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Abstract

Cooperative regenerating codes are designed for repairingmultiple node failures in distributed storage systems.

In contrast to the original repair model of regenerating codes, which are for the repair of single node failure, data

exchange among the new nodes is enabled. It is known that further reduction in repair bandwidth is possible

with cooperative repair. Currently in the literature, we have an explicit construction of exact-repair cooperative

code achieving all parameters corresponding to the minimum-bandwidth point. We give a slightly generalized and

more flexible version of this cooperative regenerating codein this paper. For minimum-storage regeneration with

cooperation, we present an explicit code construction which can jointly repair any number of systematic storage

nodes.

I. INTRODUCTION

In a distributed storage system, a data file is distributed toa number of storage devices that are connected

through a network. The data is encoded in such a way that, if some of the storage devices are disconnected

from the network temporarily, or break down permanently, the content of the file can be recovered from

the remaining available nodes. A simple encoding strategy is to replicate the data three times and store the

replicas in three different places. This encoding method can tolerate a single failure out of three storage

nodes, and is employed in large-scale cloud storage systemssuch as Google File System [1]. The major

drawback of the triplication method is that the storage efficiency is fairly low. The amount of back-up data

is two times that of the useful data. As the amount of data stored in cloud storage systems is increasing

in an accelerating speed, switching to encoding methods with higher storage efficiency is inevitable.

The Reed-Solomon (RS) code [2] is a natural choice for the construction of high-rate encoding schemes.

The RS code is not only optimal, in the sense of being maximal-distance separable, it also has efficient

decoding algorithms (see e.g. [3]). Indeed, Facebook’s storage infrastructure is currently employing a

high-rate RS code with data rate 10/14. This means that four parity-check symbols are appended to every

ten information symbols. Nevertheless, not all data in Facebook’s clusters is currently protected by RS

code. This is because the traditional decoding algorithms for RS code do not take the network resources

into account. Suppose that the 14 encoded symbols are storedin different disks. If one of the disks fails,

then a traditional decoding algorithm needs to download 10 symbols from other storage nodes in order to

repair the failed one. The amount of data traffic for repairing a single storage node is 10 times the amount
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of data to be repaired. In a large-scale distributed storagesystem, disk failures occur almost everyday [4].

The overhead traffic for repair would be prohibitive if all data were encoded by RS code.

In view of the repair problem, the amount of data traffic for the purpose of repair is an important

evaluation metric for distributed storage systems. It is coined as therepair bandwidthby Dimakiset al. in

[5]. An erasure-correcting code with the aim of minimizing the repair bandwidth is called aregenerating

code. Upon the failure of a storage node, we need to replace it by a new node, and the content of the new

node is recovered by contactingd other surviving nodes. The parameterd is sometime called therepair

degree, and the contacted nodes are called thehelper nodesor simply thehelpers. The repair bandwidth

is measured by counting the number of data symbols transmitted from the helpers to the new node. If

the data file can be reconstructed from anyk out of n storage nodes, i.e., if anyn− k disk failures can

be recovered, then we say that the(n, k)-reconstruction propertyis satisfied. The design objective is to

construct regenerating codes forn storage nodes, satisfying the(n, k)-reconstruction, and minimizing the

repair bandwidth, for a given set of code parametersn, k andd.

We note that the requirement of(n, k)-reconstruction property is more relaxed than the condition of

being maximal-distance separable (MDS). A regenerating code is an MDS erasure code only if the number

of symbols contained in anyk nodes is exactly equal to the number of symbols in the data file. In a

general regenerating code, the total number of coded symbols in anyk nodes may be larger than the total

number of symbols in a data file.

There are two main categories of regenerating codes. The first one is calledexact-repairregenerating

codes, and the second one is calledfunctional-repairregenerating codes. In the first category of exact-

repair regenerating codes, the content of the new node is thesame as in the old one. In functional-

repair regenerating codes, the content of the new node may change after a node repair, but the(n, k)-

reconstruction property is preserved. For functional-repair regenerating code, a fundamental tradeoff

between repair bandwidth and storage per node is obtained in[5]. This is done by drawing a connection

to the theory of network coding. Following the notations in [5], we denote the storage per node byα

and the amount of data downloaded from a surviving node byβ. The repair bandwidth is thus equal to

γ = dβ. A pair (α, dβ) is said to befeasibleif there is a regenerating code with storageα and repair

bandwidthdβ. It is proved in [5] that, for regenerating codes functionally repairing one failed node at a

time, (α, dβ) is feasible if and only if the file size, denoted byB, satisfies the following inequality,

B ≤
k−1
∑

i=0

min{α, (d− i)β}. (1)

If we fix the file sizeB, the inequality in (1) induces a tradeoff between storage and repair bandwidth.

There are two extreme points on the tradeoff curve. Among allthe feasible pairs(α, dβ) with minimum

storageα, the one with the smallest repair bandwidth is called theminimum-storage regenerating(MSR)

point,

(αMSR, γMSR) =
(B

k
,

dB

k(d+ 1− k)

)

. (2)



On the other hand, among all the feasible pairs(α, dβ) with minimum bandwidthdβ, the one with the

smallest storage is called theminimum-bandwidth regenerating(MBR) point,

(αMBR, γMBR) =
( 2dB

k(2d+ 1− k)
,

2dB

k(2d+ 1− k)

)

. (3)

Existence of linear functional-repair regenerating codesachieving all points on the tradeoff curve is

shown in [6]. Explicit construction of exact-repair regenerating codes, called the product-matrix framework,

achieving all code parameters corresponding to the MBR point is given in [7]. Explicit construction of

regenerating codes for the MSR point is more difficult. At thetime of writing, we do not have constructions

of exact-repair regenerating codes covering all parameters pertaining to the MSR point. Due to space

limitation, we are not able to comprehensively review the literature on exact-repair MSR codes, but we

mention below some constructions which are of direct relevance to the results in this paper.

The MISER code (which stands for MDS, Interference-aligning, Systematic Exact-Regenerating code)

is an explicit exact-repair regenerating code at the MSR point [8] [9]. The code parameters ared =

n− 1 ≥ 2k − 1. It is shown in [8] and [9] that every systematic node, which contains uncoded data, can

be repaired with storage and repair bandwidth attaining theMSR point in (2). This result is extended in

[10], which shows that, with the same code structure, every parity-check node can also be repaired with

repair bandwidth meeting the MSR point. The product-matrixframework in [7] also gives a family of

MSR codes with parametersd ≥ 2k− 2. All of the MSR codes mentioned above have code rate no more

than1/2. For high-rate exact-repair MSR code, we refer the readers to three recent papers [11], [12] and

[13], and the references contained therein.

