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Cyclic LRC Codes, binary LRC codes, and
upper bounds on the distance of cyclic codes

Itzhak Tamo∗ Alexander Barg† Sreechakra Goparaju‡ Robert Calderbank§

Abstract

We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family
of LRC codes that generalize the classical construction of Reed-Solomon codes was constructed in a recent paper
by I. Tamo and A. Barg (IEEE Trans. Inform. Theory, no. 8, 2014). In this paper we focus on optimal cyclic codes
that arise from this construction. We give a characterization of these codes in terms of their zeros, and observe that
there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield
subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum
distance. The locality parameter of a cyclic code is related to the dual distance of this code, and we phrase our results
in terms of upper bounds on the dual distance.

I. INTRODUCTION

Locally recoverable codes (LRC codes) have been extensively studied in recent literature following their
introduction in [4]. A linear code C ⊂ Fnq is called locally recoverable with locality r if the value of every
symbol of the codeword depends only on r other symbols of the same codeword.

Definition 1 (LRC codes): A code C ⊂ Fnq is LRC with locality r if for every i ∈ [n] := {1, 2, . . . , n} there
exists a subset Ai ⊂ [n]\{i}, |Ai| ≤ r and a function φi such that for every codeword x ∈ C we have

xi = φi({xj , j ∈ Ai}). (1)

This definition can be also rephrased as follows. Given a ∈ Fq, consider the sets of codewords

C(i, a) = {x ∈ C : xi = a}, i ∈ [n].

The code C is said to have locality r if for every i ∈ [n] there exists a subset Ai ⊂ [n]\i, |Ai| ≤ r such that the
restrictions of the sets C(i, a) to the coordinates in Ai for different a are disjoint:

CAi
(i, a) ∩ CAi

(i, a′) = ∅, a 6= a′. (2)

We use the notation (n, k, r) to refer to the parameters of an LRC code of length n, cardinality qk, and locality r.
If dim C = k, then clearly r ≤ k. Applications of LRC codes in distributed storage motivate constructions in

which r is a small constant, while n and k could be large. Early constructions of LRC codes such as [8], [12], [14],
[15], [19] relied on alphabets of cardinality much greater than the code length. Paper [16] introduced a family of
LRC codes of Reed-Solomon (RS) type over field alphabets of size comparable to the code length n. We call these
codes RS-like codes below. Some of the codes constructed in [16] are cyclic of length n|(q − 1), where q is the
size of the field. In this paper we focus on cyclic RS-like codes. As our first result, we characterize the distance
and the locality parameter of such codes in terms of the code’s zeros. We also study subfield subcodes of RS-like
codes and describe the locality parameter in terms of irreducible cyclic codes supported on the coordinate subsets
that form the recovery sets of the original code. This enables us to find estimates of the locality parameter based
on the structure of the zeros of the code and to construct examples of binary LRC codes.

The general question of finding the locality r is equivalent to finding the dual distance of a cyclic code, which
is a difficult problem. However unlike for the problem of error correction, we actually gain by proving that the
dual distance is smaller than the estimated value, as this implies better local recovery properties of the LRC code.
Subfield subcodes are particularly appealing in this respect as they not only increase the distance, but also reduce
the locality, though at the expense of code dimension. Developing this topic, we derive some upper bounds on the
dual distance of cyclic codes in terms of their zeros and use them to find new binary LRC codes with good locality
and many recovery sets for each coordinate.

Apart from [16], an earlier work relevant to this study is [5]. In it, the authors motivate and construct several
examples of binary cyclic LRC codes with locality 2 and in a number of cases prove optimality of their constructions.
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The following Singleton-like bound on the distance d of an (n, k, r) LRC code was proved in [4]:

d ≤ n− k − dk/re+ 2. (3)

We call the code optimal if its distance meets this bound with equality.
Some of the results of this paper were presented at the 2015 IEEE International Symposium on Information

Theory and published in [18]. The new results compared to [18] are concerned with upper bounds on locality (the
dual distance) in terms of the zeros of the cyclic code.

II. THE REED-SOLOMON-LIKE CONSTRUCTION

Let us briefly recall the construction detailed in [16]. Our aim is to construct an LRC code over Fq with the
parameters (n, k, r), where n ≤ q. We additionally assume that (r + 1)|n and r|k, although both the constraints
can be lifted by adjustments to the construction presented below [16]. Throughout this paper we let

ν = n/(r + 1), µ = k/r.

Let p(x) ∈ Fq[x] be a polynomial of degree r + 1 such that there exists a partition A = {A1, . . . , Aν} of a set of
points A = {P1, . . . , Pn} ⊂ Fq into subsets of size r + 1 such that p(x) is constant on each set Ai ∈ A.

Consider the k-dimensional linear subspace V ⊂ Fq[x] spanned by the set of k polynomials

{p(x)jxi, i = 0, . . . , r − 1; j = 0, . . . , µ− 1}. (4)

Given an information vector a = (aij , i = 0, . . . , r − 1; j = 0, . . . , µ− 1) ∈ Fkq let

fa(x) =

r−1∑
i=0

µ−1∑
j=0

aijp(x)jxi. (5)

Note that fa(x) belongs to the subspace V . Now define the code C as the image of the linear evaluation map

e : V → Fnq
fa 7→ (fa(Pi), i = 1, . . . , n).

(6)

As shown in [16], the minimum distance of the code C equals d = n−k(r+ 1)/r+ 2, and is optimal for the given
parameters. The code also has the LRC property: namely, the value of the symbol in coordinate P ∈ Ai ∈ A can
be found by interpolating a polynomial of degree ≤ r − 1 that matches the codeword at the points Pj ∈ Ai\{P}.
Below we call the subset of coordinates Ai\{P} the recovery set of the coordinate P.

