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The combinatorics of LCD codes:

Linear Programming bound and orthogonal matrices
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Abstract

Linear Complementary Dual codes (LCD) are binary linear codes that meet their

dual trivially. We construct LCD codes using orthogonal matrices, self-dual codes,

combinatorial designs and Gray map from codes over the family of rings Rk. We give

a linear programming bound on the largest size of an LCD code of given length and

minimum distance. We make a table of lower bounds for this combinatorial function

for modest values of the parameters.
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1 Introduction

In this paper, we study linear codes with complementary duals, which we refer

to as LCD codes. These codes were introduced by Massey in [9] and give an

optimum linear coding solution for the two user binary adder channel. They

are also used in counter measures to passive and active side channel analyses on

embedded cryto-systems, see [3] for a detailed description.

The main result is a linear programming bound on the largest size of an LCD

code of given length and minimum distance. We show by numerical examples

that this bound is, in general, sharper than the standard linear programming

bound on the size of codes of given length and distance. We also give a combina-

torial construction of LCD codes based on orthogonal matrices, which are essen-

tially equivalent to systematic generator matrices of self-dual codes. They also

enjoy a pseudo-random construction due to their multiplicative groups struc-

ture. It is important to note that a single self-dual code, or, equivalently a

single orthogonal matrix give rise to several LCD codes. We sketch another

construction by codes over rings and Gray maps, and a construction based on

symmetric designs. A table of lower bounds on the largest size of an LCD code

of given length and minimum distance is built based on the orthogonal matrix

construction.

The material is organized as follows. Section 2 contains some constructions

of LCD codes over rings that impact LCD codes over fields. Section 3 introduces

and studies two combinatorial functions related to LCD codes. Section 4 de-

rives the linear programming bound and provide a comparative numerical table

with the standard linear programming bound. Section 5 contains the various

constructions from rings, matrices and block designs. A last section concludes

the paper and paves the way to new research.

2 Preliminaries

In this work, we shall be largely concerned with codes over finite fields. However,

we shall use codes over rings together with a linear Gray map to construct LCD

codes. Hence we shall make the definitions in a general setting. A code C of

length n over a ring R is a subset of Rn. All rings in this paper are assumed to be

commutative rings with unity. If the code is a submodule then the code is said to

be linear. Attached to the ambient space is the standard inner-product, namely

[v,w] =
∑

viwi. The orthogonal is defined by C⊥ = {v ∈ Rn | [v,w] = 0, ∀w ∈ C}.

If R is a Frobenius ring then we have that |C||C⊥| = |R|n. For codes over finite

fields we have dim(C) + dim(C⊥) = n.
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A linear code with complementary code (LCD) is a linear code C satisfying

C ∩C⊥ = {0}. Any code over a field is equivalent to a code generated by a matrix

of the form (Ik |A) where Ik denotes the k by k identity matrix. For codes over

rings, this is not the case so we shall talk about generating vectors instead in

the following lemmas.

Lemma 2.1 Let v1,v2, . . . ,vk be a vectors over a commutative ring of char-

acteristic 2 such that [vi,vi] = 1 for each i and [vi,vj] = 0 for i 6= j. Then

C = 〈v1,v2, . . . ,vk〉 is an LCD code.

Proof. Any vector in C is of the form w =
∑

i∈A vi. Then let j ∈ A, it follows

that [vj,w] = 1. Hence w 6∈ C⊥. This gives that no non-trivial element in C is also

in C⊥ and hence their intersection is trivial. �

Applying this lemma to codes over fields we have the following.

Corollary 2.2 Let G be a generator matrix for a code over a finite field. If

GGT = In then G generates an LCD code.

More generally for codes over fields this leads to the following.

Corollary 2.3 Let G be a generator matrix for a code over a field. Then

det(GGT ) 6= 0 if and only if G generates an LCD code.

Lemma 2.4 Let v1,v2, . . . ,vk be a set of vectors over a ring of characteristic 2

such that [vi,vi] = 0 and [vi,vj] = 1 if i 6= j. Then C = 〈v1,v2, . . . ,vk〉 is LCD if

and only if k is even.

