
HAL Id: hal-03033842
https://cnrs.hal.science/hal-03033842v1

Submitted on 1 Dec 2020 (v1), last revised 21 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting malicious behaviours
Khanh Huu The Dam, Tayssir Touili

To cite this version:
Khanh Huu The Dam, Tayssir Touili. Extracting malicious behaviours. International Journal of
Information and Computer Security, 2022. �hal-03033842v1�

https://cnrs.hal.science/hal-03033842v1
https://hal.archives-ouvertes.fr

Int. J. Information and Computer Security, Vol. x, No. x, xxxx 1

Extracting malicious behaviours

Khanh Huu The Dam* and Tayssir Touili
LIPN,
CNRS,
University Paris 13, France
Email: dam@lipn.univ-paris13.fr
Email: touili@lipn.univ-paris13.fr
*Corresponding author

Abstract: In recent years, the damage cost caused by malwares is huge.
Thus, malware detection is a big challenge. The task of specifying malware
takes a huge amount of time and engineering effort since it currently requires
the manual study of the malicious code. Thus, in order to avoid the tedious
manual analysis of malicious codes, this task has to be automatised. To
this aim, we propose in this work to represent malicious behaviours using
extended API call graphs, where nodes correspond to API function calls,
edges specify the execution order between the API functions, and edge
labels indicate the dependence relation between API functions parameters. We
define new static analysis techniques that allow to extract such graphs from
programs, and show how to automatically extract, from a set of malicious and
benign programs, an extended API call graph that represents the malicious
behaviours. Finally, we show how this graph can be used for malware
detection. We implemented our techniques and obtained encouraging results:
95.66% of detection rate with 0% of false alarms.

Keywords: malware detection; static analysis; information extraction.

Reference to this paper should be made as follows: Dam, K.H.T. and
Touili, T. (xxxx) ‘Extracting malicious behaviours’, Int. J. Information and
Computer Security, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Khanh Huu The Dam obtained his PhD from the Paris
7 University in 2018. He is interested in program analysis, machine learning,
deep learning and malware detection.

Tayssir Touili is a senior researcher in CNRS, France. She received her PhD
from the Paris 7 University in 2003. In 2003–2004, she held her Research
Fellow position in the Carnegie Mellon University, Pittsburgh, USA. She has
more than 73 publications in several high-level, peer reviewed conferences
and journals. Her research interests include software verification, binary code
analysis, and malware detection.

This paper is a revised and expanded version of a paper entitled ‘Precise
extraction of malicious behaviors’ presented at The 42nd IEEE International
Conference on Computers, Software & Applications Staying Smarter in a
Smartening World, Tokyo, Japan, 23–27 July 2019.

Copyright 20XX Inderscience Enterprises Ltd.

2 K.H.T. Dam and T. Touili

1 Introduction

1.1 Malware detection

Malware detection is nowadays a big challenge. Indeed, the damages caused by
malwares in recent years is huge, e.g., in 2017, the global ransomware damage cost
exceeds five billion dollars, by referring to Cyber Security Ventures (2017). However,
most of industry anti-malware softwares are not robust enough because they are based
on the signature matching technique. In this technique, a scanner will search for patterns
in the form of binary sequences (called signatures) in the program. This highly depends
on the database of malware signatures which are manually constructed by experts. If the
scanner finds a signature in the database matching a new observed program, the scanned
program will be declared as a malware. This signature matching approach can be easily
evaded because the malicious code may be repacked or encrypted by using obfuscation
techniques while keeping the same behaviours.

Emulation is another approach for malware detection where the behaviours are
dynamically observed while running the program on an emulated environment. Although
in the emulated environment one can capture the running behaviours of the program, it
is hard to trigger the malicious behaviours in a short period since they may require a
delay or only show up after user interaction.

To overcome the limitations of the above approaches, model checking was applied
for malware detection (Christodorescu and Jha, 2003; Bergeron et al., 1999; Kinder
et al., 2010; Song and Touili, 2013), since it allows to analyse the behaviours (not
the syntax) of the program without executing it. However, this approach needs to take
as input a formal specification of the malicious behaviours. Then, a model-checking
algorithm is applied to detect whether a new program contains any of these behaviours
or not. If it can find some of these behaviours in a given program, this latter is marked
as malicious. Specifying the malicious behaviours requires a huge amount of engineering
effort and an enormous amount of time, since it currently requires manual study of
malicious codes. Thus, the main challenge is how to automatise this task of specifying
malware to avoid the tedious manual analysis of malicious code and to be able to find
a big number of malicious behaviours. To this aim, we need to

1 find an adequate formal representation of malicious behaviours

2 define analysis techniques to automatically discover such representations from
malicious and benign programs.

Figure 1 A piece of assembly code of, (a) the behaviour self replication (b) its API call graph
(c) its data dependence graph

(a)

2

CopyFile

GetModuleFileName

CopyFile

GetModuleFileName

1̄ = {0}

2̄ 1̄

(a) (b) (c)
Figure 1 A piece of assembly code (a) of the behavior self replication, its API call graph (b) and its

data dependence graph (c).

declared as a malware. This signature matching approach can be easily evaded because
the malicious code may be repacked or encrypted by using obfuscation techniques while
keeping the same behaviors.
Emulation is another approach for malware detection where the behaviors are dynamically
observed while running the program on an emulated environment. Although in the emulated
environment one can capture the running behaviors of the program, it is hard to trigger the
malicious behaviors in a short period since they may require a delay or only show up after
user interaction.
To overcome the limitations of the above approaches, model checking was applied for
malware detection (Christodorescu and Jha, 2003; Bergeron et al., 1999; Kinder et al.,
2010; Song and Touili, 2013), since it allows to analyze the behaviors (not the syntax) of
the program without executing it. However, this approach needs to take as input a formal
specification of the malicious behaviors. Then, a model-checking algorithm is applied to
detect whether a new program contains any of these behaviors or not. If it can find some
of these behaviors in a given program, this latter is marked as malicious. Specifying the
malicious behaviors requires a huge amount of engineering effort and an enormous amount
of time, since it currently requires manual study of malicious codes. Thus, the main challenge
is how to automatize this task of specifying malware to avoid the tedious manual analysis
of malicious code and to be able to find a big number of malicious behaviors. To this
aim, we need to (1) find an adequate formal representation of malicious behaviors, and (2)
define analysis techniques to automatically discover such representations from malicious
and benign programs.

1.2 Representation of Malicious Behaviors

It has been widely observed that malicious tasks are usually performed by calling sequences
of API functions, since API functions allow to access the system and modify it. Thus, in
previous works (Kinable and Kostakis, 2011; Kong and Yan, 2013; Xu et al., 2013; Dam
and Touili, 2016), the malicious behaviors were characterized as API call graphs where
nodes are API functions. Such graphs represent the execution order of API function calls
in the program. For instance, let us look at a typical malicious behavior implemented by
the assembly code in Figure 1(a). This behavior expresses a self replication in which the
malware infects the system by copying itself to a new location. This is achieved by first
calling the API functionGetModuleFileNamewith 0 as first parameter andm as second
parameter (Parameters to a function in assembly are passed by pushing them onto the
stack before a call to the function is made. The code in the called function later retrieves
these parameters from the stack.). This will store the file path into the memory address
m. Then, CopyFile is called with m as first parameter. This allows to infect other files.
To represent this behavior, Kinable and Kostakis (2011); Kong and Yan (2013); Xu et al.

(b)

2

CopyFile

GetModuleFileName

CopyFile

GetModuleFileName

1̄ = {0}

2̄ 1̄

(a) (b) (c)
Figure 1 A piece of assembly code (a) of the behavior self replication, its API call graph (b) and its

data dependence graph (c).

declared as a malware. This signature matching approach can be easily evaded because
the malicious code may be repacked or encrypted by using obfuscation techniques while
keeping the same behaviors.
Emulation is another approach for malware detection where the behaviors are dynamically
observed while running the program on an emulated environment. Although in the emulated
environment one can capture the running behaviors of the program, it is hard to trigger the
malicious behaviors in a short period since they may require a delay or only show up after
user interaction.
To overcome the limitations of the above approaches, model checking was applied for
malware detection (Christodorescu and Jha, 2003; Bergeron et al., 1999; Kinder et al.,
2010; Song and Touili, 2013), since it allows to analyze the behaviors (not the syntax) of
the program without executing it. However, this approach needs to take as input a formal
specification of the malicious behaviors. Then, a model-checking algorithm is applied to
detect whether a new program contains any of these behaviors or not. If it can find some
of these behaviors in a given program, this latter is marked as malicious. Specifying the
malicious behaviors requires a huge amount of engineering effort and an enormous amount
of time, since it currently requires manual study of malicious codes. Thus, the main challenge
is how to automatize this task of specifying malware to avoid the tedious manual analysis
of malicious code and to be able to find a big number of malicious behaviors. To this
aim, we need to (1) find an adequate formal representation of malicious behaviors, and (2)
define analysis techniques to automatically discover such representations from malicious
and benign programs.