To construct examples of codes using this approach we need to find polynomials and partitions of points of the
field that satisfy the above assumptions. As shown in [16], one can take g(x) =

∏
β∈H(x − β), where H is any

subgroup of the multiplicative group F∗q (it is also possible to take H to be an additive subgroup of F+
q ). In this

case r = |H| − 1, and the corresponding set of points A can be taken to be any collection of the cosets of the
subgroup H in the group F∗q . In this way we can construct codes of length n = m(r + 1), where m is an integer
such that 1 ≤ m ≤ (q − 1)/|H|.

III. CYCLIC q-ARY LRC CODES

In this paper we are concerned with the following special case of the construction (5)-(6). Let n|(q − 1) and
choose the polynomial p(x) in (4) to be the annihilator polynomial of a subgroup of the multiplicative group F∗q .
As shown in [16], the polynomial fa in (5) can be taken in the form

fa(x) =

µ(r+1)−2∑
i=0

i 6=rmod(r+1)

aix
i. (7)

The set of polynomials of the form (7) forms a k-dimensional Fq-linear space. Choosing the set of evaluation points
as A = {1, α1, . . . , αn−1}, where α is a primitive n-th root of unity, we construct a linear k-dimensional code C
using the evaluation map (6).

Using this representation as the starting point, we observe that C is a cyclic code of length n. Generally, a cyclic
code is an ideal in the ring Fq[x]/(xn−1) which is generated by a polynomial g(x) such that g(x)|(xn−1). Let Fqm
be an extension field that contains the n-th roots of unity. Let t = deg(g) and let Z = {αij , j = 1, . . . , t} ⊂ Fqm
be the zeros of g(x). The set of unique representatives of cyclotomic cosets in Z with respect to the field Fq is
called a defining set of zeros of the code C = 〈g(x)〉. Throughout this section we assume that m = 1, i.e., that
n|(q − 1), each cyclotomic coset is of size one, and the defining set is Z.

As our first result in this section, we identify the zeros of the code C constructed using representation (7). Next
we make some observations regarding the structure of zeros of cyclic LRC codes. Based on these, we introduce a
general construction of optimal q-ary cyclic codes, described in the following theorem.
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Theorem 3.1: Let α be a primitive n-th root of unity, where n|(q − 1); l, 0 ≤ l ≤ r be an integer; and b ≥ 1 be
an integer such that (b, n) = 1. Let µ = k/r. Consider the following sets of elements of Fq:

L = {αi, imod(r + 1) = l},
D = {αj+sb, s = 0, . . . , n− µ(r + 1)}

where αj ∈ L. The cyclic code with the defining set of zeros L∪D is an optimal (n, k, r) q-ary cyclic LRC code.
The set of zeros of the code is schematically structured as follows (in this figure b=1).

Fig. 1. Subsets of zeros for distance (D) and locality (L). The set D accounts for the code’s distance, while L ensures the locality property

The proof of this theorem follows from Lemmas 3.2 and 3.3 and is given at the end of this section. Recall the
following property where α is an n-th root of unity and p is the characteristic of the field:

n−1∑
i=0

αi =

{
nmod p, if α = 1

0, otherwise.
(8)

Lemma 3.2: Consider the cyclic code C of length n constructed using the polynomials fa(x) given by (7). The
rows of the generator matrix G of C have the form (1, αj , α2j , . . . , α(n−1)j), for all j such that

j ∈
{

0, 1, . . . , µ(r + 1)− 2
}
\
{
`(r + 1)− 1, ` = 1, . . . , µ− 1

}
.

The defining set of zeros of C has the form R = D ∪ L̄, where

D =
{
αi : i = 1, . . . , n− µ(r + 1) + 1

}
L̄ =

{
αn−(µ−l)(r+1)+1, l = 1, 2, . . . , µ− 1

}
and the union is disjoint. The code C is an optimal (n, k, r) LRC code with distance d = n− µ(r + 1) + 2.

Proof: The statement about the generator matrix follows directly from (7). To prove the statement about the
zeros, it suffices to show that the dot product of any row of G and the row vector (1, αt, α2t, . . . , α(n−1)t) for any
t such that αt ∈ R, is zero. Indeed, from (8), if αj is the generating element of a row of G and t ∈ R, we need to
show that αj+t 6= 1, or that j + t is not a multiple of n. This is true because if t ∈ D, then j + t ≤ n− 1, and if
t ∈ L̄, then

j + t = n− ((µ− l)(r + 1)) + 1 + j, (9)

where l = 1, 2, . . . , µ− 1. The first two terms on the RHS of (9) are multiples of r + 1, therefore the entire RHS
is a multiple of r + 1 if and only if so is j + 1. Since G does not include the rows that would make the latter
possible, we have (r + 1)6 | (j + t). Finally, the claim about the distance follows from the BCH bound on the set
of zeros D.

In Lemma 3.2, we described the set of zeros of C as a union of two disjoint subsets of roots of unity. Alternatively,
the set of exponents R obviously can be described as a union of two non-disjoint sets, R = D ∪L, where D is as
given in Lemma 3.2 and

L =
{
αj(r+1)+1, j = 0, 1, . . . , ν − 1

}
.

As already observed, the subset D guarantees a large value of the code distance, supporting the optimality claim.
It is natural to assume that the zeros in L account for the locality property. The following lemma shows that this
is indeed the case.

