

6. Examples codes. In this section, we explore some illustrative constructions of codes from group
ring encodings. The examples below include codes in general abelian groups and also in non-abelian groups.

6.1. Self-dual codes. Some self-dual codes in RG can be formed as follows. Suppose |G| = n = 2m
and G = {g1, g2, . . . , gn}. Let u ∈ RG satisfy:

1. u2 = 0.
2. u = uT so that uuT = 0.
3. u and its corresponding matrix U have rankm.
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Then u generates a self-dual code. Here’s a specific example. Let G = C2 × C4 where C4 is generated
by a and C2 is generated by h. Form the group ring Z2G.

Consider u = 1+h(a+ a2+ a3). Then u2 = 1+h2(a2+ a4+ a6) = 1+ a2+1+ a2 = 0. Thus ranku ≤ 4.

The RG-matrix of u is U =

(

I B
B I

)

from which it follows that ranku = 4. By algebraic techniques on

the group ring it can be shown that the distance is 4. We thus get a (8, 4, 4) self-dual code – this must then
be the extended Hamming self-dual code.

Extending this by considering G = Cn
4 × C2 or other direct products is the subject of further work and

produces an infinite series of self-dual codes with increasing distance.

6.1.1. Example of unit-derived codes. If u2 = 0 then (1 + u)2 = 1 over Z2. Consider ui =
gi+gn−i+gn+i+g2n−i in Z2C2n, with C2n generated by g. Then u2

i = uiui
T = 0 and thus any combination,

u say, of the ui satisfies u
2 = uuT = 0. Consequently a = 1 + u satisfies a2 = aaT = 1, and gives a series of

orthogonal units. There is no problem with the rank as we are dealing with unit-derived codes.
A specific example of this is as follows: In Z2C14, u = 1 + g2 + g5 + g9 + g12 satisfies u2 = uuT = 1.

The code has distance d = 4, and thus we get a (14, 7, 4) code, with the best possible distance for a (14, 7)
binary code.

6.2. Dihedral codes. The first natural series of non-abelian groups are the dihedral groups.
Codes from group ring encodings from the dihedral group appear to offer great potential. There has

been prior investigation into codes from ideals in the dihedral group algebra as early as 1969[8], and a more
recent result [1], which showed that there exist a random ideal in Z2D2n for infinitely many n, such that the
resultant code of rate 1/2 is “good”.

The focus on using encodings directly and the use of matrix algebra RG-matrix structure is, to the best
of our knowledge, a new approach.

The dihedral group D2n of order 2n is given D2n = 〈a, b : a2, bn, ab = b−1a〉. There are a number of
possible listings of the elements of D2n, of which D2n = {1, b, b2, . . . , bn−1, a, ab, ab2, . . . , abn−1} proves most
convenient.

An element u ∈ RD2n can be written

u =

n−1
∑

i=0

αib
i +

n−1
∑

i=0

βiab
i.

The associated RD2n-matrix W is then,

U =





























α0 α1 α2 . . . αn−1

αn−1 α0 α1 . . . αn−2

...
...

...
...

...
α1 α2 α3 . . . α0

β0 β1 β2 . . . βn−1

β1 β2 β3 . . . β0

...
...

...
...

...
βn−1 β0 β1 . . . βn−2

β0 β1 β2 . . . βn−1

β1 β2 β3 . . . β0

...
...

...
...

...
βn−1 β0 β1 . . . βn−2

α0 α1 α2 . . . αn−1

αn−1 α0 α1 . . . αn−2

...
...

...
...

...
α1 α2 α3 . . . α0





























.

This can be written U =

(

A B
B A

)

, where A is circulant. Now, B is a reverse circulant matrix as each row is

a circulant shift to the left of the one previous. Interestingly, in a non-group ring context, reverse circulants
have appeared before in codes [5].

