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Abstract

Cooperative regenerating codes are designed for repairiritjple node failures in distributed storage systems.
In contrast to the original repair model of regeneratingexdvhich are for the repair of single node failure, data
exchange among the new nodes is enabled. It is known thdtefureduction in repair bandwidth is possible
with cooperative repair. Currently in the literature, wevéian explicit construction of exact-repair cooperative
code achieving all parameters corresponding to the minifhandwidth point. We give a slightly generalized and
more flexible version of this cooperative regenerating ciodthis paper. For minimum-storage regeneration with
cooperation, we present an explicit code construction lie@n jointly repair any number of systematic storage
nodes.

. INTRODUCTION

In a distributed storage system, a data file is distributedriamber of storage devices that are connected
through a network. The data is encoded in such a way thatpiesaf the storage devices are disconnected
from the network temporarily, or break down permanentlg tlontent of the file can be recovered from
the remaining available nodes. A simple encoding stratedy replicate the data three times and store the
replicas in three different places. This encoding methadtoterate a single failure out of three storage
nodes, and is employed in large-scale cloud storage systeaisas Google File System [1]. The major
drawback of the triplication method is that the storage iefficy is fairly low. The amount of back-up data
is two times that of the useful data. As the amount of dataestan cloud storage systems is increasing
in an accelerating speed, switching to encoding methods lgher storage efficiency is inevitable.

The Reed-Solomon (RS) code [2] is a natural choice for thattoction of high-rate encoding schemes.
The RS code is not only optimal, in the sense of being maxulisiknce separable, it also has efficient
decoding algorithms (see e.qg. [3]). Indeed, Facebook’sagto infrastructure is currently employing a
high-rate RS code with data rate 10/14. This means that fartypcheck symbols are appended to every
ten information symbols. Nevertheless, not all data in Bao&’s clusters is currently protected by RS
code. This is because the traditional decoding algoritrondRS code do not take the network resources
into account. Suppose that the 14 encoded symbols are stockfflerent disks. If one of the disks fails,
then a traditional decoding algorithm needs to downloadyh@b®Is from other storage nodes in order to
repair the failed one. The amount of data traffic for repginsingle storage node is 10 times the amount
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of data to be repaired. In a large-scale distributed stosggeem, disk failures occur almost everyday [4].
The overhead traffic for repair would be prohibitive if alltdavere encoded by RS code.

In view of the repair problem, the amount of data traffic foe thurpose of repair is an important
evaluation metric for distributed storage systems. It ined as theepair bandwidthby Dimakiset al. in
[5]. An erasure-correcting code with the aim of minimizirge trepair bandwidth is calledragenerating
code Upon the failure of a storage node, we need to replace it bywanode, and the content of the new
node is recovered by contactimgother surviving nodes. The parameters sometime called theepair
degree and the contacted nodes are called hiegper nodeor simply thehelpers The repair bandwidth
is measured by counting the number of data symbols traremitom the helpers to the new node. If
the data file can be reconstructed from @ngut of n storage nodes, i.e., if any— £ disk failures can
be recovered, then we say that the k)-reconstruction propertys satisfied. The design objective is to
construct regenerating codes foistorage nodes, satisfying tlie, k)-reconstruction, and minimizing the
repair bandwidth, for a given set of code parametgrg andd.

We note that the requirement 6f,, k)-reconstruction property is more relaxed than the condlit
being maximal-distance separable (MDS). A regeneratinlg ¢®an MDS erasure code only if the number
of symbols contained in ank nodes is exactly equal to the number of symbols in the datalfile
general regenerating code, the total number of coded sybanyk nodes may be larger than the total
number of symbols in a data file.

There are two main categories of regenerating codes. Theofiesis calledexact-repairregenerating
codes, and the second one is calfadctional-repairregenerating codes. In the first category of exact-
repair regenerating codes, the content of the new node isdhee as in the old one. In functional-
repair regenerating codes, the content of the new node marygehafter a node repair, but tie, k)-
reconstruction property is preserved. For functionabknrepegenerating code, a fundamental tradeoff
between repair bandwidth and storage per node is obtaingi].ithis is done by drawing a connection
to the theory of network coding. Following the notations [5j, [we denote the storage per node dy
and the amount of data downloaded from a surviving node? byhe repair bandwidth is thus equal to
~v = dp. A pair (o, dp) is said to befeasibleif there is a regenerating code with storageand repair
bandwidthdg. It is proved in [5] that, for regenerating codes functityakpairing one failed node at a
time, («, dp) is feasible if and only if the file size, denoted 8 satisfies the following inequality,

k—1
B <Y minf{a, (d—1i)B}. (1)
=0

If we fix the file size B, the inequality in[(lL) induces a tradeoff between storagkrapair bandwidth.

There are two extreme points on the tradeoff curve. Amonthalffeasible pairgéa, d) with minimum
storagen, the one with the smallest repair bandwidth is calledrtiirimum-storage regeneratin®ISR)
point,

B dB ) )

(aMSRa ’VMSR) = (E? m



On the other hand, among all the feasible pairsd/5) with minimum bandwidthds, the one with the
smallest storage is called tmeinimum-bandwidth regeneratind/BR) point,
2dB 2dB
(awer, Yver) = <k:(2d Y1k kCd+1-— k:))' ®)

Existence of linear functional-repair regenerating codelieving all points on the tradeoff curve is
shown in [6]. Explicit construction of exact-repair regeaténg codes, called the product-matrix framework,
achieving all code parameters corresponding to the MBRtpsigiven in [7]. Explicit construction of
regenerating codes for the MSR point is more difficult. Attinge of writing, we do not have constructions
of exact-repair regenerating codes covering all paramgtertaining to the MSR point. Due to space
limitation, we are not able to comprehensively review theréiture on exact-repair MSR codes, but we
mention below some constructions which are of direct relegao the results in this paper.