Lemma 3.3: Let 0 ≤ l ≤ r and consider a ν × n matrix H with the rows

hm = (1, αm(r+1)+l, α2(m(r+1)+l), . . . , α(n−1)(m(r+1)+l)),

where m = 0, 1, . . . , ν − 1, and ν = n/(r + 1). Then all the cyclic shifts of the n-dimensional vector of weight
r + 1

v = (1 0 . . . 0︸ ︷︷ ︸
ν−1

αlν 0 . . . 0︸ ︷︷ ︸
ν−1

α2lν 0 . . . 0︸ ︷︷ ︸
ν−1

. . . αrlν 0 . . . 0︸ ︷︷ ︸
ν−1

)

are contained in the row space of H.
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Proof: First note that av =
∑ν−1
m=0 hm, where a = ν mod p. Indeed,

ν−1∑
m=0

αj(m(r+1)+l) = αlj
ν−1∑
m=0

(αj(r+1))m.

The element αj(r+1) is a ν-th root of unity, so by (8) the last sum is zero if j is not a multiple of ν and aαlj

otherwise. We conclude that the vector av is contained in the row space of H, and since a ∈ Fq, a 6= 0 so is the
vector v itself. The row space of H over Fq is closed under cyclic shifts, and this proves the lemma.

Note thatH forms a parity-check matrix of the code with defining set Zl = αl·{αm(r+1),m = 0, 1, . . . , ν−1}, 0 ≤
l ≤ r. The cyclic shifts of the vector v partition the support of the code into disjoint subsets of size r + 1 which
define the local recovery sets of the symbols. Therefore we obtain the following statement.

Proposition 3.4: Let C be a cyclic code of length n over Fq with the complete defining set Z, and let r be a
positive integer such that (r+1)|n. If Z contains some coset of the group of ν-th roots of unity, then C has locality
at most r.

Remark 1: Lemma 3.3 provides a general method of constructing optimal cyclic q-ary linear codes. The
construction is rather flexible and relies on the choice of two sets of zeros of the code, D and L, which are
responsible for error correction capability and locality of C. In other words, the set D accounts for the distance
properties of the code while L takes care of the locality property. The possibility to shift L and D around will
prove useful in the next section where it will enable us to improve the locality of subfield subcodes of our codes.

Remark 2: In [16] it was also observed that the construction (5)-(6) can be used to construct codes with two (or
more) disjoint recovery sets for every symbol of the encoding. Turning to cyclic codes, we note that Proposition
3.4 provides a simple sufficient condition for such a code to have several recovery sets: all we need is that the
complete defining set contain cosets of subgroups of groups of unity of degree ν1, ν2, . . . , where the νi’s are
pairwise coprime. For instance a cyclic code of length n = 63 whose complete defining set contains the sets of
7-th and 9-th roots of unity, has two disjoint recovery sets of sizes 6 and 8 for every symbol.

We conclude by proving the main result of this section.
Proof of Theorem 3.1: The minimum distance of the code C is estimated from below using the BCH bound

for the set of zeros D. We obtain
d(C) ≥ n− µ(r + 1).

That the locality parameter equals r follows from Proposition 3.4 used for the set L. The dimension of the code
equals n− |D ∪L| = k. Recalling that µ = k/r and using (3) we see that C is optimal. This completes the proof.

IV. SUBFIELD SUBCODES

A large part of the classical theory of cyclic codes is concerned with subfield subcodes of Reed-Solomon codes,
i.e., BCH codes, and related code families. In this section we pursue a similar line of inquiry with respect to cyclic
LRC codes introduced in the previous section. In particular, through an analysis of parameters of BCH-like codes
and some examples, we derive stronger bounds on locality with the same set of zeros L that we considered in the
previous section.

A. Notation
Let Z be the complete defining set of the code D over Fq , (i.e., a BCH-type code) and let C the corresponding

Reed-Solomon type code, i.e., the cyclic code over Fqm with the same set of zeros. In the previous section we
considered cyclic codes where the symbol field and the locator field coincided, as is common for Reed-Solomon
codes. In the context of subfield subcodes, the symbol field will be denoted Fq and the locator field Fqm (for most
of our examples, q = 2). The field Fqm is the splitting field of the generator polynomial g(x), while over Fq we
have g(x) =

∏
j∈J mij (x), where (ij , j ∈ J) is the set of representatives of the cyclotomic cosets that form the

defining set of zeros of C, and mij ’s are the corresponding minimal polynomials.
Given a code C ⊂ Fnqm , its subfield subcode D = C|Fq

consists of the codewords of C all of whose coordinates
are in Fq . For the analysis of subfield subcodes we will use the trace mapping Tm from Fqm to Fq , defined as

Tm(x) = x+ xq + · · ·+ xq
m−1

, x ∈ Fqm .

Given a vector v = (v1, . . . , vn) ∈ Fnqm , we use the notation Tm(v) := (Tm(v1), . . . , Tm(vn)). The trace of the
code C ⊂ Fnqm is the code over Fq obtained by computing the trace of all vectors c ∈ C, i.e.,

Tm(C) = {Tm(c), c ∈ C}.

Let C⊥ be the dual code of a cyclic code C. Obviously, the locality parameter r(C) equals the dual distance
d⊥(C) := d(C⊥). The dual code of the subfield subcode is characterized by Delsarte’s Theorem.
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TABLE I
SOME EXAMPLES OF BINARY CODES FOR WHICH PROPOSITION 4.4 GIVES A TIGHT BOUND ON LOCALITY.1

n k d ZD coset z r w Z(D⊥) d⊥ SH LP locator field Fqm

35 20 3 {1, 15} αG7 3 r ≤ 3 4 {0, 1, 7, 15} 4 k ≤ 25 k ≤ 29 F212

45 33 3 {1} αG15 4 r ≤ 7 8 {0, 1, 3, 5, 9, 15, 21} 8 k ≤ 37 k ≤ 39 F212

27 7 6 {1, 9} αG3 2 r = 1 2 {0, 3} 2 F218

63 36 3 {1, 9, 11, 15, 23} αG7 3 r ≤ 3 4 {0, 1, 7, 9, 11, 15, 21, 23} 4 F26

In the table, Z(C) refers to the defining set of C (for brevity we write i instead of αi); α is the n-th root of unity Fqm ; w is the number
of recovery sets Ai; other parameters are as given in Prop. 4.4. The columns labelled SH and LP refer to upper bounds on LRC codes
(see Appendix A).