We remark that the interior points on the tradeoff curve between storage and repair bandwidth for

functional-repair regenerating codes are in general not achievable by exact-repair regenerating codes (see

e.g. [14] and [15]).

All of the regenerating codes mentioned in the previous paragraphs are for the repair of a single node

failure. In large-scale distributed storage system, it is not uncommon to encounter multiple node failures,

due to various reasons. Firstly, the events of nodes failuremay be correlated, because of power outage or

aging. Secondly, we may not detect a node failure immediately when it happens. A scrubbing process is

carried out periodically by the maintenance system, to scanthe hard disks one by one and see whether

there is any unrecoverable error. As the volume of the whole storage system increases, it will take a longer

time to run the scrubbing process and hence the integrity of the disks will be checked less frequently.

A disk error may remain dormant and undetected for a long period of time. If more than one errors

occur during this period, we will detect multiple disk errors during the scrubbing process. Lastly, in some

commercial storage systems such as TotalRecall [16], the repair of a failed node is deliberately deferred.

During the period when some storage nodes are not available,degraded read is enabled by decoding

the missing data in real time. A repair procedure is triggered after the number of failed nodes reaches a

predetermined threshold. This mode of repair reduces the overhead of performing maintenance operations,

and is calledlazy repair.
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Fig. 1. Tradeoff between storage and repair bandwidth for regenerating codes with parametersd = 8, k = 5, B = 1, andn ≥ 11. The

dashed line is for regenerating code correcting single failure. The solid line is for cooperative regenerating code recovering t = 3 failed

nodes.

A naive method for correcting multiple node failures is to repair the failed nodes one by one, using

methods designed for repairing single node failure. A collaborative recovery methodology for repairing

multiple failed nodes jointly is suggested in [17] and [18].The repair procedure is divided into two phases.

In the first phase, the new nodes download some repair data from some surviving nodes, and in the second

phase, the new nodes exchange data among themselves. The enabling of data exchange is the distinctive

feature. We will call this thecooperativeor collaborativerepair model.

The minimum-storage regime for collaborative repair is considered in [17] and [18]. It is shown that

further reduction in repair bandwidth is possible if data exchange among the new nodes is allowed.

Optimal function-repair minimum-storage regenerating codes are also presented in [18]. The results are

extended by LeScouarnecet al. to the opposite extreme point with minimum repair bandwidthin [19] and

[20]. The storage and repair bandwidth per new node on the minimum-storage collaborative regenerating

(MSCR) point are denoted byαMSCR andγMSCR, respectively, while the storage and repair bandwidth per

new node on the minimum-bandwidth collaborative regenerating (MBCR) point are denoted byαMBCR

andγMBCR, respectively. The MSCR and MBCR points for functional repair are

(αMSCR, γMSCR) =
(B

k
,
B(d+ t− 1)

k(d+ t− k)

)

, (4)

(αMBCR, γMBCR) =
B(2d+ t− 1)

k(2d+ t− k)
(1, 1). (5)

We note that whent = 1, the operating points in (4) and (5) reduce to the ones in (2) and (3).

The vertices on the tradeoff curve between storage and repair bandwidth for collaborative repair are

characterized in [21]. It is shown in [21] that for all pointson the cooperative functional-repair tradeoff

curve can be attained by linear regenerating codes over a finite field. A numerical example of tradeoff



TABLE I

PARAMETERS OF EXPLICIT CONSTRUCTIONS OF COLLABORATIVE REGENERATING CODES.

Type Code Parameters Ref.

MBCR n ≥ d+ t, d ≥ k, t ≥ 1 [22]

MBCR n = d+ t, d = k, t ≥ 1 [23]

MBCR n = d+ t, d ≥ k, t ≥ 1 [24]

MSCR n = d+ 2, k = t = 2 [25]

MSCR n = 2k, d = n− 2, k ≥ 2, t = 2 [26]

MSCR n = 2k, d = n− t, k ≥ 2, k ≥ t ≥ 2 [26]

(repair of systematic nodes only)

curves for single-loss regenerating code and cooperative regenerating code is shown in Figure 1. We see

that cooperative repair requires less repair bandwidth in compare to single-failure repair.

Explicit exact-repair codes for the MBCR point for all legitimate parameters were presented by Wang

and Zhang in [22]. The construction in [22] subsumes earlierconstructions in [23] and [24]. In contrast,

there are not so many explicit construction for MSCR code. The parameters of existing explicit construc-

tions are summarized in Table I. A construction of exact repair for k = t = 2 and d = n − 2 is given

in [25]. This is extended to an MSCR code withk ≥ 2 and t = 2 in [26]. Indeed, a connection between

MSCR codes which can repairt = 2 node failures and non-cooperative MSR code is made in [27]. Using

this connection, the authors in [27] are able to construct MSCR code witht = 2 from existing MSR

codes. However, there is no explicit construction for exact-repair MSCR code of anyt ≥ 3 failed nodes

at the time of writing.

Practical implementations of distributed storage systemswhich can correct multiple node failures can

be found in [28] to [31].

The rest of this paper is organized as follows. In Section II,we formally define linear regenerating codes

for distributed storage systems with collaborative repair. In Section III, we give a slight generalization of

the cooperative regenerating codes in [22]. The generalized version also achieves all code parameters of

the MBCR point, but the building blocks of the construction only need to satisfy a more relaxed condition.

In Section IV, we give a simplified description of the repair method in [26], and illustrate how to repair

two or more systematic nodes collaboratively in the MISER code. Some concluding remarks are listed in

Section V.

II. A COLLABORATIVE REPAIR MODEL FOR L INEAR REGENERATING CODE

We will use the following notations in this paper:

B: file size.

n: the total number of storage nodes.

k: the number of storage nodes from which a data collector can decode the original file.

d: The number surviving nodes contacted by a new node.



t: the number of new nodes we want to repair collaboratively.

α: the amount of data stored in a node.

β1: the amount of data downloaded from a helper node to a new nodeduring the first phase of repair.

β2: the amount of data exchanged between two new node during thesecond phase of repair.

γ: the repair bandwidth per new node.

Fq: finite field of sizeq, whereq is a prime power.

We describe in this section a mathematical formulation of linear collaborative exact repair. For the

problem formulation for the non-linear case, we refer the readers to [21].