A useful method for classification of the units and zero-divisors in such a group ring results. Suppose R
is an integral domain not of characteristic 2. Then, in general, RD2n is isomorphic to the ring of matrices of
this form. This ring of matrices is, in turn, isomorphic to the ring of matrices of the form

(

A+B 0
0 A−B

)

with
A,B as before. These results are shown in [7].

A matrix of this form is invertible, in an integral domain of characteristic not 2, if and only if A + B
and A − B are invertible. Thus, u ∈ RD2n is a unit if and only if A + B and A − B are. If R is a field,
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then u is zero-divisor if it is not a unit (Theorem 2.3). Otherwise, it may similarly be determined if u is a
zero-divisor.

Any multiplication xy in RD2n or, equivalently, using the corresponding RG-matrices can be done with
low-complexity using existing techniques on circulant matrices (such as Fast Fourier Transform methods).
A is already circulant, and the operation xB can be done by calculating xB′ where B′ is the “flip” of B.

6.2.1. Dihedral zero-divisor codes. For a zero-divisor u ∈ RD2n where R is a field, finding a
basis S for the submodule W can be done by a simple algorithm. Pick, in order, elements from the set
{1, b, b2, . . . , bn−1} until the first k such that {u, bu, b2u, . . . , bku} is linearly dependent, or else they are
all linearly independent. Then add elements, in order, from {a, ab, ab2, . . . , abn−1} until the combined set
{u, bu, . . . , bk−1u, au, abu, . . . , abl} is linearly dependent. This is shown, by Theorem 7.10, to give maximum
rank. An equivalent process can be performed using the RG-matrix U directly.

Consider the following code of rate 1/2, constructed from a zero-divisor in Z2D2n for n even. Let
u = 1 + a + ab + · · ·+ abn−2. Then v = b + b2 + · · · + bn−1 + abn−1 satisfies uv = 0. The RG-matrix of u

has the form U =

(

In B
B In

)

where B =

( 1 1 ... 1 0
1 1 ... 0 1
...
...
...
...
...

0 1 ... 1 1

)

is a reverse circulant matrix, consisting of all ones in

first row except for a zero in the last entry, with subsequent rows determined by the first. It is easy to see
that rankU = n.

Now, V =
(

E F
)

. Here, rankV = n. As rankU +rankV = 2n, v is a check element for the code when
the submodule has dimension n, and the code generated is an ideal in Z2D2n.

This code has length 2n and dimension n, and thus rate 1/2. The encoding Z
n
2 → Z

2n
2 has a generator

and a check matrix
(

In B
)

and ET respectively. A generator matrix of the form
(

In B
)

, where B is a
reverse circulant matrix, is known as reverse circulant generator matrix [5]. It is thus clear that codes with
these generator matrices always arise from elements in RD2n of the form 1+ au, where u can be considered
an element from RCn.

Now consider the following example of codes over D2n built up from elements in Cn. Let u ∈ RCn be a
zero-divisor such that uv = 0 where Cn has generating element b. From it we can construct a zero-divisor of
the form u+ axu ∈ D2n for any x ∈ RCn with (u+ axu)(v+ ayvT) = 0 for any y ∈ RCn. For simplicity, we
restrict ourselves to the case x = y = 1. Additionally, any element u ∈ Z2Cn (including units) will produce
a zero-divisor in Z2D2n of the form u+ au.

This simple construction can produce surprisingly decent codes. Consider u = 1 + b2 + b5 ∈ Z2C7,
which produces the Hamming (7,4,3) code. The zero-divisor u + au has a corresponding RG-matrix with
rank 7 and produces a (14, 7, 4) code which is the best possible for this length and dimension. Similarly
u = 1+ b2+ b3+ b9+ b10+ b11 produces a (24, 11, 8) code – also the best distance possible for (24, 11) binary
code. For u ∈ Z2C31 given by 1+g+g6+g9+g10+g14+g15+g16+g17+g19+g20+g21+g22+g23+g25+g27

yields a (62, 30, 12) code over Z2D62 which has the same distance as the best-known (62, 30) code (it could
be possible codes with better distance may exist).