Proof. Assume k is even. Consider the vector w =
∑

i∈A vi.

If |A| is even take j ∈ A. Then [w,vj] = 1. If |A| is odd take j 6∈ A then

[w,vj] = 1. In either case, no linear combination of the generators can be in the

orthogonal. Hence the code is LCD.

Assume k is odd. Then [
∑k

i=1 vi,vj] = 0 for any j. Hence
∑k

i=1 vi ∈ C ∩C⊥ and

the code is not LCD. �

Let Jn denote the all one n by n matrix. Considering this lemma as applied

to codes over fields we have the following.

Corollary 2.5 Let G be a generator matrix for a code over a finite field. If

GGT = Jn − In, n even, then G generates an LCD code.
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3 Elementary Bounds

In this section, we are only concerned with codes over the binary field.

3.1 Fixed n and k.

Let LCD[n, k] := max{d | there exists a binary [n, k, d] LCD code}.

Lemma 3.1 For n and k integers greater than 0, LCD[n+ 1, k] ≥ LCD[n, k].

Proof. Let G be a generator matrix of an [n, k, d] LCD code C. Then GGT is

invertible since C is LCD. Let Ḡ be the matrix obtained from G by adding the

zero column 0 to the right end of G, that is, Ḡ = G0. Ḡ(Ḡ)T = GGT is invertible.

Hence Ḡ generates an [n+1, k, d] LCD code. Therefore LCD[n+1, k] ≥ LCD[n, k]. �

Proposition 3.2 (i) If n is odd, then LCD[n, 1] = n and LCD[n, n− 1] = 2.

(ii) If n is even, then LCD[n, 1] = n− 1 and LCD[n, n− 1] = 1.

Proof. (i) It is clear that the repetition [n, 1, n] code and its dual are LCD

and have the highest minimum distances.

(ii) If n is even, the repetition [n, 1, n] code is not LCD since its dual con-

tains the all-one vector. It is easy to see that the code C with generator matrix

[0 1 1 . . . 1] is LCD. Thus LCD[n, 1] = n− 1. The dual C⊥ of C is LCD with min-

imum distance 1. If LCD[n, n − 1] = 2, then the corresponding code is the even

[n, n − 1, 2] code which is not LCD since the all-one vector belongs to the even

code and the repetition code of length n. Thus LCD[n, n− 1] = 1. �

Lemma 3.3 The following hold.

(i) LCD[nm, kl] ≥ LCD[n, k] LCD[m, l].

(ii) LCD[n+m, k + l] ≥ min{LCD[n, k], LCD[m, l]}.

Proof. (i) Let G1 be a generator matrix of an [n, k, d1] LCD code C1 and G2

a generator matrix of an [m, l, d2] LCD code C2. Consider the direct product

of C1 and C2, denoted by C1 ⊗ C2, which has parameters [nm, kl, d1d2] (see [8,

Ch. 8]). The generator matrix of C1⊗C2 is the Kronecker product of G1 and G2,

denoted by G1⊗G2. We need to show that C1⊗C2 is LCD. It suffices to show that

(G1⊗G2)(G1⊗G2)
T is invertible. Note that (G1⊗G2)(G1⊗G2)

T = (G1⊗G2)(G
T
1 ⊗GT

2 ) =
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(G1G
T
1 ⊗G2G

T
2 ). Since GiG

T
i (for i = 1, 2) is invertible, (G1G

T
1 ⊗G2G

T
2 ) is invertible

because (G1G
T
1 ⊗G2G

T
2 )((G1G

T
1 )

−1⊗(G2G
T
2 )

−1) = Ik⊗Il = Ikl, where Ia is the identity

matrix of order a.