The MISER code (which stands for MDS, Interference-aligniystematic Exact-Regenerating code)
is an explicit exact-repair regenerating code at the MSRtpfd] [9]. The code parameters ark =
n— 12> 2k — 1. It is shown in [8] and[[9] that every systematic node, whicmtains uncoded data, can
be repaired with storage and repair bandwidth attainingMi&® point in [2). This result is extended in
[10], which shows that, with the same code structure, evaritypcheck node can also be repaired with
repair bandwidth meeting the MSR point. The product-mafr@mework in [7] also gives a family of
MSR codes with parameters> 2k — 2. All of the MSR codes mentioned above have code rate no more
than1/2. For high-rate exact-repair MSR code, we refer the readetSree recent papers [11], [12] and
[13], and the references contained therein.

We remark that the interior points on the tradeoff curve leemv storage and repair bandwidth for
functional-repair regenerating codes are in general noegable by exact-repair regenerating codes (see
e.g. [14] and|[15]).

All of the regenerating codes mentioned in the previousgragzhs are for the repair of a single node
failure. In large-scale distributed storage system, itdsuncommon to encounter multiple node failures,
due to various reasons. Firstly, the events of nodes faihag be correlated, because of power outage or
aging. Secondly, we may not detect a node failure immedgiatilen it happens. A scrubbing process is
carried out periodically by the maintenance system, to sbharhard disks one by one and see whether
there is any unrecoverable error. As the volume of the whinleage system increases, it will take a longer
time to run the scrubbing process and hence the integrithefdisks will be checked less frequently.
A disk error may remain dormant and undetected for a longogdeof time. If more than one errors
occur during this period, we will detect multiple disk esaturing the scrubbing process. Lastly, in some
commercial storage systems such as TotalRecall [16], thairref a failed node is deliberately deferred.
During the period when some storage nodes are not availdbraded read is enabled by decoding
the missing data in real time. A repair procedure is trigdeatter the number of failed nodes reaches a
predetermined threshold. This mode of repair reduces teehead of performing maintenance operations,
and is calledazy repair.
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Fig. 1. Tradeoff between storage and repair bandwidth fgemerating codes with parameteis= 8, k = 5, B = 1, andn > 11. The
dashed line is for regenerating code correcting singleirfail The solid line is for cooperative regenerating codevedngt = 3 failed
nodes.

A naive method for correcting multiple node failures is tpa® the failed nodes one by one, using
methods designed for repairing single node failure. A tatative recovery methodology for repairing
multiple failed nodes jointly is suggested in [17] ahd|[1Bfe repair procedure is divided into two phases.
In the first phase, the new nodes download some repair datasoone surviving nodes, and in the second
phase, the new nodes exchange data among themselves. Thiegoa data exchange is the distinctive
feature. We will call this the&cooperativeor collaborativerepair model.

The minimum-storage regime for collaborative repair issidered in [[17] and[[18]. It is shown that
further reduction in repair bandwidth is possible if dataclesnge among the new nodes is allowed.
Optimal function-repair minimum-storage regeneratingeare also presented [n [18]. The results are
extended by LeScouarnet al. to the opposite extreme point with minimum repair bandwidtfiL9] and
[20]. The storage and repair bandwidth per new node on th@mim-storage collaborative regenerating
(MSCR) point are denoted hbyuscr andyuscr, respectively, while the storage and repair bandwidth per
new node on the minimum-bandwidth collaborative regenegatMBCR) point are denoted byivscr
and yvecr, respectively. The MSCR and MBCR points for functional iieee

(amscr, MscrR) = (%, %» 4)
(amBCR, YMBCR) = %(1, 1). %)

We note that when = 1, the operating points in{4) andl (5) reduce to the one§lin (&) (&8).

The vertices on the tradeoff curve between storage andrrepadwidth for collaborative repair are
characterized in_[21]. It is shown in_[21] that for all poirds the cooperative functional-repair tradeoff
curve can be attained by linear regenerating codes overta fieid. A numerical example of tradeoff



TABLE |
PARAMETERS OF EXPLICIT CONSTRUCTIONS OF COLLABORATIVE REGEERATING CODES

‘ Type ‘ Code Parameters ‘ Ref. ‘
MBCR n>d+t,d>k t>1 22
MBCR n=d+t,d=kt>1 23]
MBCR n=d+t,d>k t>1 24)
MSCR n=d+2 k=t=2 25]

MSCR n=2k,d=n—2k>2,t=2 [26]
MSCR | n=2k,d=n—tk>2k>t>2 | [26]
(repair of systematic nodes only)

curves for single-loss regenerating code and cooperatiyenerating code is shown in Figlde 1. We see
that cooperative repair requires less repair bandwidthompare to single-failure repair.

Explicit exact-repair codes for the MBCR point for all légitte parameters were presented by Wang
and Zhang in[[22]. The construction in_[22] subsumes eada@structions in[[23] and [24]. In contrast,
there are not so many explicit construction for MSCR codee parameters of existing explicit construc-
tions are summarized in Table I. A construction of exact irefma £ =t = 2 andd = n — 2 is given
in [25]. This is extended to an MSCR code with> 2 andt = 2 in [26]. Indeed, a connection between
MSCR codes which can repair= 2 node failures and non-cooperative MSR code is made in [23hd)
this connection, the authors in _[27] are able to construcCRSode witht = 2 from existing MSR
codes. However, there is no explicit construction for exapair MSCR code of any > 3 failed nodes
at the time of writing.

Practical implementations of distributed storage systesmieh can correct multiple node failures can
be found in [28] to [[31].

The rest of this paper is organized as follows. In Sediilbwd formally define linear regenerating codes
for distributed storage systems with collaborative redaiiSectiori Ill, we give a slight generalization of
the cooperative regenerating codes(inl [22]. The genethlizesion also achieves all code parameters of
the MBCR point, but the building blocks of the constructioryoneed to satisfy a more relaxed condition.
In Section IV, we give a simplified description of the repaiethod in [26], and illustrate how to repair
two or more systematic nodes collaboratively in the MISERecdsome concluding remarks are listed in
Section V.