1.2 Representation of Malicious Behaviors

It has been widely observed that malicious tasks are usually performed by calling sequences
of API functions, since API functions allow to access the system and modify it. Thus, in
previous works (Kinable and Kostakis, 2011; Kong and Yan, 2013; Xu et al., 2013; Dam
and Touili, 2016), the malicious behaviors were characterized as API call graphs where
nodes are API functions. Such graphs represent the execution order of API function calls
in the program. For instance, let us look at a typical malicious behavior implemented by
the assembly code in Figure 1(a). This behavior expresses a self replication in which the
malware infects the system by copying itself to a new location. This is achieved by first
calling the API functionGetModuleFileNamewith 0 as first parameter andm as second
parameter (Parameters to a function in assembly are passed by pushing them onto the
stack before a call to the function is made. The code in the called function later retrieves
these parameters from the stack.). This will store the file path into the memory address
m. Then, CopyFile is called with m as first parameter. This allows to infect other files.
To represent this behavior, Kinable and Kostakis (2011); Kong and Yan (2013); Xu et al.

(c)

Extracting malicious behaviours 3

1.2 Representation of malicious behaviours

It has been widely observed that malicious tasks are usually performed by calling
sequences of API functions, since API functions allow to access the system and modify
it. Thus, in previous works (Kinable and Kostakis, 2011; Kong and Yan, 2013; Xu
et al., 2013; Dam and Touili, 2016), the malicious behaviours were characterised as
API call graphs where nodes are API functions. Such graphs represent the execution
order of API function calls in the program. For instance, let us look at a typical
malicious behaviour implemented by the assembly code in Figure 1(a). This behaviour
expresses a self replication in which the malware infects the system by copying itself to
a new location. This is achieved by first calling the API function GetModuleFileName
with 0 as first parameter and m as second parameter (parameters to a function in
assembly are passed by pushing them onto the stack before a call to the function
is made. The code in the called function later retrieves these parameters from the
stack). This will store the file path into the memory address m. Then, CopyFile is
called with m as first parameter. This allows to infect other files. To represent this
behaviour, Kinable and Kostakis (2011), Kong and Yan (2013), Xu et al. (2013) and
Dam and Touili (2016) use the API call graph in Figure 1(a) to express that calling
GetModuleFileName is followed by a call to CopyFile. However, a program that
contains this behaviour is malicious only if the API function CopyFile copies the file
returned by GetModuleFileName. If CopyFile copies another file, the behaviour is
not malicious. Thus, the above representation may lead to false alarms. To avoid this,
we need to make the representation more precise and add the information that the
returned parameter of GetModuleFileName should be the input argument of CopyFile.
Therefore, we propose to use the extended API call graph in Figure 1(c), where the edge
labelled by 2̄ 1̄ means that the second parameter of GetModuleFileName (which
is its output) is given as first argument of CopyFile. We also need to ensure that
GetModuleFileName is called with 0 as first parameter. Thus, we label the node
GetModuleFileName with 1̄ = {0} to express that the first parameter of this call should
be 0. Thus, we propose in this work to use extended API call graphs to represent
malicious behaviours.

An extended API call graph is a directed graph whose nodes are API functions.
An edge (f, f ′) expresses that there is a call to the API function f followed by a
call to the API function f ′. The annotation ī j̄ on the edge (f, f ′) means that
the ith parameter of function f and the jth parameter of the function f ′ have a data
dependence relation. It means that, in the program, either these two parameters depend
on the same value or one parameter depends on the other, e.g., in Figure 1(c) the
edge (GetModuleFileName, CopyFile) with label 2̄ 1̄ expresses that the second
parameter (2̄) of GetModuleFileName and the first parameter (1̄) of CopyFile gets
the same memory address m. A node f with the annotation ī = {c} means that the
ith parameter of function f gets the value c, e.g., the node GetModuleFileName in
Figure 1(c) is associated with the label 1̄ = {0}. This graph specifies the execution order
of the API function calls like the API call graph in Kinable and Kostakis (2011), Kong
and Yan (2013), Xu et al. (2013) and Dam and Touili (2016). In addition, it records the
links between the API functions’ parameters.

In order to compute an extended API call graph of a given program, we need to
compute the relation between the program’s variables at the different control points.
For instance if there is an instruction x = y + z at control point n, we infer that at n,

4 K.H.T. Dam and T. Touili

x depends on y and z. Since in assembly, function parameters are passed by pushing
them onto the stack before the call is made, to determine the relation between function
arguments and the other variables of the program, we need to look into the program’s
stack. To this aim, we model the program (given as a binary code) by a pushdown
system (PDS). A PDS can be seen as a finite automaton equipped with a stack. The
PDS stack allows to mimic the program’s stack. In order to be able to evaluate the
dependence between the function arguments and the other variables of the program,
we propose a new translation from binary code to PDSs different from the standard
one (Song and Touili, 2016), where we push a pair (x, n) into the PDS stack if at
control point n, the variable x is pushed (whereas in the standard translation, only
the value of x at point n is pushed in the PDS stack). This allows to determine that
this variable x in the stack comes from control point n, which enables to evaluate the
relation it has with the other variables of the program. Then, to compute the relation
between the different variables and function arguments of the program, we represent
potentially infinite configurations of programs (PDSs) using finite automata, and we
adapt the PDS post∗ saturation procedure of Esparza et al. (2000) in order to compute
an annotation function from which we can compute the variable dependence function at
each control point of the program. This allows to compute the relation between program
variables and function arguments, and thus, to compute the extended API call graph
of the program. Note that, as far as we know, this is the first time that a malicious
behaviour representation that takes into account data dependence between variables is
computed in a static way. All the other works that we are aware of use dynamic analysis
for this purpose. Therefore, they cannot determine all the possible relations between
variables and function arguments, since dynamic analysis allows to consider only a
limited, finite number of paths of the program, and might skip the malicious paths and
consider only the benign ones, since malicious behaviours might appear after some time,
or after user interaction. The only other work we are aware of that tries to compute
such malicious representations in a static way is Macedo and Touili (2013). However,
the static computation of Macedo and Touili (2013) is not precise, as it states that two
variables are related if they have the same value, not if they depend on each other.

Then, given a set of extended API call graphs that correspond to malwares and
a set of extended API call graphs corresponding to benign programs, our goal is
to automatically extract an extended API graph that corresponds to the malicious
behaviours of the malwares. This malicious extended API graph is meant to represent
the parts of the extended API call graphs of the malwares that correspond to the
malicious behaviours. We should extract the subgraphs able to distinguish the malicious
extended API call graphs from the benign ones. Therefore, our purpose is to isolate
the few relevant subgraphs from the nonrelevant ones. This problem can be seen as
an information retrieval (IR) problem, where the goal is to retrieve relevant items and
reject nonrelevant ones. The IR community has been working on this problem for a long
time. It has a large amount of experience on how to efficiently retrieve information.
Thus, following Dam and Touili (2016), we adapt the knowledge and experience of the
IR community to our malicious behaviour extraction problem. One of the most popular
and efficient techniques in the IR community is the TFIDF scheme that computes
the relevance of each item in the collection using the TFIDF weight. This weight is
computed from the occurrences of terms in a document and their appearances in other
documents. We adapt this approach that was mainly applied for text and image retrieval
for malicious extended API graph extraction. For that, we associate to each node and

Extracting malicious behaviours 5

each edge in the extended API call graphs of the programs of the collection a weight.
Higher weight implies higher relevance. Then, we compute the malicious extended API
graphs by taking edges and nodes that have the highest weights.