A data file consists ofB symbols. We letM be the vector spaceFB
q . We regard a data file as a vector

in M , and call it the source vectorm.

The source vectorm is mapped tonα finite field symbols, and each node storesα of them. The

mapping from the source vectorm to an encoded symbol is a linear functional onM . Following the

terminology of network coding, we will call these linear mappings theencoding vectorsassociated to the

encoded symbols. Formally, a linear functional is an objectin the dual space ofM , L(M,Fq), which

consists of all linear transformations fromM to Fq. More precisely, an encoding vector should be called

an encodingco-vectorinstead, but we will be a little bit sloppy on this point and simply use the term

“vector”.

The content of a storage node can be described by a subspace ofL(M,Fq), spanned by the encoding

vectors of the encoded symbols stored in this node. Fori = 1, 2, . . . , n, we letWi denote the subspace

of L(M,Fq) pertaining to nodei. The dimension ofWi is no more thanα,

dim(Wi) ≤ α

for all i.

We want to distribute the data file to then storage nodes in such a way that anyk of them are sufficient

in reconstructing the source vectorm. The (n, k)-reconstruction property requires that thekα encoding

vectors in anyk storage nodes span the dual spaceL(M,Fq), hence it is required that
⊕

i∈K

Wi = L(M,Fq),

for any k-subsetK of {1, 2, . . . , n}. Here
⊕

i Wi denotes the sum space ofWi’s. It will be a direct sum

if the regenerating code is MDS.

Suppose that the storage nodes with indicesi1, i2, . . . , it fail, and we need to replace them byt new

nodes. Fors = 1, 2, . . . , t, new nodes contactsd available nodes, and downloadβ1 symbols from each

of them. The storage nodes which participate in the repair process are called thehelpers. Different new

nodes may download repair data from different sets of helpers. LetHs be the index set of thed helpers

contacted by new nodes. Thus, we have

Hs ⊆ {1, 2, . . . , n} \ {i1, i2, . . . , it}



and|Hs| = d for all s. The downloaded symbols are linear combination of the symbols kept by the helpers.

The encoding vector of a symbol downloaded from nodej is thus contained inWj. For s = 1, 2, . . . , t,

let Us be the subspace ofL(M,Fq) spanned by thedβ1 encoding vectors of the symbols sent to new node

s. We have

dim(Us ∩Wj) ≤ β1,

for all s = 1, 2, . . . , t andj ∈ Hs.

In the second phase of the repair, new nodes computes and sendsβ2 finite field symbols to new nodes′,

for s, s′ ∈ {1, 2, . . . , t} ands 6= s′. The computed symbols are linear combinations of the symbols which

are already received by new nodes in the first phase of repair. LetVs→s′ be the subspace ofL(M,Fq)

spanned by the encoding vectors of the symbols sent from nodes to nodes′ during the second phase.

We have

Vs→s′ ⊆ Us, anddim(Vs→s′) ≤ β2.

For s′ = 1, 2, . . . , t, new nodes′ should be able to recover the content of the failed nodeis′ . In terms of

the subspaces, it is required that

Wi
s′
⊆ Us′ ⊕

⊕

s∈{1,2,...,t}\{s′}

Vs→s′.

The repair bandwidth per new node is equal to

γ = dβ1 + (t− 1)β2.

Any linear code satisfying the above requirements is calleda cooperative regenerating codeor collabo-

rative regenerating code.

III. COOPERATIVE REGENERATING CODES WITH M INIMUM REPAIR BANDWIDTH

In this section we give a slight generalization of the construction of minimum-bandwidth cooperative

regenerating codes in [22]. The number of failed nodes,t, to be repaired jointly can be any positive

integer. The code parameters which can be supported by the construction to be described below is the

same as those in [22], i.e.,n, k andd satisfy

n− t ≥ d ≥ k.

The file sizeB of the regenerating code is

B = k(2d+ t− k),

and each storage node stores2d + t − 1 symbols. In contrast to the polynomial approach in [22], the

construction below depends on the manipulation of a bilinear form (to be defined in (6)).

Encoding. We need ad×n matrix U and a(d+ t)×n matrixV for the encoding. PartitionU andV as

U =

[

U1

U2

]

, V =

[

V1

V2

]

,



whereU1 andV1 are submatrices of sizek × n. We will choose the matricesU andV such that the

following conditions are satisfied:

1) anyd× d submatrix ofU is nonsingular;

2) any (d+ t)× (d+ t) submatrix ofV is non-singular;

3) anyk × k submatrix ofU1 is nonsingular;

4) anyk × k submatrix ofV1 is nonsingular.

We can obtain matricesU andV by Vandermonde matrix or Cauchy matrix. If we use Vandermonde

matrix, we can set thei-th column ofU to
[

1 xi x2
i . . . xd−1

i

]T

,

for i = 1, 2, . . . , n. If x1, x2, . . . , xn are distinct elements inFq, then the resulting matrixU satisfies the first

and third conditions listed above. We can use Vandermonde matrix for the matrixV similarly. Existence

of such matrices is guaranteed if the field size is larger thanor equal ton. Anyway, the correctness of

the code construction only depends on the four conditions above.

For i = 1, 2, . . . , n, we denote thei-th column ofU by ui, and thei-th column ofV by vi.

We arrange the source symbols in ad× (d+ t) partitioned matrix

M =

[

A B

C 0

]

,

whereA, B andC are sub-matrices of sizek × k, k × (d + t − k) and (d − k) × k, respectively. The

total number of entries in the three sub-matrices is

k2 + k(d+ t− k) + (d− k)k = k(2d+ t− k) = B.

We will call M the source matrix.

The source matrixM induces a bilinear formB defined by

B(x,y) := xTMy, (6)

for x ∈ F
d
q and y ∈ F

d+t
q . We distribute the information to the storage nodes in such away that, for

i = 1, 2, . . . , n, nodei is able to compute the following two linear functions,

B(·,vi) andB(ui, ·).

The first one is a linear mapping fromFd
q to Fq, and the second is fromFd+t

q to Fq. Nodei can store the

d entries in the vectorMvi, and compute the first functionB(·,vi) by taking the inner product of the

input vectorx andMvi,

B(x,vi) = xT (Mvi).

For the second functionB(ui, ·), node i can store thed + t entries in the vectoruT
i M, and compute

B(ui,y) by

B(ui,y) = (uT
i M)y.