(ii) It is known [3] that the direct sum of C1 ⊕ C2 of LCD codes C1, C2 of

parameters [n, k, d1] and [m, l, d2] respectively is also an LCD code of parameters

[n+m, k + l,min{d1, d2}]. Hence LCD[n+m, k + l] ≥ min{LCD[n, k], LCD[m, l]} fol-

lows. �

3.2 LCD [n, k] for small n, k

We have a partial result on LCD[n, 2] for n ≥ 3.

Theorem 3.4 We have the following:

(i) LCD[3, 2] = 2

(ii) LCD[4, 2] = 2

(iii) LCD[5, 2] = 2

(iv) LCD[6, 2] = 3

(v) LCD[7, 4] = 2

Proof.

1. Choose the even code of length 3 with generator matrix G =

[

1 1 0

1 0 1

]

. It

is LCD and has minimum distance d = 2. There is no [3, 2, 3] code. Thus

LCD[3, 2] = 2.

2. There is [4, 2, 2] LCD namely the BKLC(GF (2), 4, 2) provided by Magma.

Hence LCD[4, 2] = 2.

3. Since there is no nontrivial MDS binary code, there is no [5, 2, 4] code. There

are two [5, 2, 3] codes up to equivalence. They have generator matrices such

as
[

1 0 1 1 0

0 1 1 1 1

]

and

[

1 0 1 1 0

0 1 0 1 1

]

.

None of them are LCD. Thus LCD[5, 2] ≤ 2, and so LCD[5, 2] = 2 by

Lemma 3.1 and (i) above.
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4. Note that the repetition [3, 1, 3] code is LCD. Thus by (ii) of Lemma 3.3,

we have LCD[6, 2] ≥ 3. If LCD[6, 2] = 4, then there is a unique [6, 2, 4] code

C whose generator matrix can be arranged up to equivalence as

G =

[

1 0 1 1 1 0

0 1 0 1 1 1

]

.

Since GGT is a zero matrix (hence noninvertible), C is not LCD. Thus

LCD[6, 2] = 3.

5. There is a [7, 2, 4] code whose generator matrix is given by

G =

[

1 1 1 1 0 0 0

0 0 0 1 1 1 1

]

.

It is known that an optimal [7, 2] code has d = 4 [5]. Therefore LCD[7, 2] = 4.

3.3 Fixed n and d

We introduce the combinatorial function LCK[n, d] := max{k | there exists a binary [n, k, d] LCD code}.

From first principles, we see that LCK[n, d] ≤ log2A(n, d). Some values of that

function for small d are easy to find.

Proposition 3.5 For all n ≥ 1, we have LCK[n, 1] = n.

Proof. The complete code with dual the null code is LCD. The result follows.

�

Proposition 3.6 If n is odd then LCK[n, n] = 1 and LCK[n, 2] = n−1. If n is even

then LCK[n, n] = 0, and LCK[n, 2] = n− 2.

Proof. The repetition code of odd length is LCD and optimal. Its dual is as

well. The first assertion follows. On the other hand the repetition code of even

length is unique with their parameters and self-orthogonal, hence not LCD. By

adding an extra zero/one coordinate to the dual of the repetition code in length

n− 1 we obtain an LCD code of parameters [n, n− 2, 2]. �

Proposition 3.7 For all integers m > 1 we have

• LCK[2m − 1, 3] < 2m −m− 1

• LCK[2m − 1, 2m−1] < m.
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Proof. The Hamming code and its dual the Simplex code are not LCD since

the Simplex code is self-orthogonal. Further these codes are unique with their

parameters. This is immediate for the Hamming code. Note that the Simplex

code is unique as meeting the Plotkin bound [8, Th. 11(a)], hence one-weight,

hence characterized by [2]. �

Proposition 3.8 We have LCK[24, 8] < 12, and LCK[23, 7] < 11.

Proof. The extended Golay code is unique [16, Th. 104] and self-dual. Punc-

turing once yields another unique code [16, Th. 104] which contains its dual. �

Let g(k, d) =
∑k−1

i=0 ⌈
d
2i
⌉ denote the RHS of the Griesmer bound.

Proposition 3.9 If d is a multiple of four, then LCK[g(k, d), d] < k.