[1. A COLLABORATIVE REPAIR MODEL FORLINEAR REGENERATING CODE
We will use the following notations in this paper:
B: file size.
n: the total number of storage nodes.

k: the number of storage nodes from which a data collector emode the original file.
d: The number surviving nodes contacted by a new node.



t: the number of new nodes we want to repair collaboratively.

«: the amount of data stored in a node.

B1: the amount of data downloaded from a helper node to a new dodeg the first phase of repair.
(2. the amount of data exchanged between two new node duringettend phase of repair.

~: the repair bandwidth per new node.

IF,: finite field of sizeq, whereq is a prime power.

We describe in this section a mathematical formulation pédrr collaborative exact repair. For the
problem formulation for the non-linear case, we refer thedees to[[21].

A data file consists o8 symbols. We let\/ be the vector spadéf. We regard a data file as a vector
in M, and call it the source vectan.

The source vectom is mapped tona finite field symbols, and each node storesof them. The
mapping from the source vecton to an encoded symbol is a linear functional dh Following the
terminology of network coding, we will call these linear npapys theencoding vectorassociated to the
encoded symbols. Formally, a linear functional is an objecthe dual space of\/, L(M,F,), which
consists of all linear transformations frofd to F,. More precisely, an encoding vector should be called
an encodingco-vectorinstead, but we will be a little bit sloppy on this point andangly use the term
“vector”.

The content of a storage node can be described by a subspdg¢é/of,), spanned by the encoding
vectors of the encoded symbols stored in this node.iFerl1,2, ..., n, we let W; denote the subspace
of L(M,F,) pertaining to node. The dimension ofV; is no more thany,

for all 7.

We want to distribute the data file to thestorage nodes in such a way that @ngf them are sufficient
in reconstructing the source vectat. The (n, k)-reconstruction property requires that the encoding
vectors in anyk storage nodes span the dual spa¢é/, F,), hence it is required that

B w; = L(M,F,),
iek
for any k-subsetlC of {1,2,...,n}. Here@, W, denotes the sum space Bf;'s. It will be a direct sum

if the regenerating code is MDS.

Suppose that the storage nodes with indiGes., . . ., ¢; fail, and we need to replace them byew
nodes. Fors = 1,2,...,t, new nodes contactsd available nodes, and downloatd symbols from each
of them. The storage nodes which participate in the repaicgss are called thieelpers Different new
nodes may download repair data from different sets of heldezt #, be the index set of thé helpers
contacted by new node Thus, we have

Hs C{1,2,....,n}\ {i1,d2,...,%}



and|H,| = d for all s. The downloaded symbols are linear combination of the sysrkept by the helpers.
The encoding vector of a symbol downloaded from ngdse thus contained ;. Fors =1,2,...,1,
let U, be the subspace df(M, F,) spanned by thés; encoding vectors of the symbols sent to new node
s. We have

dim(Us " W;) < fy,

foralls=1,2,...,t andj € H,.

In the second phase of the repair, new nedemputes and sends finite field symbols to new nod€,
for s,s’ € {1,2,...,t} ands # s’. The computed symbols are linear combinations of the sysnlwbich
are already received by new nodeén the first phase of repair. Lét,_,, be the subspace af(A/, F,)
spanned by the encoding vectors of the symbols sent from nddenodes’ during the second phase.
We have

Vie C U, anddim(Vi_e) < [o.

Fors' =1,2,...,t, new nodes’ should be able to recover the content of the failed nQqddn terms of
the subspaces, it is required that

I/I/isl g Us’ S¥) @ VS—)S"
s€{1,2,...,t}\{s'}
The repair bandwidth per new node is equal to

vy =dpi + (t —1)B.

Any linear code satisfying the above requirements is calledoperative regenerating cod® collabo-
rative regenerating code

1. COOPERATIVE REGENERATING CODES WITH MINIMUM REPAIR BANDWIDTH

In this section we give a slight generalization of the cargion of minimum-bandwidth cooperative
regenerating codes in_[22]. The number of failed nodedp be repaired jointly can be any positive
integer. The code parameters which can be supported by tisraotion to be described below is the
same as those in [22], i.en, k andd satisfy

n—t>d>k.
The file sizeB of the regenerating code is
B=kQ2d+t—k),

and each storage node stotks+ ¢t — 1 symbols. In contrast to the polynomial approachlinl [22], the
construction below depends on the manipulation of a bilifean (to be defined in[{6)).

Encoding. We need al x n matrix U and a(d +t) x n matrix V for the encoding. Partitio®J and'V as

o= fa) vl



whereU; and V; are submatrices of sizk x n. We will choose the matricebl and V such that the
following conditions are satisfied:

1) anyd x d submatrix ofU is nonsingular;

2) any(d+t) x (d+t) submatrix ofV is non-singular;

3) anyk x k submatrix ofU; is nonsingular;

4) anyk x k submatrix ofV; is nonsingular.

We can obtain matricedJ andV by Vandermonde matrix or Cauchy matrix. If we use Vanderneond

matrix, we can set théth column ofU to

T
1 z; 2?2 24t

7 7 ?

fori =1,2,....n.If x1,29,...,x, are distinct elements if,, then the resulting matrikJ satisfies the first
and third conditions listed above. We can use Vandermondextiar the matrix V similarly. Existence
of such matrices is guaranteed if the field size is larger traaqual ton. Anyway, the correctness of
the code construction only depends on the four conditionyab

Fori=1,2,...,n, we denote thé-th column ofU by u;, and thei-th column ofV by v,.

We arrange the source symbols inl& (d + t) partitioned matrix

A B
C
where A, B and C are sub-matrices of size x k, k x (d+t¢ — k) and (d — k) x k, respectively. The
total number of entries in the three sub-matrices is

Y

4+ k(d+t—Fk) 4+ (d—kk=k2d+t—k)=B.
We will call M the source matrix
The source matriXM induces a bilinear forn8 defined by
B(x,y) := x" My, (6)

for x € Fgl andy € Fg“. We distribute the information to the storage nodes in suataw that, for
1=1,2,...,n, node: is able to compute the following two linear functions,

B(-,v;) andB(u;, ).