We implement our approach and evaluate it on a dataset of 2,249 benign
programs and 4,035 malicious programs collected from Vx Heaven (vxheaven.org) and
VirusShare.com. We first applied our tool to automatically extract an extended malicious
API graph from a set of 2,124 malwares and 1,009 benign programs. The obtained
extended malicious API graph is then used for malware detection on a test set of 1,911
malwares and 1,240 benign programs. We obtained a detection rate of 95.6% and 0 false
alarms, whereas in the approach of Dam and Touili (2016) based on API call graphs,
false alarms can reach more than 10%. This shows the efficiency of our techniques and
the importance of using extended API call graphs, rather than API call graphs. This
paper is an extended version of the conference papers (Dam and Touili, 2018, 2016).

2 Related work

Schultz et al. (2001), Kolter and Maloof (2004), Gavrilut et al. (2009), Tahan et al.
(2012) and Khammas et al. (2015) apply machine learning techniques for malware
classification. All these works use either a vector of bits (Schultz et al., 2001; Gavrilut
et al., 2009) or n-grams (Kolter and Maloof, 2004; Tahan et al., 2012; Khammas
et al., 2015) to represent a program. Such vector models allow to record some chosen
information from the program, they do not represent the program’s behaviours. Thus
they can easily be evaded by standard obfuscation techniques, whereas the representation
of our extended API graph is more precise and represents the behaviour of programs
via API calls and can thus resist to several obfuscation techniques.

Ravi and Manoharan (2012) uses sequences of API function calls to represent
programs and learn malicious behaviours. Each program is represented by a sequence
of API functions which are captured while executing the program. Similarly, Kruegel
et al. (2003) also takes into account the system calls in the program. However, they
only consider the length of the string arguments and the distribution of characters in
the string arguments as features for their learning models. Rieck et al. (2008) uses as
model a string that records the number of occurences of every function in the program’s
runs. Our model is more precise and more robust than these representations as it allows
to take into account several API function sequences in the program while keeping the
order of their execution. Moreover, Ravi and Manoharan (2012), Kruegel et al. (2003)
and Rieck et al. (2008) use dynamic analysis to extract a program’s representation. Our
extended API graph extraction is done in a static way.

Dam and Touili (2016), Cheng et al. (2013), Santos et al. (2013), Shafiq et al. (2009),
Canzanese et al. (2015), Ye et al. (2009), Khammas et al. (2015), Lin et al. (2015),
Baldangombo et al. (2013), Masud et al. (2008) and Kapoor and Dhavale (2016) apply
IR for malware detection. The TFIDF weighting scheme is used in Cheng et al. (2013)
to compute the set of API functions that are relevant for malwares. This scheme is also
used in Santos et al. (2013) to compute the set of relevant sequences of opcodes. Our
malicious graph specifications are more robust since they take into account sequences
of API function calls. As for Baldangombo et al. (2013), Lin et al. (2015), Masud
et al. (2008), Ye et al. (2009), Khammas et al. (2015), Kapoor and Dhavale (2016),
Shafiq et al. (2009) and Canzanese et al. (2015), they use IR techniques to reduce the

6 K.H.T. Dam and T. Touili

size of the program’s representation by removing the irrelvant information. These works
do not use IR techniques for malicious behaviour extraction. Dam and Touili (2016)
applies the TFIDF weighting scheme to extract API call graphs as malicious behaviours.
These graphs are less precise than our extended API call graphs, as they consider only
the execution order between API functions, they do not consider neither the parameter
values, nor the data dependence betweeen the functions’ arguments. In Section 8, we
give experimental evidence that shows that our approach is better than the one of Dam
and Touili (2016).

Using a graph representation, Anderson et al. (2011) takes into account the order
of execution of the different instructions of the programs (not only API function calls).
Our extended API call graph representation is more robust. Indeed, considering all the
instructions in the program makes the representation very sensitive to basic obfuscation
techniques. Kinable and Kostakis (2011), Kong and Yan (2013) and Xu et al. (2013)
use graphs where nodes are functions of the program (either API functions or any
other function of the program). Such representations can easily be fooled by obfuscation
techniques such as function renaming. Moreover, these approaches do not extract the
malicious behaviours while we are able to extract malicious behaviours.

Christodorescu et al. (2007), Fredrikson et al. (2010), Macedo and Touili (2013),
Elhadi et al. (2013) and Nikolopoulos and Polenakis (2016) represent programs using
graphs similar to our extended API call graphs. However, Christodorescu et al. (2007),
Fredrikson et al. (2010) and Elhadi et al. (2013) use dynamic analysis to compute the
graphs, whereas our graph extraction is made statically. Dynamic analysis is not precise
enough since it allows to consider only a finite number of paths of the program, whereas
static analysis (as we do) is much more precise as it takes into account all programs
paths. Macedo and Touili (2013) tries to compute the graphs corresponding to the
malicious behaviours in a static way. However, the malicious behaviour representation
and the static computation of Macedo and Touili (2013) are not precise, as they state
that two variables are related if they have the same value, not if they depend on each
other. Our representation is more precise since we take into account the data dependence
relation between the arguments (not only their values). Indeed, it might be the case
that two arguments have the same values in the program whereas they do not depend
on each other. Our technique allows to perform static analysis to compute the data
dependence relation in the program without comparing the values of the arguments.
On the other hand, Christodorescu et al. (2007), Fredrikson et al. (2010) and Macedo
and Touili (2013) use graph mining algorithms to compute the subgraphs that belong
to malwares and not to benign programs and they assume that these correspond to
malicious behaviours. We do not make such assumption as two malwares may not have
any common subgraphs.

Nikolopoulos and Polenakis (2016) use a kind of an API call graph, where each
node corresponds to a group of API function calls. Our graphs are more precise since
we do not group API functions together. Moreover, Nikolopoulos and Polenakis (2016)
uses dynamic analysis to extract graphs, whereas our techniques are static.

As for Bhatkar et al. (2006), they consider data relations between functions’
arguments to characterise malicious behaviours. This approach is less precise than ours
since it does not take into account API function names. Moreover, Bhatkar et al. (2006)
is based on dynamic analysis to compute such data flow relation, whereas we compute
the data relation in a static way.

Extracting malicious behaviours 7

Outline: In Section 3, we present our new translation from binary programs to PDSs.
Section 4 defines the data dependence relation that gives the link between the different
variables and function parameters of the program. We present our algorithm to compute
this data dependence relation in Section 5. Extended API call graphs are defined in
Section 6. We present our TFIDF algorithm to automatically extract an extended API
call graph from a set of malicious and benign programs in Section 7. Section 8 reports
our experimental results. Section 9 presents some malicious behaviours automatically
extracted by our tool and Section 10 concludes.

3 Modelling binary programs

In this section, we show how to build a PDS from a binary program. We suppose we
are given an oracle O that extracts from the binary program a control flow graph (CFG)
equipped with information about the values of the registers and the memory locations
at each control point of the program. In our implementation, we use Jakstab (Kinder
and Veith, 2008) and IDA Pro (Eagle, 2011) to get this oracle. Our translation from a
binary code to a PDS is different from the standard one (Song and Touili, 2016): we
push a pair (x, n) into the PDS stack if at control point n, the variable x is pushed
[whereas in the standard translation of Song and Touili (2016), the value of x at control
point n is pushed in the PDS stack]. This allows to determine that this variable x in
the stack comes from control point n, which enables to evaluate the relation it has with
the other variables of the program. Note that pushing such a pair (x, n) is crucial to
determine the data dependence relation between the function parameters of the program.
Indeed, in assembly, function parameters are passed by pushing them onto the stack
before the call is made. Thus, to determine the relation between function arguments and
the other variables of the program, we need to retrieve these arguments from the stack,
and determine on what variables do they depend. This can be achieved by pushing pairs
of the form (x, n) onto the PDS stack.

3.1 Control flow graphs

A CFG is a tuple G = (N, I,E), where N is a finite set of nodes, I is a finite set of
assembly instructions in a program, and E : N × I ×N is a finite set of edges. Each
node corresponds to a control point (a location) in the program. Each edge connects two
control points and is associated with an assembly instruction. An edge (n, i, n′) in E
expresses that in the program, the control point n is followed by the control point n′ and
is associated with the instruction i. We write n i−→ n′ to express that i is an instruction
from control point n to control point n′, i.e., that (n, i, n′) ∈ E.