Proof. By Theorem 1 of [17], if a code C meets the Griesmer bound with a

minimum distance multiple of 4, then all its weight are multiples of 4. It is then

immediate by the parallelogram identity [8, (12) p.9] that C is self-orthogonal. �

4 Linear Programming bound

Let C denote a binary linear [n, k] code and Ai its weight distribution. Let Bi

denote the weight distribution of its dual code C⊥. Let Pi(x) be the Krawtchouk

polynomial of degree i given by the following generating function:

n
∑

i=0

Pi(x)z
i = (1 + z)n−x(1− z)x.

If M is a square matrix of order NR by NC and x, h are column vectors of length

NR, and NC respectively, we denote by U(M,h) the maximum of
∑NC

j=1 xi for non-

negative rationals xi subjected to the NR linear constraints Mx ≤ h. We need the

following auxiliary matrices:

• P = (Pj(i));

• ∆ the matrix with entries ∆i,j =
(

n

i

)

for all 1 ≤ j ≤ n;

• Im the identity matrix of order m.
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If C is LCD then for all n ≥ i ≥ 1 we have from the definition of LCD codes

that

Ai +Bi ≤

(

n

i

)

,(1)

a vector of weight being in either C or its dual but not in both.

Now by the MacWilliams formula we know that

Bi = 2−k

n
∑

j=0

AjPi(j).(2)

Writing 2k =
∑n

i=0Ai, we get the following bound.

Proposition 4.1 If k ≥ k0, then for all n ≥ i ≥ 1 we have

2k0Ai ≤

n
∑

j=1

Aj(

(

n

i

)

− Pi(j)).

Proof. We eliminate Bi between equation (1) premultiplied by 2k and (2) and

rearrange. To avoid quadratic terms we bound 2kAi below by 2k0Ai. Note that

by the generating function for Krawtchouk polynomials Pi(0) =
(

n

i

)

. �

We consider the block matrix M(n, k0, d) of order 2n+d−1 by n with successive

block rows Id−1, P −∆+ 2k0In, −P.

Theorem 4.2 If k ≥ k0, then

2LCK[n,d] ≤ 1 + U(M(n, k0, d), 0).

Proof. The three type of constraints come from, in order, the distance of C,

the above proposition and the Delsarte inequalities (nonnegativity of the Bi’s). �
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n/d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1

2 2 0(1)

3 3 2 1

4 4 2(3) 1 0(1)

5 5 4 2 1 1

6 6 4(5) 3 2 1 0(1)

7 7 6 4 3 1 1 1

8 8 6(7) 4 3(4) 2 1 1 0(1)

9 9 8 5 4 2 2 1 1 1

10 10 8(9) 6 5 3 2 1 1 1 0(1)

11 11 10 7 6 4 3 2 1 1 1 1

12 12 10(11) 8 7 5 4 2 2 1 1 1 0(1)

13 13 12 9 8 6* 5* 3 2 1 1 1 1 1

14 14 12(13) 10 9 7* 6* 4 3 2 1 1 1 1 0(1)

15 15 14 11 10 8* 7* 5 4 2 2 1 1 1 1 1

16 16 14(15) 11 10(11) 8 7(8*) 5 4(5) 2 2 1 1 1 1 1 0(1)

17 17 16 12 11 9 8 6 5 3 2 2 1 1 1 1 1 1

18 18 16(17) 13 12 10 9 7 6 4 3 2 2 1 1 1 1 1 0 1)

19 19 18 14 13 11* 10* 8 7 5* 4* 2 2 1 1 1 1 1 1 1

20 20 18(19) 15 14 12* 11* 9 8 6* 5* 3 2 2 1 1 1 1 1 1 0(1)

21 21 20 16 15 12 12* 10 9 6 6* 3 3 2 2 1 1 1 1 1 1 1

22 22 20(21) 17 16 13 12 11 10 7* 6 4 3 2 2 1 1 1 1 1 1 1 0(1)