Theorem 4.1: [2, Theorem 2] The dual of a subfield subcode is the trace of the dual of the original code, i.e.,
(C|Fq

)⊥ = Tm(C⊥).
Remark: If C is an (n, k, r) LRC code, then any coordinate in the dual code is contained in the support of

a codevector of weight at most r + 1. Hence by Theorem 4.1, the subfield subcode C|Fq
has locality ≤ r. This

observation is not surprising since the trace mapping Tm does not increase the weight of a codeword. However, as
we shall show in the sequel, the locality can be, and in most cases is, much smaller than r.

B. Preliminaries: From locality to irreducible cyclic codes
Let D and C be the codes defined in Section IV-A. Proposition 3.4 states that if Z contains some coset {αi :

imod (r + 1) = l} of the subgroup generated by αr+1 then C has locality r. By Lemma 3.3, the dual code C⊥
contains the vector

v = (1 0 . . . 0︸ ︷︷ ︸
ν−1

βl 0 . . . 0︸ ︷︷ ︸
ν−1

β2l 0 . . . 0︸ ︷︷ ︸
ν−1

β3l 0 . . . 0︸ ︷︷ ︸
ν−1

. . . βrl 0 . . . 0︸ ︷︷ ︸
ν−1

) (10)

where β = αν is a primitive root of unity of degree r + 1. The weight of the vector v is wtH(v) = r + 1 and the
supports of its cyclic shifts partition the set of n coordinates of the code into subsets of size r+ 1. As noted above,
these subsets define the local recovery sets Ai for the code C. By Theorem 4.1, for any γ ∈ Fqm and v ∈ C⊥, the
vector y := Tm(γv) ∈ C⊥|Fq

= D⊥. Furthermore, wtH(y) ≤ r + 1, and if y 6= 0, then its nonzero coordinates form
a recovery set of relatively small size in the code D.

In our analysis of the locality of the code D we will restrict our attention to the following subspace of the code
D⊥ :

V = 〈Tm(γv), γ ∈ Fqm〉. (11)

Below we make the following simplification. It will suffice to analyze only the nonzero coordinates of the subspace
V , therefore, we will drop the zeros and treat v and all the derived vectors as vectors of length r + 1 in Fqm or
Fq , as appropriate. By abuse of notation, we still use the same letter v, and from now on write

v = (1, βl, β2l, . . . , βrl). (12)

Note that since below we rely only on a subset of the vectors in D⊥, the code D might have a better (i.e.,
smaller) locality parameter than the one guaranteed by our results.

The form of the vectors in the subspace V (11) is reminiscent of the representation of vectors in irreducible
cyclic codes [11], [9]. In this section we take this as a starting point, connecting locality and results about such
codes.

Recall that a q-ary linear cyclic code is called irreducible if it forms a minimal ideal in the ring Fq[x]/(xn− 1).
The main result about irreducible codes is given in the following theorem.

Theorem 4.2: [9, Theorem 6.5.1] Let s > 0 be an integer, m = ords(q) be the multiplicative order of q modulo
s, let β be a primitive s-th root of unity in Fqm . The set of vectors

V = {(Tm(γ), Tm(γβ), . . . , Tm(γβs−1) : γ ∈ Fqm}, (13)

is a [s,m] linear irreducible code over Fq . �
Note that if in (13) we omit the requirement that β be a primitive root of unity, taking instead an s-th root of

unity such that βt = 1 for some t|s, then construction (13) results in a degenerate cyclic code. As is easily seen,
in this case the code V consists of s/t repetitions of the irreducible code

{(Tm(γ), Tm(γβ), . . . , Tm(γβt−1) : γ ∈ Fqm}.
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C. The case l = 0

In this case we study a particular case of the above construction, taking l = 0 in (12). Then the complete defining
set Z of the code contains the subgroup Gr+1 := 〈αr+1〉 generated by the element αr+1 and we obtain v = 1r+1

(the all-ones vector). By Theorem 4.2 the subspace V is of dimension 1 and is spanned by the all-ones vector.
Therefore the dual code D⊥ contains a vector of weight r+ 1, which means that D has the same recovery sets as
the code C.

Note that the subgroup Gr+1 = {1, αr+1, . . . , αrν} is closed under the Frobenius map, i.e.,

∀β∈Gr+1
(β ∈ Gr+1) ⇒ (βq ∈ Gr+1).

In other words, the set Gr+1 is a union of cyclotomic cosets. Hence a cyclic code over Fq whose set of zeros
contains Gr+1 has the LRC property and is of large dimension.

Example 1: Let D be a [n = 45, k = 30, d = 4] binary cyclic code with zeros {0, 3, 5, 9} in the field F212 . Since
the set of roots contains the subgroup G9, we have d⊥ ≤ 9, and hence the locality parameter of C satisfies r ≤ 8;
see (10). On the other hand, D⊥ has a defining set {1, 3, 7, 15} and the parameters [n = 45, k = 15, d = 9], so the
value r is indeed 8.

To compare the parameters of this code with the upper bounds2, we note that the shortening bound (SH) (16) gives
k ≤ 3 ·8+k2(45−3 ·9, 4) = 36. The linear programming bound (LP) (17) gives an estimate M (c)

2 (45, 4, 8) ≤ 238.48

which translates into k ≤ 38.
In this example the locality value predicted by our analysis is exact. This is not always the case as shown in the
next example in which the locality is smaller than given by the estimate based on the vector v.