Let p0 be the entry point of the program. If there exist edges (p0, i1, p1),
(p1, i2, p2) . . . (pk−1, ik, pk) in the CFG, then ρ = i1, i2, . . . , ik is a path leading from
p0 to pk, we write p0

i1−→ p1
i2−→ p2 . . . pk−1

ik−→ pk or p0 −→ρ pk.
Let X be the set of data region names used in the program. From now on, we

call elements in X variables. Given a binary program, the oracle O computes a
corresponding CFG G equipped with information about the values of the variables at
each control point of the program: for every control point n and every variable x of
the program, O(n)(x) is an overapproximation of the possible values of variable x at
control point n.

8 K.H.T. Dam and T. Touili

3.2 Pushdown systems

A PDS (Bouajjani et al., 1997) is a tuple P = (P,Γ,∆), where P is a finite set of
control locations, Γ is the stack alphabet, ∆ ⊆ (P × Γ)× (P × Γ∗) is a finite set of
transition rules.

A configuration ⟨p, ω⟩ of P is an element of P × Γ∗. We write ⟨p, γ⟩ ↩→ ⟨q, ω⟩
instead of ((p, γ), (q, ω)) ∈ ∆. The successor relation ;P⊆ (P × Γ∗)× (P × Γ∗) is
defined as follows: if ⟨p, γ⟩ ↩→ ⟨q, ω⟩, then ⟨p, γω′⟩ ;P ⟨q, ωω′⟩ for every ω′ ∈ Γ∗. A
path of the PDS is a sequence of configurations c1, c2, ... such that ci+1 is an immediate
successor of the configuration ci, i.e., ci ;P ci+1, for every i ≥ 1. Let ;∗

P⊆ (P ×
Γ∗)× (P × Γ∗) be the transitive and reflexive relation of ;P such that for every c, c′ ∈
P × Γ∗, c;∗

P c, and c;∗
P c′ iff there exists c′′ ∈ P × Γ∗: c;P c′′ and c′′ ;∗

P c′. For
every set of configurations C ⊆ 2P×Γ∗ , let post∗(C) = {c ∈ P × Γ∗ | ∃c′ ∈ C : c′ ;∗

P
c} be its set of successors.

To finitely represent (potentially) infinite sets of configurations of PDSs, we use
multi-automata: given a PDS P = (P,Γ,∆), a multi-automaton (MA) is a tuple
M = (Q, Γ, δ, Q0, QF), where Q is a finite set of states, δ : Q× Γ×Q is a finite set
of transition rules, Q0 ⊆ Q is a set of initial states corresponding to the control locations
P , QF ⊆ Q is a finite set of final states. Let −→δ : Q× Γ∗ ×Q be the transition relation
such that for every q ∈ Q: q ϵ−→δ q and q

γω−−→δ q
′ if (q, γ, q′′) ∈ δ and q′′ ω−→δ q

′. A
configuration ⟨p, ω⟩ ∈ P × Γ∗ is accepted by M iff p ω−→δ q for some q ∈ QF . A set
of configuration C ⊆ P × Γ∗ is regular iff there exists a MA M such that M exactly
accepts the set of configurations C. Let L(M) be the set of configurations accepted by
M.

3.3 From CFGs to PDSs

Let X be the set of data region names used in the program. From now on, we
call elements in X variables. Given a binary program, the oracle O computes a
corresponding CFG G equipped with information about the values of the variables at
each control point of the program: for every control point n and every variable x of
the program, O(n)(x) is an overapproximation of the possible values of variable x at
control point n.

We define the PDS P = (P,Γ,∆) corresponding to the CFG G = (N, I,E) as
follows. We suppose w.l.o.g. that initially, P has ♯ in its stack.

• The set of control points P is the set of nodes N ∪N ′ where N ′ is a finite set,

• Γ is the smallest subset of X×N ∪ {τ} ∪ {♯} ∪ Z× {⊤}, where X is the set of
variables of the program and Z is the set of integers, satisfying the following:

a If n push x−−−−→ n′, where x is a variable, then (x, n) ∈ Γ (x is pushed into the
stack at control point n).

b If n push c−−−−→ n′, where c is a constant, then (c,⊤) ∈ Γ (the constant c is
pushed into the stack).

c If n call f−−−−→ n′ where n′ ∈ N then (n′,⊤) ∈ Γ (the return address n′ is
pushed into the stack).

Extracting malicious behaviours 9

• The set of rules ∆ contains transition rules that mimic the program’s instructions:
for every (n, i, n′) ∈ E and γ ∈ Γ:

α1 If i is pop x, add the transition rule ⟨n, γ⟩ ⟨n′, ϵ⟩ ∈ ∆. This rule pops the
topmost symbol from the stack and moves the program’s control point to n′.

α2

a If i is push x, where x is a variable, add the transition rule
⟨n, γ⟩ ⟨n′, (x, n)γ⟩ ∈ ∆: (x, n) is pushed to the stack. This allows to
record that x was pushed at control point n.

b If i is push c, where c is a constant, add the transition rule
⟨n, γ⟩ ⟨n′, (c,⊤)γ⟩ ∈ ∆: (c,⊤) is pushed to express that a constant
does not depend on any other value.

α3 If i is sub esp, c. Here, c is the number in bytes by which the stack pointer
esp is decremented. This amounts to push k = c/4 symbols into the stack.
Then, we would like to add the transition rule ⟨n, γ⟩

⟨
n′, τkγ

⟩
∈ ∆: we

push k τ ’s because we do not have any information about the content of the
memory region above the stack. For technical reasons, we require that the
rules of the PDS are of the form ⟨p, γ⟩ ⟨p′, w⟩, where |w| ≤ 2. This is
needed in the saturation procedure, but this is not a restriction, since any
PDS can be transformed into a PDS that satisfies this constraint (Schwoon,
2002). Thus, instead of adding the above rule to push k τ ’s, we add the
following rules to ∆: ⟨n, γ⟩ ⟨n′1, τγ⟩, for every 1 < i < k,⟨
n′i−1, τ

⟩
⟨n′i, ττ⟩, and

⟨
n′k−1, τ

⟩
⟨n′, ττ⟩, where n′i ∈ N ′, for 1 ≤ i ≤ k.

α4 If i is jmp x, we add the transition rule ⟨n, γ⟩ ⟨nx, γ⟩ ∈ ∆ for every
nx ∈ O(n)(x), where O(n)(x) is the set of possible values of x at control
point n. This rule moves the program’s control point to all the possible
addresses that can be values of x.

α5 If i is cjump x where cjump denotes a conditional jump instruction (je,
jg, jz, etc.), we add two transition rules ⟨n, γ⟩ ⟨nx, γ⟩ ∈ ∆ for every
nx ∈ O(n)(x) where O(n)(x) is the set of possible values of x at control
point n, and ⟨n, γ⟩ ⟨n′, γ⟩ ∈ ∆. The first rule moves the program’s control
point to all possible control points nx (case where the condition is
satisfied). The second rule moves the program’s control point to n′ (case
where the condition is not satisfied).

α6 If i is call f is a call to a function f . Let ef be the entry point of the
function f . We add the transition rule ⟨n, γ⟩ ⟨ef , (n′,⊤)γ⟩ ∈ ∆. This rule
moves the program’s control point to the entry point ef and pushes (n′,⊤):
n′ is the return address of the call. ⊤ expresses that it does not depend on
other variables of the program since it is a control point.

α7 If i is ret. Let addr be the return address of the function containing this
return. We add the transition rules ⟨n, γ⟩ ⟨addr, ϵ⟩ ∈ ∆, for γ of the form
γ = (addr,⊤), corresponding to a return address. As for γ = (x, n′′) where
x is a variable pushed into the stack at n′′, for every addr′ ∈ O(n′′)(x), we
add the transition rules ⟨n, γ⟩ ⟨addr′, ϵ⟩ ∈ ∆. These rules move the

10 K.H.T. Dam and T. Touili

program’s control point to the return address of the function call and pop
the topmost symbol from the stack.

α8 If i is add esp, c. Here, c is the number in bytes by which the stack pointer
esp is incremented. This amounts to pop k = c/4 symbols from the stack.
Then, we add to ∆ the transition rules ⟨n, γ⟩ ⟨n′1, ϵ⟩,

⟨
n′i−1, γ

⟩
⟨n′i, ϵ⟩ for

every 1 < i < k and
⟨
n′k−1, γ

⟩
⟨n′, ϵ⟩. These rules move the program’s

control point from n to n′ and pop the k topmost symbols from the stack.