23 23 22 18 17 14 13 12 11 8* 7* 5 4 2 2 2 1 1 1 1 1 1 1 1

24 24 22(23) 19 18 15 14 12 11(12) 9 8* 6 5 3 2 2 2 1 1 1 1 1 1 1 0(1)

25 25 24 20 19 16* 15* 13 12 10* 9* 6 6* 3 3 2 2 1 1 1 1 1 1 1 1 1

26 26 24(25) 21 20 17* 16 14* 13* 10* 10* 7 6 4 3 2 2 2 1 1 1 1 1 1 1 1 0 (1)

27 27 26 22 21 18* 17* 14 14* 11* 10* 8 7 5 4 3 2 2 2 1 1 1 1 1 1 1 1 1

28 27(28) 26(27) 22 21 18* 17* 14 14* 11* 10* 8 7 5 4 3 2 2 2 1 1 1 1 1 1 1 1 1 0(1)

29 28(29) 27 24 23 20* 19* 16* 15* 13* 12* 10* 9* 7* 6* 4 3 2 2 2 1 1 1 1 1 1 1 1 1 1

30 29(30) 28(29) 25 24 20 20* 17* 16* 14* 13* 10 10* 7 7* 5 4 2 2 2 2 1 1 1 1 1 1 1 1 1 0(1)

Table 1: ( ) : classical LP bound value, if different

: no such code with those parameters
∗ : larger than the dimension of the best known code with the given parameters
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5 Constructions

5.1 Rings

In this section, we shall examine a family of rings over which we can define a

Gray map which can be used to construct LCD codes.

The ring Rk is defined as Rk = F2[u1, u2, . . . , uk]/〈u
2
i , uiuj −ujui〉. The ring Rk has

|Rk| = 22
k

and it is a non-chain ring which has characteristic 2 with maximal ideal

M = 〈u1, u2, . . . , uk〉 and Soc(Rk) = 〈u1u2 · · ·uk〉.

We can now construct a linear Gray map from Rk to F
2k

2 . Let φ1 be the

map defined on R1, namely φ1(a + bu) = (b, a + b). Then let c ∈ R. We can write

c = c1 + ukc2 where c1, c2 are elements of the ring Rk−1 of order 22
k−1

, then we

define

φk(c) = (φk−1(c2), φk−1(c1) + φk−1(c2)).(3)

The map φk is a weight preserving map which we then expand coordinatewise

to Rn.

The following can be found in [4].

Lemma 5.1 The map φk : Rk → F
2k

2 is a linear bijection. Moreover, we have

φ(C⊥) = φ(C)⊥.

We can define an LCD code over Rk in the usual way by saying that the code

is LCD if its intersection with its dual is {0}. This leads immediately to the

following.

Theorem 5.2 Let C be a LCD code of length n over Rk then φ(C) is a binary

LCD code of length 2kn.

Proof. We have that φ(C) ∩ φ(C)⊥ = φ(C) ∩ φ(C⊥). Then since φ is a bijection

and C ∩ C⊥ = 0 we have the desired result. �

Theorem 5.3 There are no non-trivial LCD codes of length 1 over Rk.

Proof. Any code of length 1 is an ideal in the ring R and hence C and C⊥

are ideals and hence both contained in the maximal ideal M. This implies their

intersection contains M⊥ = Soc(R) = {0, u1u2 · · ·uk} which is non-trivial. �

Theorem 5.4 (i) Let G be a binary matrix such that GGT = In, then G gener-

ates an LCD code C of length n over Rk and φk(C) is a binary LCD code

of length 2kn.
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(ii) Let G be a binary matrix such that GGT = Jn−In, n even, then G generates

an LCD code C of length n over Rk and φk(C) is a binary LCD code of

length 2kn.