The first one is a linear mapping fro}ﬁf to F,, and the second is froﬂﬁg”t to F,. Node: can store the
d entries in the vectoMv;, and compute the first functioB(-, v;) by taking the inner product of the
input vectorx and Mv;,

B(x,v;) = x" (Mv;).

For the second functio®(u;,-), nodei can store thel + ¢ entries in the vecton! M, and compute
B(ui7y> by
B(ui7Y) = (U?M)y



Since the components &flv; andu? M satisfy a simple linear equation,
w;(Mv;) — (u/M)v; =0, (7)

we only need to storé + (d — t) — 1 finite field elements in nodg in order to implement the function
B(-,v;) andB(u;,-). Hence, each storage node is only required to store

a=2d+t—-1
finite field elements.

Repair procedure. Without loss of generality, suppose that nodes 1 fail. Fori =1,2,....¢, thei-th
new node downloads some repair data from a set sd@irviving nodes, which can be chosen arbitrarily.
Let H; be the index set of thé surviving nodes contacted by nodeWe haveH,; C {t+1,t+2,...,n}
and|H;| = d for all . The helper with index € H; computes two finite field elements

B(u,, v;) andB(u;, v,),

and transmits them to new nodeln the first phase of repair, a total 8fit symbols are transmitted from
the helpers.

Fori=1,2,...,t, thei-th new node can recovévlv; from the following d-dimensional vector with
the d components indexed b, .

(HJTMVi)jeHi = [u?]jeﬂi - (Mv;),

where[u] ];cy, is thed x d matrix obtained by stacking the row vectar$ for j € H;. Since this matrix
is nonsingular by construction, thigh new node can obtaiMv;. At this point, thei-th new node is able
to compute the functioB(-, v;).

In the second phase of the repair procedure, riociculateB(u,, v;), for £ € {1,2,...,¢}\ {i}, and
sends the resulting finite field symbol to theéh new node. Furthermore, nodean computeB(u;, v;),
using the information already obtained from the first phakeepair. Nodei can now calculatai! M
from

u/Mv,, forseH;U{1,2, ...t}

using the property that the vectovs, for s € H; U {1,2,...,t}, are linearly independent ové,. The
repair of node is completed by storingd + ¢t — 1 components in the vectors' M and Mv;, which are
necessary in computing(-, v;) andB(u;, -).

We remark that the total number of transmitted symbols invthele repair procedure &dt +¢(t — 1),
and therefore the repair bandwidth per new node is

v=2d+t—1.

File recovery. Suppose that a data collector connects to nades, . . ., i, with

1<y <9 <o <, <



The data collector can download the vectors
Myv;, andu; M,

for ¢ =1,2,..., k. From the lastl—k of the components iMv;,, for ¢ = 1,2, ... k, we can recover the
(d— k) x k sub-matrixC in the source matrid, because any x k& submatrixV; of V is nonsingular by
assumption. Similarly, from the lagt+ ¢t — k components imZ;M, we can recover th&l+t¢— k) x k sub-
matrix B, using the property that anly x &£ submatrixU; is nonsingular. The remaining source symbols
in A can be decoded either from the fifstcomponents of vectordlv,,, or the firstk components of
the vectorsu] M.

Example. We illustrate the construction by the following examplelwiibde parametens = 7, d = 4,
k =t = 3. The file size isB = k(2d + t — k) = 24. In this example, we pick; as the underlying finite
field.

The source matrix is partitioned as

aix aiz Aais bii bio 513 b14
ag1 Qg2 A3 bar  bao 523 bay

asi asy ass | bsy bzy bz b

cn ¢z c3| 0 0 0 O

The entriesy;;’s, b;;'s andc;;'s are the source symbols. LB{x, y) be the bilinear form defined as inl (6),
mapping a pair of vectoréx,y) in F7 x FI to an element ir¥;.
Let U be the4 x 7 Vandermonde matrix

1111111
U_ |t 234560 ®
142 2 410
11616 6 0
and fori =1,2,...,n,letu; = [1 i 72 zﬂTbethez’-th column ofU. LetV be the7 x 7 Vandermonde
matrix
(1111 1 1 1]
1 2 3 45 6 0
142 2 410
V=111616 6 0 (9)
1 2 4 4 2 10
1 45 2 36 0
1111110
and fori = 1,2,...,n, letv, = |1 i * ... i Tbe thei-th column of V. The i-th node needs to

store enough information such that it can compute the fansti

B(-,v;) andB(u;, ).



For instance, nodeé can store the last 3 components in vedidr;, and all 7 components in! M,

. .2 .3 .4 .5 -6
21 1= Qg1 + Qg + 17 ag3 + 1°bgy + 1 bag + 17 bag 4 7 oy,
. .2 .3 .4 .5 -6
Zig = Q31 + 1a32 +1 ass3 +1 b31 “+1 b32 +1 b33 “+1 b34,
o . 2
Zi3 = C11 +1c12 + 1713,
o : 2 3
Zi4 = a11 + 1091 “+1 asy +1 C11,
o : 2 3
Zi5 1= Q12 + 1022 + 17 a3 + 17C12,
o : 2 3
Zi6 = Q13 1 gz + 17 agz + 1°C13,
o . 2
27 i= by +ibgy + 17b3y,
o . 2
2ig i= big + ibag + 17b3,
o . 2
Zig = bz + ibas + 17bss,
o . 2
2i10 1= big + ibog + 17b3y,

with all arithmetic performed modul@. The missing entry oMv;, namely, the first entry oMyv;,

. .9 .3 .4 .5 .6
a1y +za12—|—z CL13—|—Z b11 +1 b12—|—l b13+’L b14
= —izy — %zip — 023
. .9 .3 -4 .5 .6
+Zi4—|—ZZi5 +1 Zi6—|—l Zﬁ"‘l Zig—Fl Zig—i"b Zi10

is a linear combination of;;, z;s, . . . z;10. Each node only needs to store 10 finite field symbgls:;», . . ., zi10.
The storage per node meets the bound
_ B2d+t—-1)
QMBCR = m
We illustrate the repair procedure by going through the ireplanodes 5, 6 and 7. Suppose we lost
the content of nodes 5, 6 and 7, and want to rebuild them byearatipe repair. Foi = 1,2, 3,4, and
Jj =5,6,7, node: computesB(u;, v;) andB(u;, v;) and sends them to the nogein the first phase of
repair. Nodej now have 8 symbols,

=2d+t—1=10.