Example 2: Let D be an [21, 12, 4] binary cyclic code defined by the set of roots {0, 1, 7} in F26 . Since the
set of roots contains the subgroup 〈α7〉, the dual code has minimum distance at most 7, and hence the code has
locality r ≤ 6. On the other hand, D⊥ is a [21, 9, 6] cyclic code with defining set {1, 3, 9}. Therefore the locality
of D is actually 5. The upper bounds give, respectively, k ≤ 14 and k ≤ 15.

D. The case l > 0

The analysis of locality becomes more interesting if we take l > 0 in (12). Here we rely on the full power of the
theory of irreducible cyclic codes, invoking several results that follow from the classical connection between these
codes and Gauss sums. There are two options, namely gcd(l, r + 1) = 1 and gcd(l, r + 1) > 1. In the latter case,
the analysis is as in the former except that we get a degenerate cyclic code. Below, if not stated, we exemplify the
case l > 0 by taking l = 1.

Theorem 4.3: [3, Theorem 15] Consider a q-ary irreducible cyclic code V of length s as given in (13), where
β and m are defined accordingly. Let N = (qm − 1)/t and assume that gcd( q

m−1
q−1 , N) = 1. Then V is a constant

weight code over Fq of weight (q − 1)qm−1/N. �

If q = 2, the code V is the familiar simplex, or Hadamard, code of length t = 2m − 1, dimension m and
minimum distance d = 2m−1. This follows since Nt = 2m−1 and gcd(2m−1, N) = 1, and so N = 1. This leads
to the following result.

Proposition 4.4: Let z ≥ 1 be an integer such that (2z−1)|n and let α be an n-th root of unity. Let D be an [n, k]
binary linear cyclic code whose complete defining set Z contains the coset αG2z−1 of the group G2z−1 = 〈α2z−1〉.
Then D has locality r ≤ 2z−1 − 1. Moreover, each symbol of the code has at least 2z−1 recovery sets Ai of size
2z−1 − 1.

Proof: Let Fqz be a subfield of Fqm and let Tm/z := TFqm/Fqz
be the trace mapping from Fqm to Fqz . We

abbreviate TFqm/Fq
as Tm.

Define the subspace
Vz = {(Tz(γ), . . . , Tz(γβ

s−1)), γ ∈ Fqz},

where z = ords(q), and β is an s-th primitive root of unity.
Similarly define

Vm = {(Tm(γ), . . . , Tm(γβs−1)) : γ ∈ Fqm},

We will prove that Vm = Vz .

Proof that Vm ⊆ Vz . Let (Tm(γ), . . . , Tm(γβs−1)) ∈ Vm for γ ∈ Fqm . Recall that Tm = Tz ◦ Tm/z. We have

(Tm(γ), . . . , Tm(γβs−1))

= (Tz(Tm/z(γ)), . . . , Tz(Tm/z(γβ
s−1)))

= (Tz(Tm/z(γ)), . . . , Tz(Tm/z(γ)βs−1)) ∈ Vz.

2For reader’s convenience we have listed in Appendix A some of the currently known upper bounds on LRC codes.
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Proof that Vm ⊇ Vz . Since Tm/z is surjective, there exists γ′ ∈ Fqm such that Tm/z(γ′) = α ∈ Fqz\{0}. Let
(Tz(δ), . . . , Tz(δβ

s−1)) ∈ Vz for δ ∈ Fqz . We show that this vector belongs also to Vm. Consider the following
vector in Vm : (

Tm

(γ′δ
α

)
, . . . , Tm

(γ′δ
α
βs−1

))
where γ′δ

α ∈ Fqm .
Then (

Tm

(γ′δ
α

)
, . . . , Tm

(γ′δ
α
βs−1

))
=
(
Tz

(
Tm/z

(γ′δ
α

))
, . . . , Tz

(
Tm/z

(γ′δ
α
βs−1

)))
=
(
Tz(

δ

α
Tm/z(γ

′)), . . . , Tz(
δβs−1

α
Tm/z(γ

′)))

=
(
Tz

( δ
α
α
)
, . . . , Tz

(δβs−1
α

α
))

= (Tz(δ), . . . , Tz(δβ
s−1)),

and the result follows. The rest of the proof follows from Theorem 4.3.
Table I shows a few examples where an [n, k, d] binary cyclic code D with a defining set given by Z, contains

the coset αG2z−1, and the upper bound on r obtained in Proposition 4.4 is tight. The last two codes in the table
have dimensions far away from the known upper bounds.

Notice that for binary cyclic codes, when l > 0, we were able to reduce the upper bound on r roughly by a
factor of 2 when the coset of a group Gs is contained in the defining set Z, where s = 2z − 1. We show that
this can be generalized to a q-ary cyclic code (the bound reduces roughly by a factor of (q − 1)/q)) by a simple
averaging argument to upper bound the distance of irreducible codes.

Proposition 4.5: Let V be a q-ary [s,m, d] irreducible cyclic code, then its minimum distance satisfies d ≤
s(1− qm−1−1

qm−1 ).
Proof: For any element γ ∈ Fqm define the linear mapping Tm,γ : Fmq → Fq as α 7→ Tm(γα), where the field

Fqm is viewed as a m dimensional vector space over Fq . It is well known that these qm linear mappings exhaust
the set of all linear mappings. In other words, for any γ ∈ Fqm there exists a vector vγ ∈ Fmq such that the mapping
Tm,γ is simply the scalar product with vγ , i.e.,

Tm,γ(α) = 〈vγ , α〉 for any α ∈ Fmq .