Since the components ofMvi anduT
i M satisfy a simple linear equation,

ui(Mvi)− (uT
i M)vi = 0, (7)

we only need to stored+ (d− t)− 1 finite field elements in nodei, in order to implement the function

B(·,vi) andB(ui, ·). Hence, each storage node is only required to store

α = 2d+ t− 1

finite field elements.

Repair procedure. Without loss of generality, suppose that nodes 1 tot fail. For i = 1, 2, . . . , t, the i-th

new node downloads some repair data from a set ofd surviving nodes, which can be chosen arbitrarily.

Let Hi be the index set of thed surviving nodes contacted by nodei. We haveHi ⊆ {t+1, t+2, . . . , n}

and |Hi| = d for all i. The helper with indexj ∈ Hi computes two finite field elements

B(ui,vj) andB(uj ,vi),

and transmits them to new nodei. In the first phase of repair, a total of2dt symbols are transmitted from

the helpers.

For i = 1, 2, . . . , t, the i-th new node can recoverMvi from the followingd-dimensional vector with

the d components indexed byHj .

(uT
j Mvi)j∈Hi

= [uT
j ]j∈Hi

· (Mvi),

where[uT
j ]j∈Hi

is thed× d matrix obtained by stacking the row vectorsuT
j for j ∈ Hi. Since this matrix

is nonsingular by construction, thei-th new node can obtainMvi. At this point, thei-th new node is able

to compute the functionB(·,vi).

In the second phase of the repair procedure, nodei calculatesB(uℓ,vi), for ℓ ∈ {1, 2, . . . , t} \ {i}, and

sends the resulting finite field symbol to theℓ-th new node. Furthermore, nodei can computeB(ui,vi),

using the information already obtained from the first phase of repair. Nodei can now calculateuT
i M

from

uT
i Mvs, for s ∈ Hi ∪ {1, 2, . . . , t},

using the property that the vectorsvs, for s ∈ Hi ∪ {1, 2, . . . , t}, are linearly independent overFq. The

repair of nodei is completed by storing2d+ t− 1 components in the vectorsuT
i M andMvi, which are

necessary in computingB(·,vi) andB(ui, ·).

We remark that the total number of transmitted symbols in thewhole repair procedure is2dt+ t(t−1),

and therefore the repair bandwidth per new node is

γ = 2d+ t− 1.

File recovery. Suppose that a data collector connects to nodesi1, i2, . . . , ik, with

1 ≤ i1 < i2 < · · · < ik ≤ n.



The data collector can download the vectors

Mviℓ anduT
iℓ
M,

for ℓ = 1, 2, . . . , k. From the lastd−k of the components inMviℓ , for ℓ = 1, 2, . . . , k, we can recover the

(d−k)×k sub-matrixC in the source matrixM, because anyk×k submatrixV1 of V is nonsingular by

assumption. Similarly, from the lastd+ t−k components inuT
iℓ
M, we can recover the(d+ t−k)×k sub-

matrix B, using the property that anyk× k submatrixU1 is nonsingular. The remaining source symbols

in A can be decoded either from the firstk components of vectorsMviℓ , or the firstk components of

the vectorsuT
iℓ
M.

Example. We illustrate the construction by the following example with code parametersn = 7, d = 4,

k = t = 3. The file size isB = k(2d+ t− k) = 24. In this example, we pickF7 as the underlying finite

field.

The source matrix is partitioned as

M =













a11 a12 a13 b11 b12 b13 b14

a21 a22 a23 b21 b22 b23 b24

a31 a32 a33 b31 b32 b33 b34

c11 c12 c13 0 0 0 0













.

The entriesaij ’s, bij ’s andcij ’s are the source symbols. LetB(x,y) be the bilinear form defined as in (6),

mapping a pair of vectors(x,y) in F
4
7 × F

7
7 to an element inF7.

Let U be the4× 7 Vandermonde matrix

U =













1 1 1 1 1 1 1

1 2 3 4 5 6 0

1 4 2 2 4 1 0

1 1 6 1 6 6 0













(8)

and fori = 1, 2, . . . , n, let ui =
[

1 i i2 i3
]T

be thei-th column ofU. LetV be the7×7 Vandermonde

matrix

V =



























1 1 1 1 1 1 1

1 2 3 4 5 6 0

1 4 2 2 4 1 0

1 1 6 1 6 6 0

1 2 4 4 2 1 0

1 4 5 2 3 6 0

1 1 1 1 1 1 0



























(9)

and for i = 1, 2, . . . , n, let vi =
[

1 i i2 . . . i6
]T

be thei-th column ofV. The i-th node needs to

store enough information such that it can compute the functions

B(·,vi) andB(ui, ·).



For instance, nodei can store the last 3 components in vectorMvi, and all 7 components inuT
i M,

zi1 := a21 + ia22 + i2a23 + i3b21 + i4b22 + i5b23 + i6b24,

zi2 := a31 + ia32 + i2a33 + i3b31 + i4b32 + i5b33 + i6b34,

zi3 := c11 + ic12 + i2c13,

zi4 := a11 + ia21 + i2a31 + i3c11,

zi5 := a12 + ia22 + i2a32 + i3c12,

zi6 := a13 + ia23 + i2a33 + i3c13,

zi7 := b11 + ib21 + i2b31,

zi8 := b12 + ib22 + i2b32,

zi9 := b13 + ib23 + i2b33,

zi10 := b14 + ib24 + i2b34,

with all arithmetic performed modulo7. The missing entry ofMvi, namely, the first entry ofMvi,

a11 + ia12 + i2a13 + i3b11 + i4b12 + i5b13 + i6b14

= −izi1 − i2zi2 − i3zi3

+ zi4 + izi5 + i2zi6 + i3zi7 + i4zi8 + i5zi9 + i6zi10

is a linear combination ofzi1, zi2, . . . zi10. Each node only needs to store 10 finite field symbolszi1, zi2, . . . , zi10.

The storage per node meets the bound

αMBCR =
B(2d+ t− 1)

k(2d+ t− k)
= 2d+ t− 1 = 10.

We illustrate the repair procedure by going through the repair of nodes 5, 6 and 7. Suppose we lost

the content of nodes 5, 6 and 7, and want to rebuild them by cooperative repair. Fori = 1, 2, 3, 4, and

j = 5, 6, 7, nodei computesB(ui,vj) andB(uj,vi) and sends them to the nodej, in the first phase of

repair. Nodej now have 8 symbols,

B(u1,vj), B(u2,vj), B(u3,vj), B(u4,vj),

B(uj,v1), B(uj ,v2), B(uj ,v3), B(uj,v4).