6.3. LDPC codes. In general, a code is an LDPC code if its check matrix is sparse, with few non-zero
entries. Thus, a code from a group ring encoding will be LDPC if the check element is short, namely contains
few terms. LDPC unit-derived codes are obtained by finding a unit element u ∈ RG so that either u or
u−1 has only a small number of non-zero coefficients relative to the size of the group. It is then possible to
describe whole series of such codes from group rings.

Although most LDPC codes have been produced by randomised techniques, there has been recent
activity in the area of algebraic constructions [13, 11, 14]. The group ring encoding framework is a useful
tool in this direction, as it seems (as we shall show) that some of these constructions are implicitly working
in a group ring. Algebraic constructions have some advantages, including potentially the ability to have
immediate generator matrices (it often proves difficult to find one from a randomly produced check matrix)
and ascertain performance without extensive testing. One could also envisage a hybrid whereby a random
construction is performed within the parameters of an algebraic construction.

6.3.1. Unit-derived Example. LDPC unit-derived codes with no short cycles can be achieved. These
are neither cyclic nor an ideal. Consider for example the unit-derived code with check element v = 1+gn−1+
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gn−3 + gn−8 + gn−12 in Z2C1000. We omit the generator element u as it has 481 non-zero elements (it is
quickly calculated using the Extended Euclidean Algorithm).

Let W be the module generated by {1, g2, g4, . . . , } in Z2C1000. Then the generator matrix for the code
is the matrix obtained by taking its first, third, etc. rows from the RG-matrix of u and the check matrix,
which will be sparse, is obtained by deleting the first, third etc. columns of the RG-matrix of the check
element v and then transposing.

6.3.2. Zero-divisor Examples. The regular (j, k) LDPC codes from [14], called quasi-cyclic (QC)
LDPC codes, are algebraically constructed. Interestingly, the code can be obtained by shortening a code
from an encoding in the group ring Z2G where G = Cm × Ck × Cj i.e. the resultant parity-check matrix
for code of block length mk can be obtained from say v ∈ RG. For simplicity, take the case j = 2, k = 3,
(a generalisation is straightforward). Let C3 and C2 have generators a and b respectively. Noting that
Z2G ∼= (Z2Cm)(C3 × C2) one can write the RG-matrix in this group ring:

V =

















I1 Ia Ia2 Ib Iab Ia2b

Ia2 I1 Ia Ia2 Ib Iab
Ia Ia2 I1 Iab Ia2b Ib
Ib Iab Ia2b I1 Ia Ia2

Ia2b Ib Iab Ia2 I1 Ia
Iab Ia2b Ib Ia Ia2 I1

















where each entry is a m ×m circulant permutation matrix determined in the same fashion as [14]. Taking
the first 3 elements of every 3rd row gives the parity-check matrix used in [14]. In general, the parity-check
matrix will be the same except for row ordering.

As the authors state, the resultant parity-check matrix may not have all linearly independent rows,
resulting in a code which may exceed the target rate 1 − j/k (although only slightly as they discover).
Applying knowledge of the group ring may help in achieving the target rate.

The LDPC construction in [11] can also be seen as construction from a group ring, in this case Z2(CN ×
CS), resulting in a parity-check matrix from the 1st mN rows of the RG-matrix, and each block N × N
matrix is a circulant permutation matrix.

Inspired by the above constructions, we propose a regular (mk, j, k) LDPC code with target rate 1−j/k,
from a group ring R(G × H), where G = {g1, g2, . . . , gm} and H = {h1, h2, . . . , hk} are groups of order m
and k respectively (m > k > j).

This can be from either a zero-divisor or unit code. The RG-matrix from R(G×H) group ring is a k×k
block matrix where each block is an m×m RG-matrix in RG.