Take a random nonzero mapping Tm,γ and consider the set of indicator random variables Xi = 1(Tm,γ(βi) =
0), i = 0, . . . , s− 1. We have

P (Xi = 1) ≥ qm−1 − 1

qm − 1
,

so E|{i : Xi = 1}| ≥ s q
m−1−1
qm−1 . We conclude that there exists a γ ∈ Fqm such that weight of the codeword

wtH(Tm(γ), Tm(γ · β), . . . , Tm(γ · βs−1)) ≤ s
(

1− qm−1 − 1

qm − 1

)
,

and the result follows.
Observe that this bound is tight for the simplex code.
Proposition 4.6: Let D be an [n, k] a cyclic code over Fq such that its complete defining set contains the coset

αGs, where α is a primitive n-th root of unity and s|n, then the locality of D satisfies

r < s
(

1− qm−1 − 1

qm − 1

)
,

where m is the multiplicative order of q modulo s.

The theory of irreducible codes has been extensively explored, and for some cases their weight distribution is
completely characterized. The technique behind these results is related to Gaussian sums and Gaussian periods [11].
We now cite a known result on irreducible codes, and cast it in the context of LRC codes. Observe that the upper
bound on locality is again lower than that given by Proposition 3.4.

Theorem 4.7: [3, Theorem 17] Let N = (qm − 1)/t and gcd( q
m−1
q−1 , N) = 2, then V is a two-weight code

of length t and dimension m whose nonzero weights are (q − 1)(qm ± qm/2)/Nq)], and there are (qm − 1)/2
codewords of each of these weights.

Proposition 4.8: Let D be an [n, k] ternary cyclic code whose complete defining set Z contains the coset αGt
for some integer t that divides n, where α is an n-th root of unity. Let N = (3m − 1)/t, where m = ord3 (t).
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Assume that gcd( 3m−1
2 , N) = 2, then each symbol of the code D has at least 3m−1 − 3

m
2 −1 recovery sets of size

less than 2(3m−3
m
2 )

3N .
Proof: The complete defining set Z of the code D contains the set of roots αGt, hence by Theorem 4.1 and

(13), the [n = (3m − 1)/N, k = m] irreducible cyclic code V is a shortened code of D⊥. By Theorem 4.7, the
code V contains 3m−1

2 codewords of weight (2(3m − 3
m
2 ))/3N . Since the code is cyclic, each of its coordinates

appears equally often as a nonzero coordinate of these codewords. Hence each coordinate of the code is nonzero
in exactly 3m−1 − 3

m
2 −1 codewords of weight 2(3m−3

m
2 )

3N and the result follows.
Example 3: Let D be a ternary cyclic code of length n = 80 defined by the set of zeros {1, 2, 41}. Since each

of the corresponding cyclotomic cosets is of size 4, the dimension of the code is k = 68. The set of zeros contains
α, α41, so taking t = 40 in Proposition 4.8 we obtain that m = 4, and d⊥ ≤ 24. Furthermore, each symbol of the
code has at least 24 recovery sets of size 23.

For completeness, we present an example where l 6= 1.
Example 4: Let D be an [63, 54, 2] binary cyclic code with the defining set {3, 27}. In this case the complete

defining set contains the coset α3G21, where α is a primitive root of unity of degree 63. Further, note that
gcd(3, 21) > 1, so the subcode V of D⊥ is a triple repetition of the [7, 3, 4] simplex code. Therefore, the minimum
distance of D⊥ is at most 3 · 4 = 12 and the locality r ≤ 11. It can in fact be shown that D⊥ is an [63, 9, 12]
cyclic code, so r = 11.

E. Multiple Recovery Sets

Proposition 4.4 shows that each symbol has several recovery sets. Apart from the number of these sets, their
structure is also of importance. For instance, we would like to know whether a symbol has a pair of disjoint recovery
sets, which allows a parallel independent recovery of the lost symbol. While not a complete answer, we provide
some analysis below. Recall that in Proposition 4.4, the subcode V of D⊥ is the simplex code. Consider Si ⊆ [t]
a support of some codeword of V . By considering the generator matrix of V it is clear that Si corresponds to an
affine space defined by a vector in ui ∈ Fz2, where z is as defined in Proposition 4.4. This observation yields a
formula for size of the intersection of the supports of codewords of V .

Proposition 4.9: Let Si, i ∈ I be the supports of a subset of codewords in V . Then the size of the intersection

| ∩i∈I Si| ≤ 2z−rank(ui,i∈I).

Proof: It can be easily checked that the set of vectors that contribute to the LHS is the set of all vectors x ∈ Fz2
that are a solution for the set of linear non-homogeneous equations x · ui = 1, and the result follows.

For instance, for the [63, 36, 3] code given in Table I, Proposition 4.9 gives tight bounds; we have z = 3, and
any two recovery sets of a symbol intersect in exactly one coordinate, while the intersection of any three is empty.

F. Several cosets, Binary LRC codes
The results of the previous sections relied on the assumption that the set Z of zeros of the code contains some

coset of the subgroup generated by αr+1. Here we extend our analysis to the cases where this assumption does not
hold. Let D be a cyclic code over a field of characteristic 2.

The next theorem provides an upper bound on the locality of the code even if its set of zeros does not contain
a complete coset of some group of roots of unity, and therefore Proposition 3.4 can not be applied.

Proposition 4.10: Let D be a cyclic code of length n which is divisible by p1, p2. If the set of zeros Z contains
two cosets of the subgroups Gp1 = 〈αp1〉, Gp2 = 〈αp2〉, except maybe for the elements in their intersection, i.e.,

(αl1Gp1)4 (αl2Gp2) ⊆ Z (14)

for some integers l1, l2, then the locality parameter is at most

r ≤ p1 + p2 − 2 gcd(p1, p2, l1 − l2)− 1. (15)

Proof: By (14)
ZD⊥ = {α−i : αi /∈ Z} ⊆ (α−l1Gp1)4 (α−l2Gp2).

Hence, ZD⊥ is contained in the set of elements that belong to an even number of the cosets α−l1Gp1 , α
−l2Gp2 .