B(uy,v;), B(uy,v;), B(us,v;), B(uy,vy),
B(u;, vi), B(uj,va), B(u;,vs), B(uy,vy).

The first four of them can be put together and form a vector

B(ulavj) ufll“
B(uz, v,) _ ul My,
B(u?nvj) ug
B(U4,Vj) u4T

Because the first four columns of matiik in (8) are linearly independent ov&s, for j = 5,6, 7, node;
can solve forMv; after the first phase of repair, and is able to calcuBte, v,) for any vectorx € F3.



The communications among nodes 5, 6 and 7 in the second phaspair is as follows:
node 5 send8(ug, v5) to node 6,
node 5 send8(uz, v;) to node 7,
node 6 send8(us, vg) to node 5,
node 6 send8( ) to node 7
node 7 send8(us, v;) to node 5,
node 7 send8(ug, v7) to node 6.
For j = 5,6,7, node;j can obtainu] M from

Uz, Vg

T
ujM Vi Va V3 V4 Vs Vg V7|

In the first phase, we transmit- 3 - 2 = 24 symbols, and in the second phase we transmit 6 symbols.
The number of transmitted symbol per new node is thus equaltavhich is equal to the target repair
bandwidthy = 2d +t — 1 = 10.

To illustrate the(n, k)-reconstruction property, suppose that a data collectonects to nodes 1, 2
and 3. The data collector can download the following vectors

u/M, ulM, u!M, Mv,, Mv,, and Mv;.

There are totally 33 symbols in these six vectors. They atéimearly independent as the original file only
contains 24 independent symbols. We can decode the synmbibie data file by selecting 24 entries in the
received vectors, and form a vector which can be written apthduct of &4 x 24 lower-block-triangular
matrix and a 24-dimensional vector

V3 b14
V3 b4
0 0 V; b3
0 0 0 Vi lay

OOgdYooocolS

o O O © © O
o O O O O
S O O O

o

21

a3y

with V3 denoting a3 x 3 nonsingualr Vandermonde matrix, aitla diagonal matrix. The above matrix
is invertible and we can obtain the source symbols in the filata



IV. A CLASS OFMINIMUM -STORAGE COOPERATIVE REGENERATING CODES

In this section, we give a simplified description of the thenimum-storage cooperative regenerating
code presented in [26]. The code parameters are

n=2% d=n—t, k>t>2.

The firstk nodes are the systematic nodes, while the Aasbdes are the parity-check nodes. The coding
structure of the cooperative regenerating codes to be idescin this section is indeed the same as the
MISER code [[8])[9] and the regenerating code lin![10]. Ourechye is to show that, with this coding
structure, we can repair the failure of ahgystematic nodes and anyarity-check nodes, for anyless
than or equal td:, attaining the MSCR point defined inl (4).

We need a nonsingular matrlX and a super-regular matriR, both of sizek x k. Recall that a matrix
is said to be super-regular if every square submatrix is ingogar. Cauchy matrix is an example of
super-regular matrix, and we may [Btbe a Cauchy matrix.

After the matriceU and P are fixed, we lefQ be the inverse oP andV be the matrixV := UP. It
can be shown that the matri is non-singular and) is super-regular. We have the following relationship
among these matrices

V =UP andU = VQ.

Let p;; be (i, 7)-entry of P, for ¢, € {1,2,...,k}, andg;; be the(i, j)-entry of Q.

For: =1,2,...,k, let u; denote thei-th column of U, andv; the i-th column of V. The columns
of U and the columns oV will be regarded as two bases of vector spﬁf;eLet ag, 0y, ..., U, be the
dual basis ofu;’s, and letvy, v, ..., v, be the dual basis of;’s. The dual bases satisfy the following
defining property

AT

_ L
u; u; = 5@‘, and Vv,V = 5@‘,

whered;; is the Kronecker delta function.

The last ingredient of the construction i2 & 2 super-regular symmetric matri%a e] and its inverse
e a

IR

In particular, it is required that, e anda? — ¢? are all not equal to zero if,.

/ i , satisfying

Encoding. A data file consists of
B=k(d+t—k)=k(n—k) =k

source symbols. Foi = 1,2,...,k, nodei is a systematic node and storessource symbols. We can
perform the encoding in two essentially the same ways. Irfiteeencoding function, the first nodes



store the source symbols and the lastodes store the parity-check symbols. kebe thek-dimensional
vector whose components are the symbols stored in hdew j = 1,2, ..., k, nodek+ 7 is a parity-check

node, and stores the components of vector
k

yj = Z (atyv] + epyly)xe, (11)
=1

wherel; denotes theé: x k identity matrix. We note that the matrix within the parersisein (11) is the
sum of a rank-1 matrix and an identity matrix.

In the second encoding function, which is the dual of the fars¢, nodes: + 1,k + 2,...,2k store
the source symbols and nodeso £ store the parity-check symbols. Lgt be thek-dimensional vector

stored in node: + 5. Fori = 1,2, ..., k, node: stores the vector
k

Xi = Z (bwu? + fQZiIk)YZ~ (12)

/=1
This duality relationship is first noted in [10].

Proposition 1 ([10]). The regenerating code defined {@) is the same as the one defined (@g).