The first four of them can be put together and form a vector












B(u1,vj)

B(u2,vj)

B(u3,vj)

B(u4,vj)













=













uT
1

uT
2

uT
3

uT
4













Mvj .

Because the first four columns of matrixU in (8) are linearly independent overF7, for j = 5, 6, 7, nodej

can solve forMvj after the first phase of repair, and is able to calculateB(x,vj) for any vectorx ∈ F
4
7.



The communications among nodes 5, 6 and 7 in the second phase of repair is as follows:

node 5 sendsB(u6,v5) to node 6,

node 5 sendsB(u7,v5) to node 7,

node 6 sendsB(u5,v6) to node 5,

node 6 sendsB(u7,v6) to node 7

node 7 sendsB(u5,v7) to node 5,

node 7 sendsB(u6,v7) to node 6.

For j = 5, 6, 7, nodej can obtainuT
j M from

uT
j M

[

v1 v2 v3 v4 v5 v6 v7

]

.

In the first phase, we transmit4 · 3 · 2 = 24 symbols, and in the second phase we transmit 6 symbols.

The number of transmitted symbol per new node is thus equal to10, which is equal to the target repair

bandwidthγ = 2d+ t− 1 = 10.

To illustrate the(n, k)-reconstruction property, suppose that a data collector connects to nodes 1, 2

and 3. The data collector can download the following vectors

uT
1M, uT

2M, uT
3M, Mv1, Mv2, andMv3.

There are totally 33 symbols in these six vectors. They are not linearly independent as the original file only

contains 24 independent symbols. We can decode the symbols in the data file by selecting 24 entries in the

received vectors, and form a vector which can be written as the product of a24×24 lower-block-triangular

matrix and a 24-dimensional vector

































V3

0 V3

0 0 V3

0 0 0 V3

0 0 0 0 V3

D 0 0 0 0 V3

D 0 0 0 0 0 V3

D 0 0 0 0 0 0 V3

































































































c11

c12

c13

b11

b21

b31
...

b14

b24

b34

a11

a21

a31
...

































































with V3 denoting a3× 3 nonsingualr Vandermonde matrix, andD a diagonal matrix. The above matrix

is invertible and we can obtain the source symbols in the datafile.



IV. A CLASS OFM INIMUM -STORAGE COOPERATIVE REGENERATING CODES

In this section, we give a simplified description of the the minimum-storage cooperative regenerating

code presented in [26]. The code parameters are

n = 2k, d = n− t, k ≥ t ≥ 2.

The firstk nodes are the systematic nodes, while the lastk nodes are the parity-check nodes. The coding

structure of the cooperative regenerating codes to be described in this section is indeed the same as the

MISER code [8],[9] and the regenerating code in [10]. Our objective is to show that, with this coding

structure, we can repair the failure of anyt systematic nodes and anyt parity-check nodes, for anyt less

than or equal tok, attaining the MSCR point defined in (4).

We need a nonsingular matrixU and a super-regular matrixP, both of sizek×k. Recall that a matrix

is said to be super-regular if every square submatrix is nonsingular. Cauchy matrix is an example of

super-regular matrix, and we may letP be a Cauchy matrix.

After the matricesU andP are fixed, we letQ be the inverse ofP andV be the matrixV := UP. It

can be shown that the matrixV is non-singular andQ is super-regular. We have the following relationship

among these matrices

V = UP andU = VQ.

Let pij be (i, j)-entry ofP, for i, j ∈ {1, 2, . . . , k}, andqij be the(i, j)-entry ofQ.

For i = 1, 2, . . . , k, let ui denote thei-th column ofU, andvi the i-th column ofV. The columns

of U and the columns ofV will be regarded as two bases of vector spaceF
k
q . Let û1, û2, . . . , ûk be the

dual basis ofui’s, and letv̂1, v̂2, . . . , v̂k be the dual basis ofvi’s. The dual bases satisfy the following

defining property

ûT
i uj = δij , and v̂T

i vj = δij ,

whereδij is the Kronecker delta function.

The last ingredient of the construction is a2×2 super-regular symmetric matrix

[

a e

e a

]

and its inverse
[

b f

f b

]

, satisfying
[

a e

e a

][

b f

f b

]

=

[

1 0

0 1

]

. (10)

In particular, it is required thata, e anda2 − e2 are all not equal to zero inFq.

Encoding. A data file consists of

B = k(d+ t− k) = k(n− k) = k2

source symbols. Fori = 1, 2, . . . , k, nodei is a systematic node and storesk source symbols. We can

perform the encoding in two essentially the same ways. In thefirst encoding function, the firstk nodes



store the source symbols and the lastk nodes store the parity-check symbols. Letxi be thek-dimensional

vector whose components are the symbols stored in nodei. Forj = 1, 2, . . . , k, nodek+j is a parity-check

node, and stores thek components of vector

yj =

k
∑

ℓ=1

(

aûℓv
T
j + epℓjIk

)

xℓ, (11)

whereIk denotes thek × k identity matrix. We note that the matrix within the parenthesis in (11) is the

sum of a rank-1 matrix and an identity matrix.

In the second encoding function, which is the dual of the firstone, nodesk + 1, k + 2, . . . , 2k store

the source symbols and nodes1 to k store the parity-check symbols. Letyj be thek-dimensional vector

stored in nodek + j. For i = 1, 2, . . . , k, nodei stores the vector

xi =
k

∑

ℓ=1

(

bv̂ℓu
T
i + fqℓiIk

)

yℓ. (12)

This duality relationship is first noted in [10].

Proposition 1 ([10]). The regenerating code defined by(11) is the same as the one defined by(12).

We will give a proof of Prop. 1 in terms of matrices. The matrixformulation is also useful in simplifying

the description of the repair and decode procedure. LetÛ (resp.V̂, X andY) be thek×k matrix whose

columns arêui (resp.v̂i, xi, andyi) for i = 1, 2, . . . , k. We have

Û = (U−1)T = V̂(Q−1)T ,

V̂ = (V−1)T = Û(P−1)T .

In terms of these matrices, the first encoding function can beexpressed as

Y = aÛXTV + eXP. (13)

Indeed, thej-th column ofaÛXTV + eXP is

aÛ · (j-th column ofXTV) + e
k

∑

ℓ=1

xℓpℓj

= a
k

∑

ℓ=1

ûℓ · (x
T
ℓ vj) + e

k
∑

ℓ=1

xℓpℓj

= a
k

∑

ℓ=1

ûℓv
T
j xℓ + e

k
∑

ℓ=1

xℓpℓj

=
k

∑

ℓ=1

(

aûℓv
T
j + epℓjIk

)

xℓ.