α9 If i is any instruction which does not change the stack, we add the
transition rules ⟨n, γ⟩ ⟨n′, γ⟩ ∈ ∆. This rule move the program’s control
point from n to n′ without changing the stack.

4 The data dependence relation

As mentioned previously, to be able to compute the extended API call graph of a
program, we first need to determine the dependence between variables and function
arguments at the different control points of the program. To this aim, we define in this
section a data dependence relation that evaluates such variable dependence.

From now on, let us fix G = (N , I , E) as the CFG of the program and P = (P ,
Γ, ∆) its corresponding PDS (as described in Subsection 3.3). Let Z be the set of
integers, X = Xglobal ∪ Xlocal be the program’s set of variables, where Xglobal is the set
of variables that are used in the whole program, and Xlocal is the set of local variables
of the program’s functions that are used only in the scope of functions (parameters of
functions are local variables, while registers are global variables). The data dependence
function is defined as follows: Dep : N ×X → 2(X×N)∪(Z×{⊤}), s.t.:

• (y, p′) ∈ Dep(p, x) means that the variable x at the location p depends on the
variable y at the location p′, i.e., there exists a path from control point p′ to
control point p on which the value of x at p depends on the value of y at p′, i.e.,
y is defined (assigned a value) at point p′, and from p′ to p, there is no definition
of y, i.e., y is not assigned any other value from p′ to p.

• (c,⊤) ∈ Dep(p, x) means that the variable x at the location p depends on the
constant value c. ⊤ in the pair (c,⊤) indicates that c is a constant value in the
program.

We assume that there is no instruction leading to the entry point p0 of the program. The
data dependence function of any variable x at p0 is Dep(p0, x) = ∅, since initially the
variable x does not depend on any other variable.

Let ρ = i1, i2, . . . , ik be a path of instructions leading to the location pk from
the entry point p0: p0

i1−→ p1
i2−→ p2 . . . pk−1

ik−→ pk. We define Depρ(pk, x), the data
dependence function of x at the location pk on the path ρ as follows:

• Initially Depρ(p0, x) = ∅.

• If ik is an assignment of x to c, the variable x depends on the constant c on this
path: Depρ(pk, x) = {(c,⊤)}, and for every variable y ∈ X \ {x},
Depρ(pk, y) = Depρ(pk−1, y).

Extracting malicious behaviours 11

• If ik is an assignment of x to an expression exp(y1 . . . ym) (this denotes an
expression that uses the variables y1, . . . , ym), the variable x is defined at pk−1

and depends on every variable yj in this expression exp:
Depρ(pk, x) = {(x, pk−1)} ∪ {(yj , plj)|1 ≤ j ≤ m such that yj is defined at
location plj , 1 ≤ lj ≤ k − 1 and there is no assignment to yj between plj and
pk−1 on the path ρ}. Moreover, for every variable y ∈ X \ {x},
Depρ(pk, y) = Depρ(pk−1, y).

• If ik is pop x, the variable x is defined at pk−1 and depends on the value on the
top of the program’s stack.

There are two cases:

1 If the value on the top of the stack was pushed by an instruction of the form
push y at control point pl, 1 ≤ l ≤ k − 1, for a variable y, then
Depρ(pk, x) = Depρ(pl, y). This case corresponds to the situation where the
topmost symbol of the PDS P stack corresponding to this execution is (y, pl).

2 If the value on the top of the stack was pushed by an instruction of the form
push c at control point pl, 1 ≤ l ≤ k − 1, for a constant c, then
Depρ(pk, x) = {(c,⊤)}. This case corresponds to the situation where the
topmost symbol of the PDS P stack corresponding to this execution is (c,⊤).

Moreover, Depρ(pk, y) = Depρ(pk−1, y), for every variable y ∈ X \ {x}.

• If ik is call f(v1 . . . vm). The location pk is the return address of the function
call. Since the call to f is made at pk−1, the program will execute the function f
first, i.e., will move the control point to the entry point ef of the function f , and
then after the execution of the function f , by the return statement, the program
will move the control point from the exit point xf of the function f to the return
address pk of this call. Since the arguments in the call to f are pushed into the
stack, the parameters of the function f depend on the corresponding arguments in
the stack, i.e., the topmost m values in the stack correspond to these arguments.
At the entry point ef , every parameter vh (1 ≤ h ≤ m) of the function f depends
on the corresponding arguments on the stack. There are two cases for every
argument vh, (1 ≤ h ≤ m):

1 If the hth element on top of the stack was pushed by an instruction of the
form push yh at control point pl, 1 ≤ l ≤ k − 1, for a variable yh, then
Depρ(ef , vh) = Depρ(pl, yh). This case corresponds to the situation where
the hth symbol of the PDS P stack corresponding to this execution is (yh, pl).

2 If the hth element on the top of the stack was pushed by an instruction of the
form push c at control point pl, 1 ≤ l ≤ k − 1, for a constant c, then
Depρ(ef , vh) = {(c,⊤)}. This case corresponds to the situation where the
hth symbol of the PDS P stack corresponding to this execution is (c,⊤).

Moreover, Depρ(ef , y) = Depρ(pk−1, y), for every variable y ∈ X \ {vh}1≤h≤m.

At the return address pk (the return statement at xf moves the program’s control
point to pk),

12 K.H.T. Dam and T. Touili

1 Depρ(pk, y) = Depρ(xf , y) for every global variable y ∈ Xglobal, since the
global variable y can be changed inside the function f .

2 Depρ(pk, y) = Depρ(pk−1, y) for every local variable of the caller
y ∈ Xlocal, since a local variable y of the caller does not change in the called
function f .

• For the other cases where the variable x is not changed by the instruction ik,
Depρ(pk, x) = Depρ(pk−1, x).

Let x ∈ X be a variable and p be a location in the program. Let ρj (1 ≤ j ≤ s) be all
the paths leading from the entry point p0 to p in the program (p0 −→ρj p). The data
dependence function of variable x at the location p is defined as follows:

Dep(p, x) =
∪

1≤j≤s

Depρj (p, x).

5 Computing the data dependence relation

As described in Subsection 3.2, we use regular languages and multi-automata (MA) to
describe potentially infinite sets of configurations of PDSs. Let A = (Q,Γ, δ,Q0, QF)
be a MA of the PDS P = (P,Γ,∆), where Q = P ∪ {qF }, Q0 = {p0} (p0 is the entry
point of the program), QF = {qF } and δ = {(p0, ♯, qF)}. Initially, the stack is empty
(it only contains the initial special stack symbol ♯). A accepts the initial configuration
of the PDS ⟨p0, ♯⟩. We can compute an MA A′ = (Q′,Γ, δ′, Q0, QF) that accepts
post∗(⟨p0, ♯⟩). A′ is obtained from A by the following procedure of Esparza et al.
(2000): Initially, δ′ = δ.

• For every transition rule ⟨p, γ⟩ ↩→ ⟨p′, γ′γ⟩ ∈ ∆, we add a new state p′γ′ , and a
new transition rule (p′, γ′, p′γ′) into δ′.

• We add new transitions into δ′ by the following saturation rules: For every
(p, γ, q) ∈ δ′:

1 If ⟨p, γ⟩ ⟨p′, γ′γ′′⟩ ∈ ∆, add the new transition (p′γ′ , γ′′, q) into δ′.

2 If ⟨p, γ⟩ ⟨p′, γ′⟩ ∈ ∆, add the new transition (p′, γ′, q) into δ′.

3 If ⟨p, γ⟩ ⟨p′, ϵ⟩ ∈ ∆, then for every transition (q, γ′, q′) ∈ δ′, add the new
transition (p′, γ′, q′) into δ′.

We will annotate the transitions δ′ of A′ by an annotation function θ, s.t. for every
control point p, and every transition rule t = (p, γ, q) of A′, for every variable x ∈ X ,
(x′, p′) ∈ θ(t)(x) (resp. (c,⊤) ∈ θ(t)(x)) expresses that there exists w ∈ Γ∗, q w−−→δ′ qF ,
such that in at least one of the paths leading from the initial configuration ⟨p0, ♯⟩ to
⟨p, γw⟩, the value of the variable x at the configuration ⟨p, γw⟩ depends on the value
of the variable x′ at the control point p′ (resp. depends on the constant value c).