Recall that G ×H = {(g, h) : g ∈ G, h ∈ H}. Over Z2, construction amounts to deciding which group
elements to choose from all possible ones. The general idea is to construct an element in the group ring of
weight k by picking, for each h ∈ H , exactly one element in f(h) ∈ G, yielding element v =

∑

h∈H(f(h), h)
(f : H → G is not necessarily 1−1 so it is possible that f(hi) = f(hj) for i 6= j). The subsequent RG-matrix
is,

V =









Ih1
Ih2

. . . . . . Ihk

Ih−1

2
h1

Ih1
. . . . . . . . Ih−1

2
hk

. . . . . . . . . . . . . . . . . . . . . . . . .
I
h
−1

k

I
h
−1

k
h2

. . . . . . . . Ih1









.

Each block matrix Ihl
has entries αst = 1 if g−1

s gt = f(hl) and zero otherwise. V thus has exactly k ones in
each row and column.

The submodule W for this code is chosen to have dimension mj; j rows of block matrices are picked
from V , resulting in a parity check matrix C. Since each Ihl

has exactly one 1 in each column, C will have
k ones in each column and j ones in each row, and is thus a check for a regular (j, k) LDPC code.

For a given k and m there are many possible j. An exact rate 1− j/k can be achieved when v is a unit.
When v is a zero-divisor, then it can be attained whenever a judicious choice of basis S ⊂ G×H is possible
such that Sv is linearly independent (see Section 4.1).
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Initial results are promising, including, over Z2(Ck ×Cm) for j = 3 and k = 4, (31, 26, 3) and (21, 5, 10)
binary codes which have the best possible distance possible in their class.

7. Some Relationships with known codes.

7.1. Cyclic codes. We show here that cyclic codes are exactly zero-divisor codes in group rings on
cyclic groups for special cases of the module W . Also noteworthy is that Reed-Muller codes are extended
cyclic codes and have been shown to be associated with the group ring of the elementary abelian 2-group [4].

For a given polynomial h(g) over a ring R, let r(g), be the polynomial of minimal degree such that
h(g)r(g) ≡ 0 mod (gn − 1) (whenever it exists). Then, a cyclic code over R is generated by h(g) with
corresponding check polynomial r(g).

The group ring RCn of the cyclic group Cn over a ring R is isomorphic to R[g]/〈gn − 1〉. This is a
well-known result (e.g. [2]). Cyclic codes of degree n are given by zero-divisors in RCn and the check
matrices the counterpart of the zero-divisor.

Theorem 7.1. Let h(g) = α01 + α1g + . . .+ αrg
r.

h(g) is the generator polynomial of a cyclic code of length n if and only if the RG-matrix
M(RCn, h(g)) = σ(h(g)) is a zero divisor in Rn×n.

The check matrix of the code is given by the polynomial or group ring element r(g) such that h(g)r(g) ≡ 0
mod (gn − 1).

Proof. If h(g) is a zero-divisor in R(G) then h(g)r(g) = l(g)(gn − 1) as polynomials.

The code generated by h(g) is the same as the one generated by
d(g) = gcd(h(g), gn − 1) and then d(g)p(g) = gn − 1.

M(RG, d(g)) gives the generator matrix of the code and M(RG, p(g)) the check matrix.

Cyclic codes in standard notation are presented using non-square matrices. However, the matrices can
be made square by considering them as group ring elements.

In cyclic codes, the matrix representation of u is used and the mapping is given as x 7→ xu where x ∈ Rr

and u ∈ Rr×n. Consider x as an element in Rn (by adding 0’s) and the element u as an element in Rn×n

which is the group ring completion of the matrix u. Then the mapping is x 7→ xu in matrix form and is
equivalent to the previous mapping.

See also Section 7.3 on ideals in the cyclic group ring.

7.2. Complexity relationship to standard mappings. Codes from group ring encodings are not
complex to implement. Since the first row of an RG-matrix specifies the entire matrix, any operations on
them can be quickly performed.

Normally, codes are considered maps β : Rr → Rn with r < n. The codes from group ring encodings
are x 7→ xu and these have equivalent encodings in matrix form Rn×n → Rn×n given by α : X 7→ XU . Now
X is an RG-matrix with 0 in n− r entries of its first row and X and XU are determined by their first rows.
Thus the mappings β and α require the same number of calculations.