Similarly, the second encoding function defined by (12) can be expressed as

X = bV̂YTU+ fYQ. (14)



Proof. Proof of Prop. 1 Suppose thatY is given as in (13). SubstitutingY by aÛXTV + eXP in the

right-hand side of (14), we get

R.H.S. of (14)= bV̂YTU + fYQ

= bV̂(aÛXTV + eXP)TU

+ f(aÛXTV + eXP)Q

= (ab+ ef)X+ (be+ af)ÛXTU

= X = L.H.S. of (14).

The last line follows from the facts thatae + ef = 1 and be + af = 0, which follow directly from (10).

Therefore, (14) is implied by (13).

By similar arguments, one can show that (13) is implied by (14). Therefore, regenerating code defined

by the first encoding function in (11) is the same as the one defined by the second encoding function in

(12).

Repair Procedure. Suppose thatt systematic nodes fail, for some positive integert ≤ k. We assume

without loss of generality that the failed nodes are nodes 1 to t, after some appropriate node re-labeling

if necessary.

In the first phase of repair, each of the surviving nodes sendsa symbol to each of the new node. For

i = 1, 2, . . . , t, the symbol sent to nodei is obtained by taking the inner product ofui with the content

of the helper node.

Consider nodei, for some fixed indexi ∈ {1, 2, . . . , t}. The symbols received by nodei after the first

phase of repair are
uT
i xm for m = t+ 1, t+ 2, . . . , k, and

uT
i yj for j = 1, 2, . . . , k.

We make a change of variables and define

Z := YQ.

For ν = 1, 2, . . . , k, the ν-th column ofZ is

zν :=

k
∑

ℓ=1

qℓνyℓ.

BecauseQ is a non-singular matrix, Nodei can obtain the vector(uT
i zν)ν=1,2,...,k from (uT

i yν)ν=1,2,...,k,

and vice versa. In terms of the new variables inZ, (14) becomes

X = bÛZTU+ fZ. (15)

The symbol sent from nodem to nodei, namelyuT
i xm, is them-th component of vector

uT
i X = uT

i (bÛZTU+ fZ),



and is equal to

bzTi um + fuT
i zm.

As a result, the information obtained by nodei after the first repair phase can be transformed to

uT
i zj for j = 1, 2, . . . , k, and

buT
mzi + fuT

i zm for m = t+ 1, t+ 2, . . . , k.

In the second phase of the repair procedure, nodei sends the symboluT
i zi′ to node i′, for i, i′ ∈

{1, 2, . . . , t}, i 6= i′. The total number of symbols transmitted during the first andthe second part of the

repair procedure istd+ t(t− 1). The number of symbol transmissions per failed node is thus

γ = d+ t− 1.

Node i wants to recover thei-th column ofX, as expressed in (15). Thei-th column of the first term

bÛZTU on the right-hand side is equal to the product ofbÛ and thei-th column ofZTU. We note that

the components of thei-th column ofZTU are preciselyzTν ui, for ν = 1, 2, . . . , k, and are already known

to nodei. It remains to calculatei-th column offZ, which is fzi.

Node i computesuT
mzi for m = t + 1, t+ 2, . . . , k by

uT
mzi =

1

b
[(buT

mzi + fuT
i zm)− fuT

i zm].

During the second phase of repair, nodei gets

uT
i′zi, for i′ ∈ {1, 2, . . . , t} \ {i}.

As a result, nodei has a handle onuT
ℓ zi for all ℓ = 1, 2, . . . , k. Sinceuℓ’s are linearly independent, node

i can calculatezi by taking the inverse of matrixU. This completes the repair procedure for nodei.

By dualizing the above arguments, we can collaboratively repair anyt parity-check node failures with

optimal repair bandwidthγ = d+ t− 1. Note that we have not used the property that matricesP andQ

are super-regular yet. The correctness of the repair procedure only relies on the condition thatP andQ

are non-singular.

File Recovery. The reconstruction of the original file can be done in the sameway as in [8], [9] and

[10]. We give a more concise description of the file recovery procedure below.

Suppose that a data collector connects tok− s nodes among the firstk nodes, ands nodes among the

last k nodes, for some integers between 0 andk. With suitable re-indexing, we may assume that nodes

s+1, s+2, . . . , k are contacted by the data collector, without loss of generality. Suppose that the indices

of the remainings storage nodes connected to the data collector arej1, j2, . . . , js, with

k < j1 < j2 < . . . < js ≤ 2k.

Thus, the data collector has access to

xs+1,xs+2, . . . ,xk, andyj1 ,yj2, . . . ,yjs.



The objective of the data collector is to recover vectorsx1,x2, . . . ,xk. Sincexs+1,xs+2, . . . ,xk have been

downloaded directly, we only need to reonstructx1,x2, . . . ,xs.

We re-write the encoding function in (13) as

Y = aÛXTUP+ eXP.

The data collector only knows the columns ofY which are indexed byj1, j2, . . . , js. Let Υ be thek× s

submatrix ofY consisting of the columns ofY with indicesj1, j2, . . . , js, and letΠ be thek×s submatrix

of P consisting of columnsj1, j2, . . . , js. We partition matrixX as

X = [ X1 X2 ],

whereX1 consists of the firsts columns ofX, andX2 consists of the lastk − s columns.

We have

Υ = aÛ

[

XT
1

XT
2

]

UΠ+ e[ X1 X2 ]Π. (16)

Move the terms in (16) which involveX2 to the left, and pre-multiply byUT . The equation in (16) can

be written as

UTΥ− a

[

0

(UTX2)
T

]

Π− e[ 0 UTX2 ]Π

= a

[

(UTX1)
T

0

]

Π+ e[ UTX1 0 ]Π. (17)

The quantities on the left of (17) are readily computable by the data collector.

We illustrate how to obtainUTX1 below. Partition matrixΠ andUTX1 into

Π =

[

Π1

Π2

]

andUTX1 =

[

W1

W2

]

,

whereΠ1 andW1 are square matrices of sizes×s, andΠ2 andW2 have size(k−s)×s. The right-hand

side of (17) can be simplified to

a

[

WT
1 Π1 +WT

2Π2

0

]

+ e

[

W1Π1

W2Π1

]

.