For every t in δ′, let then θ(t) : X → 2(X×N)∪(Z×{⊤}) be a kind of dependence
function. We compute these functions according to the following rules:

Extracting malicious behaviours 13

β0 Initially, for every transition rule t = (p, γ, q) ∈ δ′, let θ(t)(y) = ∅ for every
y ∈ X.

β1 If ⟨p, γ⟩ ⟨p′, γ′⟩ ∈ ∆. Then, by the above saturation procedure, for every
t = (p, γ, q) in δ′, t′ = (p′, γ′, q) is also in δ′. Let i be the program instruction
corresponding to this rule (i is an instruction from control point p to p′: p i−→ p′).
There are two cases, depending on whether i is an assignment or not:

β1.0 If i is not an assignment, then θ(t′) := θ(t) ∪ θ(t′).

β1.1 If i is an assignment of the variable y ∈ X, then θ(t′) is computed as
follows:

β1.1.1 If i is an assignment of y to a constant value such that y := c,
e.g., mov y, c or lea y, c, etc. then
θ(t′)(y) := θ(t′)(y) ∪ {(c,⊤)}.

β1.1.2 If i is an assignment to an expression exp such that y := exp,
e.g., mov y, y′ or add y, y′, etc. then
θ(t′)(y) := θ(t′)(y) ∪ {(y, p)} ∪ (

∪
y′∈Var(exp) θ(t)(y

′)), where
Var(exp) is the set of variables used in the expression exp.

β2 If ⟨p, γ⟩ ⟨p′, γ′γ′′⟩ ∈ ∆ is a rule corresponding to an instruction i of the form
push y or sub esp, x (where p i−→ p′). Then, by the saturation procedure, for
every t = (p, γ, q) ∈ δ′, t′ = (p′, γ′, p′γ′) and t′′ = (p′γ′ , γ′′, q) are in δ′. Then
θ(t′) and θ(t′′) are computed as follows:

β2.0 For every y ∈ X, θ(t′)(y) := θ(t′)(y) ∪ θ(t)(y).

β2.1 For every y ∈ X, θ(t′′)(y) := θ(t′′)(y) ∪ θ(t)(y).

β3 If ⟨p, γ⟩ ⟨ef , γ′γ⟩ ∈ ∆ is a rule corresponding to an instruction i of the form
call f(v1 . . . vm) (where p i−→ p′). Then, by the saturation procedure, for every
t = (p, γ, q) ∈ δ′, t′ = (ef , γ

′, efγ′) and t′′ = (efγ′ , γ, q) are in δ′ where
γ′ = (p′,⊤) (rule α6). f has m arguments that should be taken from the stack.
Let then d be the number of different prefixes of length m of accepting paths in
the MA A′ starting from the transition t. Let γj1, · · · , γjm, for j, 1 ≤ j ≤ d, be
such prefixes (γj1 = γ for every j, 1 ≤ j ≤ d). (This means that for the path j in
A′, γjk is the kth symbol on the stack, i.e., the kth argument of f , for
k, 1 ≤ k ≤ m). Then, γjk is either of the form (pjk, y

j
k), where y

j
k ∈ X is a

variable and pjk ∈ P is a control point of the program; or of the form (cjk,⊤),
where cjk is a constant. If γjk is of the form (pjk, y

j
k), 1 ≤ k ≤ m, 1 ≤ j ≤ d, let

tsjk
, 1 ≤ sjk ≤ hjk be all transitions in A′ of the form tsjk

= (pjk, γsjk
, qsjk

), i.e., be
all transitions outgoing from pjk. Then θ(t′) and θ(t′′) are computed as follows.

β3.0 For 1 ≤ k ≤ m:

θ(t′)(vk) := θ(t′)(vk) ∪
∪

1≤j≤d

 ∪
γj
k=(pjk,y

j
k)

 ∪
1≤sjk≤h

j
k

θ(tsjk
)(yjk)



14 K.H.T. Dam and T. Touili

∪
∪

γj
k=(cjk,⊤)

{(cjk,⊤)}


β3.1 For every y ∈ Xglobal \ {vk}1≤k≤m, θ(t′)(y) := θ(t′)(y) ∪θ(t)(y).

β3.2 For every y ∈ Xlocal, θ(t′′)(y) := θ(t′′)(y) ∪ θ(t)(y).

β4 If ⟨xf , γ⟩ ⟨addr, ϵ⟩ ∈ ∆ is a rule corresponding to the return instruction ret of
the function f (α7). Then, by the saturation procedure, for every t0 = (xf , γ, q)
and t1 = (q, γ′, q′) in δ′, t2 = (addr, γ′, q′) is in δ′. θ(t2) is computed as
follows:

β4.0 For every y ∈ Xglobal, θ(t2)(y) := θ(t2)(y) ∪ θ(t0)(y).

β4.1 For every y ∈ Xlocal, θ(t2)(y) := θ(t2)(y) ∪ θ(t1)(y).

β5 If ⟨p, γ⟩ ⟨p′, ϵ⟩ ∈ ∆ is a rule corresponding to an instruction i of the form pop y

(where p i−→ p′). Then, by the saturation procedure, for every t = (p, γ, q) and
t′ = (q, γ′, q′) in δ′, t′′ = (p′, γ′, q′) is in δ′. θ(t′′) is computed as follows:

β5.0 For every y′ ∈ X \ {y}, θ(t′′)(y′) := θ(t′′)(y′) ∪ θ(t)(y′).

β5.1 If γ is of the form (c,⊤), where c is a constant, then
θ(t′′)(y) := θ(t′′)(y) ∪ {(c,⊤)}. Otherwise, if γ is of the form (p′′, y′)
where y′ ∈ X is a variable and p′′ ∈ P is a control point of the program,
then let tk, 1 ≤ k ≤ j be all transitions in A′ of the form
tk = (p′′, γk, qk), i.e., tk are all the outgoing transitions from p′′ (this
means that γk is a possible topmost stack symbol at p′′). Then

θ(t′′)(y) := θ(t′′)(y) ∪
∪

1≤k≤j

 ∪
γk=(pk,yk)

θ(tk)(y
′)

∪
∪

γk=(ck,⊤)

{(ck,⊤)

 .

β6 If ⟨p, γ⟩ ⟨p′, ϵ⟩ ∈ ∆ is a rule corresponding to an instruction i of the form
add esp, x. Then, by the saturation procedure, for every t = (p, γ, q) and
t′ = (q, γ′, q′) in δ′, t′′ = (p′, γ′, q′) is in δ′. θ(t′′) is computed as follows: for
every y′ ∈ X, θ(t′′)(y′) := θ(t′′)(y′) ∪ θ(t)(y′).

5.1 Intuition

Let us give the intuition behind the above rules. Item β0 initialises the θ of all the
transitions with the emptyset. Then, θ can be iteratively computed by applying items
β1, . . . , β6. The process terminates when for every transition t, θ(t) cannot be modified
anymore.

Item β1 deals with the case where there exist a transition rule ⟨p, γ⟩ ⟨p′, γ′⟩ in the
PDS and t = (p, γ, q) in A′. By the saturation procedure described above, t′ = (p′, γ′, q)

Extracting malicious behaviours 15

is in A′. There are different cases depending on the nature of the instruction i of the
program that corresponds to the PDS rule ⟨p, γ⟩ ⟨p′, γ′⟩:

• If i is not an assignment, then the dependence of the variables at p′ is the same as
their dependence at p. This is expressed by item β1.0. We write
θ(t′) := θ(t) ∪ θ(t′), to express that the new value of θ(t′) is equal to the old
value of θ(t′) (dependence of variables at p′) union θ(t) (dependence of variables
at p).

• If i is an assignment of y to a constant value such that y := c, then at p′, y
depends on the constant c. Thus, item β1.1.1 adds (c,⊤) to θ(t′)(y).

• If i is an assignment to an expression exp such that y := exp, then at p′, y
depends on the values of y′ at p, for every variables y′ used in the expression
exp. Thus, item β1.1.2 adds

∪
y′∈Var(exp) θ(t)(y

′) to θ(t′)(y). Since y is defined at
p, item β1.1.2 adds also (y, p) to θ(t′)(y).