We will give a proof of Propl11 in terms of matrices. The maformulation is also useful in simplifying
the description of the repair and decode procedureXLétesp.V, X andY) be thek x k matrix whose
columns arey; (resp.v;, x;, andy;) fori =1,2,... k. We have

U=UuH"=v@Q"H,
V=(vHr=umrpH
In terms of these matrices, the first encoding function caexXmessed as
Y = aUX"V + eXP. (13)

Indeed, thej-th column ofctUXTV + eXP is

k
aU - (j-th column of X*V) + ¢ Z X¢Pej
/=1

k k
N T
=a E - (x,vy) e g X¢Dej
=1 =1
k k
— (] T + .
=a U[\UﬁXg € XePe;
/=1 =1

k
= Z (aﬁgvf + epngk)XE.
=1

Similarly, the second encoding function defined (12) carekpressed as

X =bVY'U + fYQ. (14)



Proof. Proof of Prop[Jl Suppose tha is given as in[{IB). Substitutin by «UX”V + ¢XP in the
right-hand side of((14), we get

R.H.S. of @)= bVY'U + fYQ
= bV (aUXTV + eXP)'U
+ f(aUXTV 4 eXP)Q
= (ab+ ef)X + (be + af) UXTU
= X = L.H.S. of (13)

The last line follows from the facts that + ef = 1 andbe + af = 0, which follow directly from [10).
Therefore, [(I4) is implied by (13).

By similar arguments, one can show tHatl(13) is implied[by).(T4erefore, regenerating code defined
by the first encoding function i (11) is the same as the onenei@fby the second encoding function in

(12). ]

Repair Procedure. Suppose that systematic nodes fail, for some positive intege< k. We assume
without loss of generality that the failed nodes are nodes 7 &fter some appropriate node re-labeling
if necessary.

In the first phase of repair, each of the surviving nodes sanslgmbol to each of the new node. For

1=1,2,...,t, the symbol sent to nodeis obtained by taking the inner product af with the content
of the helper node.
Consider node, for some fixed index € {1,2,...,t}. The symbols received by nodeafter the first

phase of repair are
u/x,, form=t+1,t+2,....k and
uly; forj=1,2,... k.

We make a change of variables and define
Z:=YQ.

Forv=1,2,...,k, thev-th column ofZ is

k
z, = Z qevye-
/=1

Becausd) is a non-singular matrix, Nodecan obtain the vecto! z,),—; 2« from (uly,),=12. 1
and vice versa. In terms of the new variableZin(14) becomes

X =bUZ"U + fZ. (15)
The symbol sent from node: to nodei, namelyu?x,,, is them-th component of vector

u'X = u? (WUZTU + f7),



and is equal to

bzl u,, + fulz,.
As a result, the information obtained by nodafter the first repair phase can be transformed to

u/ z, for j =1,2,...,k, and
balz; + fulz, form=t+1,t+2,... k.

In the second phase of the repair procedure, nodends the symboh?z; to nodei/, for i, €
{1,2,...,t}, i # 4. The total number of symbols transmitted during the first #relsecond part of the
repair procedure igd + t(t — 1). The number of symbol transmissions per failed node is thus

y=d+t—-1.

Node: wants to recover théth column ofX, as expressed i _(1L5). Theh column of the first term
bUZTU on the right-hand side is equal to the product®f and thei-th column of Z”U. We note that
the components of theth column of ZU are preciselyg! u;, forv =1,2,... k, and are already known
to node:. It remains to calculaté-th column of fZ, which is fz;.

Nodei computesu’ z;, for m =t +1,t +2,....k by

1
ul z; = E[(bugbzi + fulz,) — fulz,).
During the second phase of repair, nadgets

w,z;,for i € {1,2,...,t}\ {i}.

As a result, node has a handle on!z; for all ¢ = 1,2, ... k. Sinceu,’s are linearly independent, node
1 can calculatez; by taking the inverse of matrixXJ. This completes the repair procedure for nade

By dualizing the above arguments, we can collaborativgbaireanyt parity-check node failures with
optimal repair bandwidth = d + ¢ — 1. Note that we have not used the property that matrleend Q
are super-regular yet. The correctness of the repair puseenhly relies on the condition th& and Q
are non-singular.

File Recovery. The reconstruction of the original file can be done in the sarag as in [8], [9] and
[10]. We give a more concise description of the file recoverycpdure below.

Suppose that a data collector connect$ te s nodes among the firgt nodes, and nodes among the
last £ nodes, for some integerbetween 0 and:. With suitable re-indexing, we may assume that nodes
s+1,s+2,...,k are contacted by the data collector, without loss of geitgr&uppose that the indices
of the remainings storage nodes connected to the data collectorjarg, ..., j,, with

kE<ji<ga<...<js<2k
Thus, the data collector has access to

Xs+1y X542y - -+ 5 X, andyj17Yj27 e Y-



The objective of the data collector is to recover vectorsxs, . . ., Xx. SinCex,. 1, X2, .. ., X, have been
downloaded directly, we only need to reonstragtxs,, . .., X,.
We re-write the encoding function i (13) as

Y = aUXTUP + eXP.

The data collector only knows the columns¥fwhich are indexed by, js, ..., j;. Let X be thek x s
submatrix ofY consisting of the columns & with indicesjy, js, . . ., js, and letlT be thek x s submatrix
of P consisting of columngy, jo, .. ., js. We partition matrixX as

X:[X1‘X2]7

where X, consists of the first columns ofX, and X, consists of the last — s columns.
We have

[ xr
YT =aU xI UIT + e[ X, | X, JTL. (16)

Move the terms in[{16) which involvX, to the left, and pre-multiply byU”. The equation in[{16) can
be written as

UTr—a[ H—e[O‘UTXg]H

(UTX,)T
[

. I+ e[ UTX, |0 ]IL (17)

The quantities on the left of (17) are readily computable ly data collector.
We illustrate how to obtaiftU” X, below. Partition matriII and U”X; into

I \\1
o= 1" andU”Xx, = 1,
I, W,

whereIl; and W, are square matrices of sizex s, andIl, and W, have sizgk — s) x s. The right-hand
side of [1T) can be simplified to
) [WTTL + WL | . (W1, |
Lo ] (W]
Since P is super-regularI1; is nonsingular. From the lagt — s rows of the matrices on both sides of
(d7), we can solve for the entries W5,. It remains to solve for the entries W.