7.3. Ideals. Here we discuss conditions under which codes as defined in Section 3 are ideals. It tran-
spires that unit-derived codes as defined in Section 5 are never ideals and that zero-divisor codes as defined
in Section 4 are ideals only in very special cases.

Definition 7.2. I is said to be an ideal in the ring H if I is a subring such that (i) hi ∈ I, ∀h ∈ H, ∀i ∈ I
and (ii) ih ∈ I, ∀h ∈ H, i ∈ I. Such an ideal is often referred to as a two-sided ideal. I is said to be a left
ideal in H if I is a subring such that hi ∈ I, ∀i ∈ I, ∀h ∈ H. I is said to be a right ideal in H if I is a
subring of H such that ih ∈ I, ∀i ∈ I, ∀h ∈ H.

In the case of a commutative ring there is no distinction between left, right and two-sided ideals.

The cyclic codes are ideals in the group ring on the cyclic group but for example the quasi-cyclic and
shortened cyclic codes are not ideals. Our intention here is to clarify the situation with respect to codes in
group rings as defined in Section 3.

Recall that such a code is either Wu or uW where W is a submodule of RG and u ∈ RG. We consider
the right encoding Wu; the other one is similar. Assume that G = {g1, g2, . . . , gn} and here consider cases
where the ring R is a field.
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Assume also that W is generated by S = {gi1 , gi2 , . . . , gir}. The code is then C = {xu : x ∈ W}
and is generated by Su = {gi1u, gi2u, . . . , giru}. We may assume as explained in Section 4 that Su =
{gi1u, gi2u, . . . , giru} is linearly independent.

The rows of an n× n matrix U are designated in order by u1, u2, . . . , un.
Define Gj to be the RG-matrix corresponding to the group element gj ∈ G. Thus Gj is the matrix

whose first row has a 1 in the jth position and zeros elsewhere and this first row determines the RG-matrix
Gj . It then follows GjU is the RG-matrix with first row uj .

Lemma 7.3. Suppose gi1u, gi2u, . . . , giru is linearly independent. Then rankU ≥ r.
Proof. Since {gi1u, gi2u, . . . , giru} is linearly independent so is

{Gi1U,Gi2U, . . . , GirU}. Thus ui1
, ui2

, . . . , uir
is linearly independent and hence U contains r linearly inde-

pendent rows.
Theorem 7.4. Let C be the code Wu with W generated by S = {gi1 , gi2 , . . . , gir} such that Su =

{gi1u, gi2u, . . . , giru} is linearly independent. Then C is a left ideal if and only if rankU = r.
Proof. Suppose rankU = r. We wish to show that Wu is an ideal in RG. It will be sufficient to show

that gu is in C for any g ∈ G.
Since gi1u, gi2u, . . . , giru is linearly independent then by Lemma 4.6 of Section 4 Gi1U,Gi2U, . . . , GirU

is linearly independent and so the rows ui1
, ui2

, . . . , uir
of U are linearly independent. Since U has rank r

these rows thus form a basis for the row space of U .
Suppose then g ∈ G. If g ∈ S then clearly gu ∈ C.
Suppose g 6∈ S. Then g = gj where j is not any of i1, i2, . . . , ir. Now GjU is the RG-matrix whose first

row is uj , the jth row of U .

Then uj =

r
∑

k=1

αkuik for some αk ∈ R since the rows in the sum are a basis for the row space of U . Then

by Lemma 4.6 of Section 4 it follows that GjU =

r
∑

k=1

αkGikU . Hence gju =

r
∑

k=1

αkgiku and thus gju ∈ C as

required.
Suppose on the other hand C is a left ideal. Then giu ∈ C for the ith element gi ∈ G. Then as before uj

is a linear combination of ui1
, ui2

, . . . , uir
. Hence rankU ≤ r. Since ui1

, ui2
, . . . , uir

is linearly independent
it follows that rankU = r.