Define the following polynomial
f(x) = f1(x) + f2(x),

where

f1(x) =

p1−1∑
j=0

(αl1x)j
n
p1 , f2(x) =

p2−1∑
i=0

(αl2x)i
n
p2 .
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By (8) f(γ) = 0 if and only if γ belongs to an even number of the cosets α−l1Gp1 , α
−l2Gp2 , and therefore the

polynomial f belongs to D⊥.
Let us calculate the weight (the number of nonzero coefficients) of the polynomial f . Let g = gcd(p1, p2, l1− l2).

Take j = p1t/g, t = 0, . . . , g − 1, then the polynomial f1(x) contains the term (αl1x)jn/p1 = αl1tn/gxtn/g .
Similarly, for i = p2t/g the polynomial f2(x) contains the term (αl2x)in/p2 = αl2tn/gxtn/g. These two terms are
equal because tn(l1 − l2)/g is a multiple of n (recall that α is an n-th root of unity). Therefore, the polynomial
f(x) does not contain these terms, and so the weight of f(x) is at most p1 + p2 − 2 gcd(p1, p2, l1 − l2).

We conclude that the minimum distance of D⊥ is at most p1 + p2 − 2 gcd(p1, p2, l1 − l2) and (15) follows.

Remark: For p|n the polynomial f(x) =
∑p
j=0 x

j n
p is an idempotent in the ring Fq[x]/(xn − 1).

Example 5: Consider the binary cyclic code D of length n = 45, and ZD contains αi for

i = 3, 5, 6, 9, 10, 12, 18, 20, 21, 24, 25, 27, 33, 35, 36, 39, 40, 42.

The representatives of the cyclotomic cosets in ZD are {3, 5, 9, 21}. Proposition 3.4 implies that d⊥ ≤ 15 and r ≤
14, because the coset {3, 18, 33} of {0, 15, 30}is contained in ZD. Note that no coset of Ga := {αi|i = 0
mod a} for a = 3, 5, or 9 is contained exists in ZD. However, it can be shown that d⊥ ≤ 6 and r ≤ 5. Indeed,
ZD = G34G5, that is, the zeros of D are all the roots αi, where i is in the set of all multiples of 3 and 5, except
for the multiples of 15 (that is, of both 3 and 5); see Figure 2.

G3 G5

Fig. 2. The set of zeros ZD (in gray) in Example 5.

A polynomial that vanishes at the zeros of the dual code D⊥ is given by

f(x) = x9 + x15 + x18 + x27 + x30 + x36

= (1 + x15 + x30) + (1 + x9 + x18 + x27 + x36)

= f1(x) + f2(x),

which implies that d ≤ 6. Observe that f(x) vanishes at αi such that i is either a multiple of both 3 and 5 (that
is, a multiple of 15), or neither a multiple of 3 nor of 5.

Moreover, D⊥ is indeed a [45, 18, 6] cyclic code because we also have d⊥ ≥ 6 from the BCH bound.

Extending the above arguments, we can establish a result similar to Proposition 4.10 for the case of cosets of
three subgroups.

Proposition 4.11: Let D be a cyclic code of length n which is divisible by p1, p2, p3, and let l1, l2, l3 be three
integers. If Z contains all the elements that appear in an odd number of cosets l1Gp1 , l2Gp2 , l3Gp3 (see Fig. 3)
then the locality parameter r is at most

r ≤ p1 + p2 + p3 − 2 gcd(p1, p2, l1 − l2)− 2 gcd(p1, p3, l1 − l3)

− 2 gcd(p2, p3, l2 − l3) + 4 gcd(p1, p2, p3, l1 − l2, l2 − l3)− 1.

l1Gp1 l2Gp2

l3Gp3

Fig. 3. The set of zeros Z in Proposition 4.11 contains all the elements that appear in an odd number of the cosets l1Gp2 , l2Gp2 , l3Gp3 (in
gray).

Proof: Define the following polynomial

f(x) = f1(x) + f2(x) + f3(x),
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where

f1(x) =

p1−1∑
j=0

(αl1x)j
n
p1 , f2(x) =

p2−1∑
i=0

(αl2x)i
n
p2 , f3(x) =

p3−1∑
i=0

(αl3x)i
n
p3 .

As above, on account of (8) f(γ) = 0 if and only if γ belongs to an even number of the cosets
α−l1Gp1 , α

−l2Gp2 , α
−l3Gp3 , and therefore the polynomial f ∈ D⊥.

Let us calculate the weight of the polynomial f . Consider the polynomials f1(x) and f2(x) and note that the
number of exponents i such that xi is a term in f1(x) and f2(x) is exactly gcd(p1, p2, l1 − l2). Therefore the
number of terms xi that appear more than once in the polynomials f1(x), f2(x), f3(x) equals to

gcd(p1, p2, l1 − l2) + gcd(p1, p3, l1 − l3) + gcd(p2, p3, l2 − l3)− 2 gcd(p1, p2, p3, l1 − l2, l2 − l3).

The last term follows since a term xi that appears in all the polynomials is counted 3 times, and there are exactly
gcd(p1, p2, p3, l1 − l2, l2 − l3) such terms.

Any two appearances of a term xi are canceled, and therefore the weight of the polynomial f(x) is as claimed
and the result follows.

Example 6: Let n = 105, and let the set of zeros be determined by the sets G3, G5, and G7 as in Figure 3, that
is, Z = {0, 3, 5, 7, 9, 25, 49}. Thus, D⊥ is a [105, 45, d⊥] code. Attempting to bound d ⊥ we note that Proposition
3.4 gives at best d⊥ ≤ 105 and r⊥ ≤ 104, and Proposition 4.10 cannot be applied. At the same time, Proposition
5.3 gives r ≤ 12. This is very close to the actual locality parameter, which is found to be r = 11 using GAP [7].