Item β2 expresses that a push instruction does not change the dependence of variables:
if the instruction i from p to p′ is a push, then for every variable y, the dependence of
y at p′ is the same as its dependence at p.

Item β3 handles the case where there is a transition rule ⟨p, γ⟩ ⟨ef , γ′γ⟩
corresponding to an instruction i of the form call f(v1 . . . vm) (where p i−→ p′). In this
call, f has m arguments that should be taken from the stack. The γjks in item β3 are
the different stack symbols such that for j, 1 ≤ j ≤ d, γj1 · · · γjm is one of the possible
prefixes of size m of the stack content at point p (there are d possible such prefixes).
Since arguments to functions are passed through the stack, for every possible stack
content (every possible path) j, the value of the parameter vk, 1 ≤ k ≤ m, is taken from
γjk. There are two cases that are expressed by item β3.0:

1 If γjk is of the from (pjk, y
j
k), where y

j
k ∈ X is a variable and pjk ∈ P is a control

point of the program, then vk depends on the value of yjk at point pjk (remember,
the stack symbol (pjk, y

j
k) expresses that y

j
k was pushed into the stack at control

point pjk). Thus, we need to determine the dependence of variable yjk at control
point pjk. This dependence is determined by the θ of the transitions that are
outgoing from pjk. Therefore, we add

∪
γj
k=(pjk,y

j
k)

(∪
1≤sjk≤h

j
k
θ(tsjk

)(yjk)
)
to

θ(t′)(vk), where tsjk are all the outgoing transitions of δ′ at point pjk. Note that in
the paths leading from p0 to pjk, and then to p, we do not know what is the
precise topmost symbol at pjk, this is why we consider the union of θ

(
tsjk

)
(yjk)

over all possible outgoing transitions tsjk at pjk. This overapproximates the
dependence relation.

2 If γjk is of the from (cjk,⊤), where cjk is a constant, then vk depends on the
constant value (cjk,⊤). Thus, we add

∪
γj
k=(cjk,⊤){(c

j
k,⊤)} to θ(t′)(vk).

Item β3.1 expresses that, in p′, the values of the global variables that are not the function
arguments are the same as in p.

Item β3.2 expresses that the values of the local variables are the same as in p after
the call: we record in t′′ the dependence relation of the local variables of the caller, so

16 K.H.T. Dam and T. Touili

that we can restore them when the function f returns: when ⟨xf , γ⟩ ⟨addr, ϵ⟩ ∈ ∆ is
a rule corresponding to the return instruction ret of the function f , item β4.1 recovers
the dependence relation of the local variables after the call [these will be taken from
the above θ(t′′) since transitions t1 in item β4 correspond to transitions t′′ in item β3:
they correspond to return points of the function call]; whereas item β4.0 updates the
dependence relation of the global variables after the call (they are the same as in xf ,
i.e., as for the transition t0).

Item β5 expresses that if ⟨p, γ⟩ ⟨p′, ϵ⟩ ∈ ∆ is a rule corresponding to a pop y
instruction, then the values of all the variables that are different from y in p′ are the
same as in p (item β5.0), whereas the value of y at p′ depends on the topmost stack
symbol γ at p (item β5.1):

1 If γ is of the form (c,⊤), where c is a constant, then y at p′ depends on (c,⊤).

2 If γ is of the form (p′′, y′) where y′ ∈ X is a variable and p′′ ∈ P is a control
point of the program, the value of y at p′ depends on the value of y′ at p′′
[remember, the stack symbol (p′′, y′) expresses that y′ was pushed into the stack
at control point p′′]. Thus, we need to determine the dependence of variable y′ at
control point p′′. This dependence is determined by the θ of the transitions that
are outgoing from p′′. Therefore, item β5.1 adds

∪
γk=(pk,yk)

θ(tk)(y
′) to θ(t′′)(y),

for all the transitions tk that are outgoing from p′′. Note that in the paths leading
from p0 to p′′, and then to p, we do not know what is the precise topmost symbol
at p′′, this is why we consider the union of θ(tk)(y′) over all possible outgoing
transitions tk at p′′. This overapproximates the dependence relation.

Item β6 deals with the case where ⟨p, γ⟩ ⟨p′, ϵ⟩ is a rule corresponding to an instruction
of the form add esp, x: such an instruction does not change the value of any variable.

5.2 The data dependence function Dep

Then, we can show that for every location p and every variable x, Dep(p, x) is
overapproximated by the union over all the transitions tj that are outgoing transitions
from p of θ(tj)(x).

Theorem 1: Let p be a control point of the program. Let d be the number of transitions
that are outgoing from p in the MA A′. Let tj = (p, γj , qj) ∈ δ′ for every 1 ≤ j ≤ d be
such transitions, then for every x ∈ X

Dep(p, x) ⊆
∪

1≤j≤d

θ(tj)(x).

Intuitively, each transition tj = (p, γj , qj) in A′ represents some reachable
configurations Cj at control point p, with γj as topmost stack symbol. Since
the data dependence function θ(tj) associated with this transition represents an
overapproximation of the data dependence on the paths leading from the entry point of
the program p0 to these reachable configurations Cj , i.e., for every variable x, θ(tj)(x)
is an overapproximation of Depρ(p, x) for all paths ρ leading to Cj . Since all the
reachable configurations at control point p are represented by all the transitions tj ,
1 ≤ j ≤ d, that are outgoing from p, we have that Dep(p, x) ⊆

∪
1≤j≤d θ(tj)(x). To

Extracting malicious behaviours 17

formally prove this theorem, we first need to prove the following lemma:

Lemma 1: Let ρ = i1, i2, . . . , ik be a path in the program leading to the control point pk
from p0 such that p0

i1−→ p1
i2−→ p2 . . . pk−1

ik−→ pk. Each instruction ij in ρ (1 ≤ j ≤ k)
corresponds to a PDS rule of the form ⟨pj−1, γj−1⟩ ↩→ ⟨pj , ωj⟩. Let tj = (pj , γj , qj),
1 ≤ j ≤ k, be a transition added by the saturation procedure to A′ because of the rule
⟨pj−1, γj−1⟩ ↩→ ⟨pj , ωj⟩. For every x ∈ X, we have Depρ(pk, x) ⊆ θ(tk)(x).

Proof: Let ρ = i1, i2, . . . , ik be a path leading to pk from p0. Let ⟨pj−1, γj−1⟩ ↩→
⟨pj , ωj⟩, 1 ≤ j ≤ k, be a PDS rule corresponding to the instruction ij . Let tj = (pj , γj ,
qj), 1 ≤ j ≤ k, be a transition added to A′ by the saturation procedure because of the
rule ⟨pj−1, γj−1⟩ ↩→ ⟨pj , ωj⟩. Let x ∈ X be a variable in the program. We will show
that Depρ(pk, x) ⊆ θ(tk)(x) by induction on k.

5.2.1 Base case

k = 1, ρ = i1. Initially, (p0, ♯, qF) is the only transition in A′. There are different cases
depending on the nature of the instruction i1.

1 i1 is an assignment of x to a constant c. By the definition of the data dependence
relation in Section 4, we have

Depρ(p1, x) = {(c,⊤)}. (1)

Since the instruction i1 is an assignment and initially (p0, ♯, qF) is the only
transition in A′, ω1 = ♯, i.e., the PDS rule corresponding to i1 is ⟨p0, ♯⟩ ↩→ ⟨p1, ♯⟩
by the rules in Subsection 3.3. By the saturation procedure in Section 5, since
there is the transition t0 = (p0, ♯, qF) in A′, the transition t1 = (p1, ♯, qF) is added
to A′. By item β1.1.1, we get

θ(t1)(x) := θ(t1)(x) ∪ {(c,⊤)}. (2)

Thus, from Sections 1 and 2 we get Depρ(p1, x) ⊆ θ(t1)(x).

Moreover, by the definition in Section 4, we have for every y ∈ X \ {x}
Depρ(p1, y) = Depρ(p0, y). By the definition in Section 4, since p0 is the entry
point of the program, we get Depρ(p0, y) = ∅. Therefore, we get
Depρ(p1, y) ⊆ θ(t1)(y).