SinceP is super-regular,Π1 is nonsingular. From the lastk − s rows of the matrices on both sides of

(17), we can solve for the entries inW2. It remains to solve for the entries inW1.

As the entries inW2 are known as this point, we can subtractaWT
2 Π2 from the firsts rows of (17).

We thus know the value of

aWT
1 Π1 + eW1Π1.

As Π1 is nonsingular, we can post-multiply by the inverse ofΠ1 and compute thes× s matrix

aWT
1 + eW1.



TABLE II

ENCODING OF A RATE-1/2 MSCRCODE FOR EIGHT STORAGE NODES. THE SYMBOLS IN THE FIRST FOUR COLUMNS ARE THE SOURCE

SYMBOLS IN NODES1 TO 4. THE SYMBOLS IN THE LAST FOUR COLUMNS ARE THE PARITY-CHECK SYMBOLS IN NODES5 TO 8.

N1 N2 N3 N4 N5 N6 N7 N8

x11 x12 x31 x41 (2x1ℓ + xℓ1)
4

ℓ=1 · p1 (2x1ℓ + xℓ1)
4

ℓ=1 · p2 (2x1ℓ + xℓ1)
4

ℓ=1 · p3 (2x1ℓ + xℓ1)
4

ℓ=1 · p4

x12 x22 x32 x42 (2x2ℓ + xℓ2)
4

ℓ=1 · p1 (2x2ℓ + xℓ2)
4

ℓ=1 · p2 (2x2ℓ + xℓ2)
4

ℓ=1 · p3 (2x2ℓ + xℓ2)
4

ℓ=1 · p4

x13 x23 x33 x43 (2x3ℓ + xℓ3)
4

ℓ=1 · p1 (2x3ℓ + xℓ3)
4

ℓ=1 · p2 (2x3ℓ + xℓ3)
4

ℓ=1 · p3 (2x3ℓ + xℓ3)
4

ℓ=1 · p4

x14 x24 x34 x44 (2x4ℓ + xℓ4)
4

ℓ=1 · p1 (2x4ℓ + xℓ4)
4

ℓ=1 · p2 (2x4ℓ + xℓ4)
4

ℓ=1 · p3 (2x4ℓ + xℓ4)
4

ℓ=1 · p4

The diagonal entries are(a+ e)wℓℓ, for ℓ = 1, 2, . . . , s. Becausea2 − e2 = (a+ e)(a− e) is not equal to

0 by (10), we can divide bya + e and obtainwℓℓ. The non-diagonal entries can be calculated in pairs.

For i 6= j, we solve forwij andwji from
[

a e

e a

][

wij

wji

]

.

The above2× 2 is nonsingular by (10). Putting matricesW1 andW2 together, we getUTX1. SinceU

is invertible, we can solve forX1, which consists of the vectors stored in the firsts storage nodes. This

completes the file recovery procedure.

Example. Consider an example fork = 4. There are eight storage nodes in the distributed storage

system. Nodes 1 to 4 are the systematic nodes, while nodes 5 to8 are the parity-check nodes. The data

file containsB = k2 = 16 symbols in a finite field. Fori = 1, 2, 3, 4, we let the symbols stored in nodei

be denoted byxi1, xi2, xi3 andxi4 (see Table II). In this example, we pick a finite field of size 11as the

alphabet. All arithmetic is performed modulo 11.

We letP be the following4× 4 Cauchy matrix

P =













1

a1−b1

1

a1−b2

1

a1−b3

1

a1−b4
1

a2−b1

1

a2−b2

1

a2−b3

1

a2−b4
1

a3−b1

1

a3−b2

1

a3−b3

1

a3−b4
1

a4−b1

1

a4−b2

1

a4−b3

1

a4−b4













=













1 4 9 8

10 1 4 9

7 10 1 4

2 7 10 1













wherea1 = 2, a2 = 4, a3 = 6, a4 = 8, b1 = 1, b2 = 3, b3 = 5 and b4 = 7 are distinct elements inF11.

MatricesU and Û are set to the4 × 4 identity matrix. With this choice of matrixU, the matrixV is

equal toUP = P. Let a = 2 ande = 1, such that the matrix
[

a e

e a

]

=

[

2 1

1 2

]



is super-regular. Forj = 1, 2, 3, 4, the symbols stored in thej-th parity-check node are the entries in the

j-th column of the following matrix

Y =













2













x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44













+













x11 x21 x31 x41

x12 x22 x32 x42

x13 x23 x33 x43

x14 x24 x34 x44

























P.

For j = 1, 2, 3, 4, we denote thej-th column of the Cauchy matrixP by pj , and let(2xjℓ + xℓj)
4
ℓ=1

be

the vector

(2xj1 + x1j , 2xj2 + x2j , 2xj3 + x3j , 2xj4 + x4j). (18)

The content of the parity-check nodes are illustrated in thelast four columns in Table II.

We illustrate how to repair multiple systematic node failures collaboratively. Suppose that nodes 1, 2

and 3 fail. In the first phase of the repair process, each of theremaining nodes, namely nodes 4 to 8, sends

three symbols to each new node. In this example, each helper node can simply read out three symbols

and send them to the new nodes. More specifically, the symbolsin the first (resp. second and third) row

in columns 4 to 8 in Table II are sent to node 1 (resp. 2 and 3). Hence, fori = 1, 2, 3, new nodei receives

the following five finite field symbols

x4i, (2xiℓ + xℓi)
4

ℓ=1 · p1, (2xiℓ + xℓi)
4

ℓ=1 · p2,

(2xiℓ + xℓi)
4

ℓ=1 · p3, (2xiℓ + xℓi)
4

ℓ=1 · p4

in the first phase. SinceP is a nonsingular matrix, new nodei can obtain the vector(2xiℓ + xℓi)
4
ℓ=1

. We

list the symbols which can be computed by the new nodes as follows,

Node 1:x41, 3x11, 2x12 + x21, 2x13 + x31, 2x14 + x41.

Node 2:x42, 2x21 + x12, 3x22, 2x23 + x32, 2x24 + x42.

Node 3:x43, 2x31 + x13, 2x32 + x23, 3x33, 2x34 + x43.

At the end of the first phase, new nodei can calculate theith symbolxii and the last symbolxi4 by

xii =
1

3
(3xii)

xi4 =
1

2
[(2xi4 + x4i)− x4i].