Remark: The results of this and the next section can be generalized to fields of odd characteristic. For instance,
in Prop. 4.10 it suffices to take f(x) = f1(x)− f2(x).

V. UPPER BOUNDS ON THE MINIMUM DISTANCE OF CYCLIC CODES

A central line of research in the classical theory of cyclic codes is derivation of lower bounds on their minimum
distance in terms of the zeros of the code. This direction started with the BCH, Hartmann-Tzeng, and Roos bounds,
culminating with the shifting technique by Van Lint and Wilson [10], [13]. In line with the goal of error correction,
the goal of these bounds is establish guarantees that the distance of the code is not too small. At the same time, LRC
codes are perceived to be better if the locality parameter is small, which in the case of cyclic codes translates into
the question of bounding the distance of the (dual) cyclic code from above. Thus, we face the problem of deriving
upper bounds on the distance of a cyclic code in terms of its zeros. Accordingly, in this section we rephrase the
results derived in the previous section as upper bounds on the minimum distance of a cyclic code.

Recall that, for an integer m|n for and α an n-th root of unity, we denote by Gm the subgroup

Gm = {αi|i = 0 mod m}.

Throughout this section D be a cyclic code over a field of even characteristic, defined by the set of zeros Z.

Proposition 5.1 (Proposition 3.4 rephrased): If there exists a coset αiGm such that Z∩αiGm = ∅, then d ≤ m.

Using the BCH bound we get the following corollary that gives the precise value of the minimum distance for
a special set of zeros.

Corollary 5.2: Assume that there exist integers l, t such that

Z ∩ αlGm = ∅
αs+l+tm ∈ Z, 1 ≤ s ≤ m− 1.

Then d = m.

Proposition 5.3 (Proposition 4.10 rephrased): Let p1, p2 be two divisors of n. If there exist two integers l1, l2
such that

((αl1Gp1)4 (αl2Gp2)) ∩ Z = ∅

then
d ≤ p1 + p2 − 2 gcd(p1, p2, l1 − l2).

From the above proposition we get the following corollary that gives a tight bound on the minimum distance of
cyclic codes for some special cases.

Corollary 5.4: Let p, p+ 2 be two integers that divide n and assume that there exists an integer l such that

{αi : i ∈ [lp(p+ 2)− (p− 1), lp(p+ 2) + (p− 1)]} ⊆ Z,
(Gp 4Gp+2) ∩ Z = ∅,
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then d = 2p.
Proof: Since Z contains 2p− 1 consecutive zeros, the BCH bound implies that d ≥ 2p. On the other hand by

Proposition 5.3 the minimum distance is at most 2p, and the result follows.

Example 7: Let p be an odd integer such that n = p(p+ 2) then the cyclic code D with a defining set of zeros

Z = {αi : p, p+ 2 - i or i = 0}

is a [p(p+ 2), 2p+ 1, 2p] cyclic code.
The value of the code’s dimension is found by observing that the number of i’s such that αi /∈ Z equals 2p+ 1.

The minimum distance follows from Corollary 5.4.

Proposition 5.5 (Proposition 5.3 rephrased): Let p1, p2, p3 be divisors of n, and consider the cosets
αl1Gp1 , α

l2Gp2 , α
l3Gp3 for some integers l1, l2, l3. If Z contains none of the elements that appear in an odd

number of these cosets, then

d ≤p1 + p2 + p3 − 2 gcd(p1, p2, l1 − l2)− 2 gcd(p1, p3, l1 − l3)

− 2 gcd(p2, p3, l2 − l3) + 4 gcd(p1, p2, p3, l1 − l2, l2 − l3).

APPENDIX A: BOUNDS ON THE DISTANCE OF LRC CODES

In the examples in Section IV we construct a number of examples of LRC codes over small alphabets (binary,
and in one example, ternary). To assess how far the constructions are from being distance-optimal, we use upper
bounds as a proxy for optimality. In this section we collect some of the upper bounds on the distance of codes
with locality.

Apart from the Singleton-like bound mentioned above and its refinements (e.g., [20]), the following two upper
bounds on the cardinality of a q-ary (n, k, r) LRC code are known. A shortening bound was proved in [1]. We
formulate it for the case of linear codes. Let kq(n, d) be the largest possible dimension of a linear q-ary code of
length n and distance d. The maximum dimension K(n, r, d) of a q-ary linear LRC code of length n, distance d,
and locality r satisfies the following inequality:

K(n, r, d) ≤ min
1≤t≤ν

(tr + kq(n− t(r + 1), d)). (16)

If the code C is cyclic, then obviously the condition that the locality is r is equivalent to the condition that the
dual distance d⊥ := d(C⊥) = r + 1. Denote by M

(c)
q (n, r, d) the maximum cardinality of a cyclic q-ary code of

length n, locality r, and distance d. We can use the following form of the Delsarte linear programming bound [9]
on the largest possible size of a q-ary cyclic LRC code of length n and locality r: C with distance d :

M (c)
q (n, r, d) ≤ 1 + max

{ n∑
i=d

ai such that ai ≥ 0, i = d, . . . , n,

n∑
i=d

aiKk(i) = −
(
n

k

)
(q − 1)k, k = 1, . . . , r + 1,

n∑
i=d

aiKk(i) ≥ −
(
n

k

)
(q − 1)k, k = r + 2, . . . , n

}
, (17)

where Kk(i) is the value of the Krawtchouk polynomial of degree k. The question of the goodness of the bounds
(16), (17) is currently very much open, and there is a gap between them and the parameters of many codes in
examples.

The theme of lower and upper bounds on LRC codes was recently developed further in [17], [6], but no new
results have been obtained for the cases of interest in this paper.
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