As the entries inW, are known as this point, we can subtradITI, from the firsts rows of [17).
We thus know the value of

aWTTI, + eW,II;.
As IT; is nonsingular, we can post-multiply by the inverseldf and compute the x s matrix

anT -+ €W1.



TABLE Il
ENCODING OF A RATE-1/2 MSCRCODE FOR EIGHT STORAGE NODESTHE SYMBOLS IN THE FIRST FOUR COLUMNS ARE THE SOURCE
SYMBOLS IN NODES1 7O 4. THE SYMBOLS IN THE LAST FOUR COLUMNS ARE THE PARITYCHECK SYMBOLS IN NODES5 TO 8.

| N1 | N2 | N3 | N4 | N5 \ N6 \ N7 \ N8 |
11 | 12 | w31 | ®a | 2T+ xzen)i—y o P1 | (2T +2er)i—y P2 | (2T + Te1)i—y - P3| (2010 + Te1)i—y - Pa
Ti2 | o2 | T2 | Taz | (2@ae + Te2)ie1 - P1 | (2020 + e2)ioq - P2 | (2%a0 + Te2)ior - P3| (2020 + 2e2)i—1 - Pa
w13 | T2 | T33 | Taz | (2% + @e3)iey - P1 | (2T30 +Te3)iy - P2 | (2730 + Te3)i—1 - P3| (2%30 + 43—y - P4
T1a | @21 | T3a | as | (2Tae + zea)i—y - P1 | (2Tae + Tea)i—y - P2 | (2Tar + Tea)i—y - P3 | (2%ar + Tea)i—y - Pa
The diagonal entries are: + e)wy, for £ = 1,2,...,s. Becausai? — ¢? = (a +¢)(a — ¢) is not equal to

0 by (10), we can divide by + ¢ and obtainw,,. The non-diagonal entries can be calculated in pairs.

For i # j, we solve forw;; andw;; from
a e Wsj
€ a Wi .

The above2 x 2 is nonsingular by[(10). Putting matricd&’, and W, together, we geI”X,. SinceU
is invertible, we can solve foK;, which consists of the vectors stored in the figsdtorage nodes. This
completes the file recovery procedure.

Example. Consider an example fak = 4. There are eight storage nodes in the distributed storage
system. Nodes 1 to 4 are the systematic nodes, while nodes8 @te the parity-check nodes. The data
file containsB = k? = 16 symbols in a finite field. Foi = 1,2, 3,4, we let the symbols stored in node
be denoted byt;;, 2, z;3 andz;, (see Tablé]l). In this example, we pick a finite field of sizeaklthe
alphabet. All arithmetic is performed modulo 11.

We let P be the following4 x 4 Cauchy matrix

alibl (llibz alibg a1£b4 1 4 9 8
P= | ;bl a2 ;bg az ;bg a2 ;b4 — 170 110 11 i

az—b1  az—b2 az—bs az—bs

a4£b1 a4£b2 a4£b3 a4£b4 2 7 10 1

wherea; = 2, a, =4, a3 =6, a4 =8, by =1, by = 3, bs = 5 andb, = 7 are distinct elements iff;.
Matrices U and U are set to thel x 4 identity matrix. With this choice of matrisU, the matrixV is
equal toUP = P. Leta =2 ande = 1, such that the matrix

R



is super-regular. Fof = 1,2, 3,4, the symbols stored in thgth parity-check node are the entries in the
j-th column of the following matrix

T11 T12 T13 T4 T11 T21 T31 T41
To1 Tz T2z Ta4 T12 T2 T32 T42
Y =12 + P
xr31 X32 X33 T34 T13 T23 X33 T43
Lg1 T42 T43 T44 L14 X4 T34 T4

For j = 1,2,3,4, we denote thg-th column of the Cauchy matri® by p;, and let(2z;, + x,;);_, be
the vector
(Ql’jl +$1j,21’j2 —|—l’2j,2l’j3 +.T3j,21’j4 +.T4j). (18)

The content of the parity-check nodes are illustrated inlaisé four columns in Tablelll.

We illustrate how to repair multiple systematic node fakiicollaboratively. Suppose that nodes 1, 2
and 3 fail. In the first phase of the repair process, each ofefmaining nodes, namely nodes 4 to 8, sends
three symbols to each new node. In this example, each hetubr can simply read out three symbols
and send them to the new nodes. More specifically, the synibdlee first (resp. second and third) row
in columns 4 to 8 in Tablelll are sent to node 1 (resp. 2 and 3)cklefori = 1,2, 3, new node; receives
the following five finite field symbols

Taiy (2i0 + o)y - P1y (2%i0 + Tei)y_y - P,
(2240 + T4i)p—1 - P3, (2Ti0 + T4i)j—1 * Pa

in the first phase. SincP is a nonsingular matrix, new nodecan obtain the vectof2x;, + z);_,. We
list the symbols which can be computed by the new nodes asas|l

Node 1:241, 3211, 2212 + X021, 2213 + T31, 2214 + Ta1.
Node 2:1’42, 2291 + T12, 3%29, 2.7}23 + Z39, 2294 + T49.
Node 3:x43, 2231 + x13, 2T39 + To3, 3T33, 2T34 + T43.

At the end of the first phase, new noflean calculate theth symbolz;, and the last symbat;, by
1
Tis = §(3$zz)
1

Tig = 5[(21}'4 + 245) — Ty
The operations in the second phase of the repair are:
Node 1 and node 2 exchange the symkls, + x5 and2xy; + z1;
Node 1 and node 3 exchange the symblg + x3; and2x3; + x13;
Node 2 and node 3 exchange the symblg + 3, and2x3; + x93.
Now, nodes 1 can decode the symbe|s and x5 from
T13
T31

2 1
1 2 T21 1 3




Similarly, nodes 2 and 3 can decode the remaining sourcebagm
We transmitted 21 symbols during the whole repair procedtience, 7 symbol transmissions are
required per new node. It matches the lower bound on repaive@th per new node

Wscr=d+t—1=5+3-1=T7.