Proof. The first item follows from Corollary 2.2 followed by Theorem 5.2. The

second item follows from Lemma 2.4 followed by Theorem 5.2. �

5.2 Orthogonal matrices

One way to construct generator matrices G such that GGT is invertible is to de-

mand GGT = I. Such rectangular matrices G can be obtained as row submatrices

from so-called orthogonal matrices over F2. Define the orthogonal group O(n, 2)

as the set of all matrices X of GL(n, 2) satisfying XXT = In. The order of this

group is known to be

|O(n, 2)| = 2k
2

k
∏

i=1

(22i − 1),

where k = ⌊n/2⌋. See [15]. Generators for this group are as follows. Let Pn denote

the matrix group of permutation matrices of order n. A transvection attached

to vector u is a transform Tu that maps all x ∈ F
n
2 to Tu(x) = x + (x, u)u. By [14,

Th. 19] we know that for n ≥ 4 we have O(n, 2) = 〈Pn, Tu〉, for any u of Hamming

weight 4. Since, as is well-known, is generated by a transposition and an n−cycle

the group O(n, 2) is generated by three generators for n ≥ 4. It is therefore easy

to generate random orthogonal matrices of order n for large n. This technique

was used in [12, 13] in the contexts of self-dual codes and self-dual Boolean

functions, respectively.

Another technique is to use the correspondence with systematic generator

matrices of self-dual codes. Thus (I,X) is self-dual if and only if X ∈ GL(n, 2).

Example: The Golay code of length 24 gives an orthogonal matrix of order 12,

which, in turn, by taking the span of some rows gives LCD codes with parameters

[12, 6, 3], [12, 4, 4], [12, 8, 2].

5.3 Block designs

Recall that for a Balanced Incomplete Block Design (BIBD) with parameters

(b, v, k, r, λ), the b indicates the size of the blocks, v indicates the number of

varieties, k indicates the number of varieties on a block, r indicates the number

of blocks through a variety and through any 2 varieties there are λ blocks. We

refer to this BIBD as a 2− (v, k, λ) design.
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Theorem 5.5 Denote by Q the variety vs block incidence matrix of a 2− (v, k, λ)

BIBD. If rk(r − λ) 6= 0 (mod 2) then Q generates an LCD code.

Proof. It is well-known, [1, Th. 1.4.1], that

det(QQT ) = rk(r − λ)v−1.

Thus, provided that rk(r−λ) 6= 0 (mod 2), we see that the row span of Q is LCD

of parameters [b, v,≥ 2(r − λ)] by Corollary 2.3.

5.4 Table of lower bounds on LCK[n, d]

The first seven rows of the following table were filled up using the codes in

Section 3.2 and the results in the following section. The remaining rows of the

following table were filled up using orthogonal matrices constructed from

• extended quadratic residue codes for n = 12, 16, 24;

• database of self-dual codes [6] for the other n = 8, 9, 10, 11, 13, 14, 15, 18, 20;

• group generation as in §5.2 for n = 17, 19, 21, 22, 23.
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n/d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1

2 2 0

3 3 2 1

4 4 2 0

5 5 4 1 1

6 6 4 2 2 0

7 7 6 2 1

8 8 6 0

9 9 8 4 1

10 10 8 3 0

11 11 10 5 2 1

12 12 10 6 4 0

13 13 12 6 5 1

14 14 12 9 7 4 2 0

15 15 14 5 4 4 2 1

16 16 14 10 7 5 2 0

17 17 16 7 7 6 2 1

18 18 16 8 5 3 0

19 19 18 6 2 1

20 20 18 11 8 5 4 3 0

21 21 20 4 2 1

22 22 20 14 12 7 4 2 0

23 23 22 13 9 6 5 3 1

24 24 22 16 14 11 9 8 7 4 2 0

Table 2: Lower bounds on LCK[n, d]
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6 Conclusion and open problems

This paper is dedicated to LCD codes. A linear programming bound on the

largest size of an LCD code of given length and distance was derived. It is a

worthwhile project to derive an asymptotic version of that bound. More gen-

erally semi-definite programming bounds are worth exploring. A construction

based on orthogonal matrices was derived. It would be interesting to see other

classes of combinatorial matrices enter the problem. Improving the table of

lower bounds by using codes over rings or symmetric designs is also worth con-

sidering.
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