The operations in the second phase of the repair are:

Node 1 and node 2 exchange the symbols2x12 + x21 and2x21 + x12;

Node 1 and node 3 exchange the symbols2x13 + x31 and2x31 + x13;

Node 2 and node 3 exchange the symbols2x23 + x32 and2x32 + x23.

Now, nodes 1 can decode the symbolsx12 andx13 from
[

2 1

1 2

][

x12

x21

]

and

[

3 1

1 3

][

x13

x31

]

.



Similarly, nodes 2 and 3 can decode the remaining sources symbols.

We transmitted 21 symbols during the whole repair procedure. Hence, 7 symbol transmissions are

required per new node. It matches the lower bound on repair bandwidth per new node

γMSCR = d+ t− 1 = 5 + 3− 1 = 7.

Remark:In the previous example, can see the use ofinterference alignment as follows. After the first

phase of repair, the first new node has symbolsx41, 3x11, 2x12 + x21, 2x13 + x31, 2x14 + x41, but the first

new node is only interested in decoding symbolsx11, x12, x13 andx14. The symbolsx21, x31, andx41 can

be regarded as “interference” with respect to the first new node. The interference occupy three degrees

of freedom and is resolved in the second phase of the repair.

Suppose that a data collector wants to recover the original file by downloading the symbols stored in

nodes 3, 4, 5 and 6. The symbols stored in nodes 3 and 4 are uncoded symbols, and hence can be read

off directly. The data collector needs to decodex11, x12, x13, x14, x21, x22, x23 andx24 from symbols in

node 5,

(3x11, 2x12 + x21, 2x13 + x31, 2x14 + x41) · p1 (19)

(2x21 + x12, 3x22, 2x23 + x32, 2x24 + x41) · p1 (20)

(2x31 + x13, 2x32 + x23, 3x33, 2x34 + x43) · p1 (21)

(2x41 + x14, 2x42 + x24, 2x43 + x34, 3x44) · p1 (22)

and the symbols in node 6,

(3x11, 2x12 + x21, 2x13 + x31, 2x14 + x41) · p2 (23)

(2x21 + x12, 3x22, 2x23 + x32, 2x24 + x41) · p2 (24)

(2x31 + x13, 2x32 + x23, 3x33, 2x34 + x43) · p2 (25)

(2x41 + x14, 2x42 + x24, 2x43 + x34, 3x44) · p2. (26)

The underlined symbols are readily obtained from nodes 3 and4.

From the two finite field symbols in (22) and (26), after subtracting off the known quantities, we can

decode symbolx14 andx24 from
[

x14 x24

]

·Π1,

where

Π1 =

[

p11 p12

p21 p22

]

=

[

1 4

10 1

]

is the2× 2 submatrix on the top left corner ofP. Likewise, from (21) and (25), we can obtainx13 and

x23 by solving a2× 2 system of linear equations.



We can put the four finite field symbols in(19), (20), (23) and (24) together and form a2× 2 matrix
[

3x11 2x12 + x21

2x21 + x12 3x22

]

Π1.

Using the property thatΠ1 is non-singular again, we can solve for the matrix
[

3x11 2x12 + x21

2x21 + x12 3x22

]

,

from which we can decodex11, x22, x12 andx21.

V. CONCLUDING REMARKS

In this paper we review two constructions of cooperative regenerating codes, one for the MSCR point

and one for the MBCR point. We show that with the same coding structure as in the MISER code, we

can cooperatively repair any number of systematic node failures and any number of parity-check node

failures. As a matter of fact, we can also repair any pair of systematic node and a parity-check node.

However, we need to work over a larger finite field and the super-regular matrixP should satisfy some

extra conditions, in order to repair any two node failures. The detail can be found in [26].

Security aspects of cooperative regenerating codes are investigated in [32] to [34]. There are basically

two types of adversarial storage nodes. Adversaries of the first type are passive eavesdroppers, who want

to obtain some information about the data file. Under the assumption that the number of storage nodes

accessed by an eavesdropper is no more than a certain number,the secrecy capacity and the related code

constructions are studied in [33] and [34]. Adversaries of the second type, called Byzantine adversaries,

are malicious and try to corrupt the distributed storage system. They conform to the protocol but may

send out erroneous packets during a repair procedure. It is shown in [32] that distributed storage system

with cooperative repair is more susceptible to this kind of pollution attack, because of the large number

of data exchanges in the second phase of the repair. One way toalleviate the potential damage incurred

by a Byzantine adversary is to allow multiple levels of cooperation. To this end, a partially cooperative

repair model, in which a new node communicates only with a fraction of all new nodes, is proposed in

[35]. A code construction based on subspace codes is given in[36].

Local repairable code (LRC) is another class of erasure-correcting codes of practical interests. In LRC,

the focus is not on the repair bandwidth, but on the number of nodes contacted by a new node. A code

is said to havelocality r if each symbol in a codeword is a function of at mostr other symbols. In

contrast to regenerating code, it is only required that, foreach symbol, there exists a particular set ofr

nodes from which we can repair the symbol. A fundamental bound on the minimum distance of a code

with locality constraint was obtained by Gopalanet al. in [37]. The problem of repairing multiple symbol

errors locally, calledcooperative local repair, is studied in [38] and [39].

In addition to locality, disk I/O cost is another important factor. The speed of reading bits from hard

disks may be a bottleneck of the repair time. The number of bits that must be accessed by a helper node



is obviously lower bounded by the number of bits transmittedto the new nodes. A regenerating code with

the property that the number of bits accessed for the purposeof repaired is exactly equal to the number

of bits transmitted is called arepair-by-transferor help-by-transfercode (see e.g. [11] or [14]). We note

that the example in Section III is indeed a repair-by-transfer MBCR code, even though the repair is for

systematic nodes only. It is proved in [22] that repair-by-transfer MBCR code does not exists when if

any t ≥ 2 failed nodes could be repaired by anyd ≥ 2 helper nodes. The example in Section III does not

violate the impossibility result in [22]. Nevertheless, itis interesting to see whether repair-by-transfer is

possible for other code parameters.

Instead of designing new codes, devising efficient algorithms which can repair existing storage codes is

also of practical interests. Fast repair method for the traditional Reed-Solomon code can be found in [40].

Recovery algorithm for array codes, such as Row Diagonal Pairty (RDP) and X-code, are given in [41]

and [42], respectively. Some special results for repairingconcurrent failures in RDP code are reported in

[43]. It is interesting to see whether we can devise cooperative repair algorithm for Reed-Solomon codes

and other array codes.
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