Note that the proof also shows that when C is a left ideal, then C = Wu = RGu.
If u is a unit then rankU = n. Hence C is not an ideal in a unit-derived code - the module W is never

equal to all of RG in our definition of unit-derived code.
Let I be a left ideal in a ring R. Similar remarks apply to right and two-sided ideals. If I contains a

unit then clearly I contains the identity and hence I = R. Now I is said to be a proper ideal if I 6= 0 and
I 6= R. Here again we can see that a unit-derived code is never an ideal as this has the form Wu where u is
a unit and thus Wu has a unit.

Suppose I is a proper left ideal of a group ring RG where R is a field. Then I is a subspace of RG and
so is generated as an R-module by u1, u2, . . . , us with ui ∈ RG. Since I is a proper ideal none of the ui can
be units and so by Theorem 2.3 each ui is a zero-divisor. Also no linear combination of the ui can be a unit
as I does not contain any unit. Thus:

Theorem 7.5. I is a proper ideal in a group ring RG, with R a field, if and only if I is generated as a
module by u1, u2, . . . , us where each ui is a zero-divisor and no linear combination of the ui is a unit.

A left ideal I is principal in RG if and only if it has the form RGu for an element u ∈ RG. Thus proper
principal ideals in the group ring over a field are of the form RGu where u is a zero-divisor. These are the
particular zero-divisor codes where the rank of U equals the number of elements in the generating set S of
W where Su is linearly independent.

7.3.1. Ideals in cyclic group rings. Because of its particular nature as a polynomial type ring, it is
easy to show that all ideals in the cyclic group ring are principal.

Lemma 7.6. Every ideal in the group ring of the cyclic group is principal.
Proof. Let I be an ideal in the group ring of the cyclic group RG where G is generated by g. Choose f(g)

in I of minimal degree in g. Let x(g) ∈ I. Then by Division Algorithm to polynomials, x(g) = q(g)f(g)+r(g)
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where r(g) = 0 or r(g) has degree less than f(g). Now r(g) ∈ I since x(g) ∈ I and f(g) ∈ I. Since f(g) is
of minimal degree in I this implies r(g) = 0 and x(g) = q(g)f(g). Hence I is a principal ideal generated by
f(g).

Suppose now we have a zero-divisor u in the cyclic group ring RG and that rankU = r. In order for u
to be a principal zero-divisor we require an element v ∈ RG such that uv = 0 and rankV = n− r. Such a v
always exists in the cyclic group ring. Choose v to be an element of least degree such that uv = 0. Here in
fact what we are doing is choosing a generator for the annihilator of u which is a principal ideal.

Theorem 7.7. Suppose u is a zero-divisor in the cyclic group ring RG with G of order n. Let v be an
element of least degree such that uv = 0. If rankU = r then rankV = n− r.

Proof. If uv1 = 0 then by Division Algorithm, v1 = qv + r where r = 0 or deg(r) < deg(v). Then
multiplying through by u, and noting that elements commute, we see that ur = 0. Since v is of least degree
such that uv = 0 this implies that r = 0 and hence v1 = qv.

We now show that the null-space of U is generated by the rows of V . The null-space of U is the set of
all vectors x such that Ux = 0.

Suppose now x is a vector in the null-space of U , so that Ux = 0. Let T be the RG-matrix with first
row x. Now x determines T . Then UT is an RG-matrix with first row 0 and hence UT = 0. Therefore
ut = 0 in the group ring. Hence t = qv for some q ∈ RG. Therefore T = QV . Hence the rows of T are linear
combinations of the rows of V . In particular x is a linear combination of the rows of V . Thus the rows of V
generate the null-space of U . Since by linear algebra the null-space of U has dimension n− r it follows that
V has rank n− r.

Suppose u is a zero-divisor in the group ring RG, with G generated by g, and that as polynomials
uv = gn − 1,5 then v as an element of RG has the property that it is of minimal degree such that uv = 0.
It follows that rankU + rankV = n.