Remark:In the previous example, can see the usénbdrference alignment as follows. After the first
phase of repair, the first new node has symhals 3x11, 2212 + 721, 2213 + 731, 2214 + 241, but the first
new node is only interested in decoding symbals x2, z13 andz4. The symbolsey, x3;, andz,; can
be regarded as “interference” with respect to the first nedendhe interference occupy three degrees
of freedom and is resolved in the second phase of the repair.

Suppose that a data collector wants to recover the origileabji downloading the symbols stored in
nodes 3, 4, 5 and 6. The symbols stored in nodes 3 and 4 areathsgchbols, and hence can be read
off directly. The data collector needs to decode, x12, x13, T14, T21, 22, T23 andxg, from symbols in
node 5,

(3711, 2212 + W21, 2713 + 231, 2714 + Ta1) - P1 (19)
(2721 + 212, 322, 2793 + T3p, 2794 + Ta1) - P1 (20)
(2231 + 213, 232 + o3, 333, 2T34 + Ta3) - Pa (21)
(2041 + 14, 2042 + Toa, 2343 + T34, 3Ta4) - P1 (22)

and the symbols in node 6,

(3711, 2212 + W21, 2713 + X31, 2714 + Ta1) - P2 (23)
(2721 + 712, 322, 2793 + T3, 2To4 + Ta1) - P2 (24)
(2231 + 213, 232 + To3, 3T33, 2034 + Tu3) - P2 (25)
(2241 + 14, 2342 + Toa, 243 + T34, 3Ta4) - Po- (26)

The underlined symbols are readily obtained from nodes 34and
From the two finite field symbols in (22) and _(26), after suttireg off the known quantities, we can
decode symbak, andxy, from

[%4 $24} I,

1 4
I, = P11 P12 _
P21 D22 10 1

is the2 x 2 submatrix on the top left corner @*. Likewise, from [21) and[(25), we can obtain; and
x93 by solving a2 x 2 system of linear equations.

where



We can put the four finite field symbols in(19), (20),(23) a@d)(together and form & x 2 matrix

3711 2712 + T91
11,.
2791 + T12 372

Using the property thakl; is non-singular again, we can solve for the matrix

3.7}11 21’12 + T2l

2.7}21 + T12 3.7}22

from which we can decod®e;, zs, 12 andzs;.

V. CONCLUDING REMARKS

In this paper we review two constructions of cooperativeenegating codes, one for the MSCR point
and one for the MBCR point. We show that with the same codingcgire as in the MISER code, we
can cooperatively repair any number of systematic nodertsl and any number of parity-check node
failures. As a matter of fact, we can also repair any pair at@yatic node and a parity-check node.
However, we need to work over a larger finite field and the sopgular matrixP should satisfy some
extra conditions, in order to repair any two node failurelse Tetail can be found in [26].

Security aspects of cooperative regenerating codes aestigated in[[32] tol[34]. There are basically
two types of adversarial storage nodes. Adversaries of thietyipe are passive eavesdroppers, who want
to obtain some information about the data file. Under the rapsion that the number of storage nodes
accessed by an eavesdropper is no more than a certain nuheeecrecy capacity and the related code
constructions are studied in [33] arid [34]. Adversarieshef $econd type, called Byzantine adversaries,
are malicious and try to corrupt the distributed storageesys They conform to the protocol but may
send out erroneous packets during a repair procedure. fioisrsin [32] that distributed storage system
with cooperative repair is more susceptible to this kind offygion attack, because of the large number
of data exchanges in the second phase of the repair. One walletate the potential damage incurred
by a Byzantine adversary is to allow multiple levels of caapien. To this end, a partially cooperative
repair model, in which a new node communicates only with atiiva of all new nodes, is proposed in
[35]. A code construction based on subspace codes is givi86]n

Local repairable code (LRC) is another class of erasureecting codes of practical interests. In LRC,
the focus is not on the repair bandwidth, but on the numberodis contacted by a new node. A code
is said to havdocality r if each symbol in a codeword is a function of at maesbther symbols. In
contrast to regenerating code, it is only required that,elmch symbol, there exists a particular set-of
nodes from which we can repair the symbol. A fundamental Hoaum the minimum distance of a code
with locality constraint was obtained by Gopaleinal. in [37]. The problem of repairing multiple symbol
errors locally, calleccooperative local repairis studied in([38] and [39].

In addition to locality, disk I/O cost is another importaacfor. The speed of reading bits from hard
disks may be a bottleneck of the repair time. The number afthiait must be accessed by a helper node



is obviously lower bounded by the number of bits transmittethe new nodes. A regenerating code with
the property that the number of bits accessed for the purpbsepaired is exactly equal to the number
of bits transmitted is called eepair-by-transferor help-by-transfercode (see e.gl [11] or [14]). We note
that the example in Sectidnllll is indeed a repair-by-tran$fiIBCR code, even though the repair is for
systematic nodes only. It is proved in_[22] that repair-tansfer MBCR code does not exists when if
anyt > 2 failed nodes could be repaired by a#iy> 2 helper nodes. The example in Section 11l does not
violate the impossibility result in_[22]. Neverthelessjstinteresting to see whether repair-by-transfer is
possible for other code parameters.

Instead of designing new codes, devising efficient algorghvhich can repair existing storage codes is
also of practical interests. Fast repair method for theiticathl Reed-Solomon code can be found(in![40].
Recovery algorithm for array codes, such as Row DiagonatyP@RDP) and X-code, are given in [41]
and [42], respectively. Some special results for repaidogcurrent failures in RDP code are reported in
[43]. It is interesting to see whether we can devise cooperaepair algorithm for Reed-Solomon codes
and other array codes.
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