Corollary 7.8. If uv = gn − 1 then rankU + rankV = n.

7.4. Rank from cyclic and dihedral zero-divisors. Suppose u is a zero-divisor in the group ring
RG. In the cyclic group ring case when ranku = r and U is obtained from the natural listing of G, the first
r elements u, gu, . . . , gr−1u in the group ring and the the first r rows of U give the (full rank) zero-divisor
codes. This is expressed in the following theorem.

Theorem 7.9. Let RG be a group ring where R is a field and G the cyclic group {1, g, g2, . . . , gn}.
Suppose u ∈ RG is a zero divisor. Let r be the first value such that {u, gu, g2u, . . . , gru} is linearly dependent.
Then rank(u) = r.

Proof. Linear dependence means that, for some αi ∈ R, i = 1, . . . , r − 1 that,

gru = α0u+ α1gu+ α2g
2u+ · · ·+ αr−1g

r−1u.

By multiplication by gl,

gr+lu = α0g
lu+ α1g

1+lu+ α2g
2+lu+ · · ·+ αr−1g

r−1+lu.

Therefore for every x =

n−1
∑

i=0

βig
i ∈ RG, xu can be written

r−1
∑

i=0

βig
iu, i.e. in terms of {u, gu, g2u, . . . , gr−1u}.

A similar result holds for the dihedral group.
Theorem 7.10. Consider the group ring RD2n where R is a field and D2n the dihedral group. Let

u ∈ RG and S′ be the first elements {1, b, b2, . . . , bk−1} ⊆ {1, b, . . . , bn−1} such that (S′ ∪ bk)u is linearly
dependent. Subsequently, let S = S′∪{a, ab, . . . , abl} be the first set such that Su is linearly dependent. Then
rank(u) = |S|.

Proof. By the linear dependence,

bku =
(

α0 + α1b+ · · ·+ αk−1b
k−1
)

u.

5Cyclic codes are defined using such elements.
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By multiplication on the left on both sides, it can be seen that for every k ≤ m < n, bmu can be written in
terms of the previous k powers of b (times u) and thus, ultimately, in terms of S′. Also,

ablu =
(

α0 + α1b+ · · ·+ αk−1b
k−1 + β0a+ β1ab · · ·+ βl−1ab

l−1
)

u.

Multiplication on the left by bl−m yields that

abmu = (α0b
l−m + α1b

l−m+1 + · · ·+ αk−1b
l−m+k−1

+ β0ab
m−l + β1ab

m−l+1 + · · ·+ βl−1ab
m−1)u.

Thus, for each l ≤ m < n, abmu can be written in terms of the form biu (which we showed above can be
written in terms of the first k powers of b), and in terms of the previous l elements of the form abi.

8. Conclusions. We have described a method for producing codes from units and zero-divisors in
group rings, including, vitally, a method to obtain generator and check matrices for them.

It is our belief that this is an intuitive method which has already shown promise even in the example
codes presented. The framework provides a basis to anyone wishing to further develop or investigate these
codes. The rich synergy of matrix algebra and group ring structure shows itself to be a powerful new method.

We note that it is possible to obtain convolutional codes from unit-derived and zero-divisor codes from
group rings. When a ring R has zero-divisors then it is possible to obtain units in a group ring RG when the
group G is infinite, such as G = C∞ (the infinite cyclic group), and from these units to derive convolutional-
type codes. Results of this will appear as future work.

The underlying algebraic structure of group rings often allows the calculation of distance directly. The
description as an encoding enables one at times to work within the group ring to, for example, calculate the
minimum distance of a code or to make a code with a certain minimum distance.

Also of note is that codes over the integers can be constructed using known units in ZG. These include
alternating units, Bass units, Hoeschmann Units, bicyclic units and others, the details of which may be
found in [12]. Other future work we envisage includes the generalisation to consider combinations of group
ring encodings acting in unison to produce a code.
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