2 i1 is an assignment of x to an expression exp(y1, . . . ym). By the definition in
Section 4, Depρ(pk, x) = {(x, pk−1)} ∪ π, where π = {(yj , pℓ)| 1 ≤ j ≤ m such
that yj is defined at location pℓ, 1 ≤ ℓ ≤ k − 1 and there is no assignment to yj
between pℓ and pk−1 on the path ρ}. Since k = 1, there is not any pℓ, 1 ≤ j ≤ m
and 1 ≤ ℓ ≤ k − 1, such that yj is defined at pℓ. Hence, π = ∅. Thus, we get

Depρ(p1, x) = {(x, p0)}. (3)

Since the instruction i1 is an assignment and initially (p0, ♯, qF) is the only
transition in A′, ω1 = ♯, i.e., the PDS rule corresponding to i1 is ⟨p0, ♯⟩ ↩→ ⟨p1, ♯⟩

18 K.H.T. Dam and T. Touili

by the rules in Section 3.3. By the saturation procedure in Subsection 5, since
there is the transition t0 = (p0, ♯, qF) in A′, the transition t1 = (p1, ♯, qF) is added
to A′. By item β1.1.2, we get

θ(t1)(x) := θ(t1)(x) ∪ {(x, p0)} ∪

 ∪
y′∈Var(exp)

θ(t0)(y
′)

 . (4)

Thus, from equations (3) and (4) we get Depρ(p1, x) ⊆ θ(t1)(x).

Moreover, by the definition in Section 4, for any y ∈ X \ {x},
Depρ(p1, y) = Depρ(p0, y). Since by the definition in Section 4 Depρ(p0, y) = ∅,
Depρ(p1, y) = ∅. Therefore, we get Depρ(p1, y) ⊆ θ(t1)(y).

3 i1 is an instruction of the form pop x. This case is not possible since initially the
PDS stack is empty.

4 i1 is a call statement to the function f(v1 . . . vm). Let ef and xf be the entry
point and the exit point of the function f , respectively. Since on the path ρ there
is only an instruction i1 and since initially the PDS stack is empty (contains only
the special symbol ♯), f cannot retrieve the values of its parameter from the PDS
stack. Thus, in this case, necessarily f has no parameter.

Since initially, (p0, ♯, qF) is the only transition in A′ and i1 is a call statement,
necessarily ω1 = γef ♯, i.e., the PDS rule corresponding to i1 is
⟨p0, ♯⟩ ↩→ ⟨ef , γef ♯⟩ by the rules in Subsection 3.3. By the saturation procedure,
since the transition t0 = (p0, ♯, qF) is in A′, we add t1 = (ef , γef , qef) and
t′1 = (qef , ♯, qF) to A′. By the definition in Section 4, for every y ∈ X, we have
Depρ(p1, y) = Depρ(p0, y). Since p0 is the entry point, we get Depρ(p0, y) = ∅
by the definition in Section 4. Hence, Depρ(p1, y) = ∅. Therefore, we get
Depρ(p1, y) ⊆ θ(t1)(y) and Depρ(p1, y) ⊆ θ(t′1)(y).

5 i1 is a return statement. This case is not possible since initially the PDS stack is
empty.

6 i1 is a push instruction. By the definition in Section 4, for every x ∈ X,
Depρ(p1, x) = Depρ(p0, x). Since p0 is the entry point, Depρ(p0, x) = ∅. Hence,
we have Depρ(p1, x) = ∅. Since the instruction i1 is of the form push x and
initially (p0, ♯, qF) is the only transition in A′, ω1 = γ1♯, i.e., the PDS rule
corresponding to i1 is ⟨p0, ♯⟩ ↩→ ⟨p1, γ1♯⟩. By the saturation procedure in
Section 5, since t0 = (p0, ♯, qF) is in A′, the transitions t1 = (p1, γ1, q

′) and
t′1 = (q′, ♯, qF) are added to A′. Since Depρ(p1, x) = ∅, we get Depρ(p1, x)
⊆ θ(t1)(x) and Depρ(p1, x) ⊆ θ(t′1)(x) for every x ∈ X .

7 i1 is an instruction which does not change the value of any variable in X. By the
definition in Section 4, for every x ∈ X, Depρ(p1, x) = Depρ(p0, x). Since p0 is
the entry point, Depρ(p0, x) = ∅. Hence, we have Depρ(p1, x) = ∅. Since i1 is an
instruction which does not change the value of any variable in X and initially
(p0, ♯, qF) is the only transition in A′, ω1 = ♯, i.e., the PDS rule corresponding to
i1 is ⟨p0, ♯⟩ ↩→ ⟨p1, ♯⟩. By the saturation procedure in Section 5, for the transition
t0 = (p0, ♯, qF) in A′, the transition t1 = (p1, ♯, qF) is added to A′. Since
Depρ(p1, x) = ∅, Depρ(p1, x) ⊆ θ(t1)(x) for every x ∈ X.

Extracting malicious behaviours 19

5.2.2 Inductive step

k > 1. Let ρ = i1, . . . , ik be a path leading to pk from p0. By the induction hypothesis,
Depρ(pk−1, x) ⊆ θ(tk−1)(x). We will show that Depρ(pk, x) ⊆ θ(tk)(x). There are
different cases depending on the nature of the instruction ik.

1 ik is an assignment of x to a constant c. By the definition in Section 4, we get

Depρ(pk, x) = {(c,⊤)}. (5)

Since the instruction ik is an assignment, ωk = γk−1, i.e., the PDS rule
corresponding to ik is ⟨pk−1, γk−1⟩ ↩→ ⟨pk, γk−1⟩. By the saturation procedure in
Section 5, since there is the transition tk−1 = (pk−1, γk−1, q

′) in A′, the transition
tk = (pk, γk−1, q

′) is added to A′. By item β1.1.1, we get

θ(tk)(x) := θ(tk)(x) ∪ {(c,⊤)}. (6)

Thus, from equations (5) and (6) we get Depρ(pk, x) ⊆ θ(tk)(x).

Moreover, by the definition in Section 4, for every y ∈ X \ {x}, we have

Depρ(pk, y) = Depρ(pk−1, y). (7)

By item β1.0, we get

θ(tk)(y) := θ(tk)(y) ∪ θ(tk−1)(y). (8)

By the induction hypothesis, we have

Depρ(pk−1, y) ⊆ θ(tk−1)(y). (9)

Thus, from equations (7), (8) and (9) we get Depρ(pk, y) ⊆ θ(tk)(y).

2 ik is an assignment of x to an expression exp(y1, . . . ym). Since yj is defined at
pℓ, 1 ≤ j ≤ m and 1 ≤ ℓ ≤ k − 1, (yj , pℓ) ∈ Depρ(pk−1, yj) for 1 ≤ j ≤ m.
Then, we have∪
1≤j≤m

(yj , pℓ) ⊆
∪

1≤j≤m

Depρ(pk−1, yj). (10)

By the definition in Section 4, we have

Depρ(pk, x) = {(x, pk−1)} ∪
∪

1≤j≤m

(yj , pℓ) (11)

Since the instruction ik is an assignment, ωk = γk, i.e., the PDS rule
corresponding to ik is of the form ⟨pk−1, γk−1⟩ ↩→ ⟨pk, γk⟩. By the saturation
procedure in Section 5, since the transition tk−1 = (pk−1, γk−1, q

′) is in A′, the
transition tk = (pk, γk−1, q

′) is added to A′. By item β1.1.2, we get

θ(tk)(x) := θ(tk)(x) ∪ {(x, pk−1)} ∪

 ∪
1≤j≤m

θ(tk−1)(yj)

 . (12)

20 K.H.T. Dam and T. Touili

By the induction hypothesis, we have

Depρ(pk−1, yj) ⊆ θ(tk−1)(yj) for 1 ≤ j ≤ m.

Hence, we get∪
1≤j≤m

Depρ(pk−1, yj) ⊆
∪

1≤j≤m

θ(tk−1)(yj). (13)

Therefore, from equations (11), (10), (12) and (13) we get
Depρ(pk, x) ⊆ θ(tk)(x).

Moreover, by the definition in Section 4, for every y ∈ X \ {x}, we get

Depρ(pk, y) = Depρ(pk−1, y). (14)

By item β1.0, we get

θ(tk)(y) := θ(tk)(y) ∪ θ(tk−1)(y). (15)

By the induction hypothesis, we have

Depρ(pk−1, y) ⊆ θ(tk−1)(y). (16)

Thus, from equations (14), (15) and (16) we get Depρ(pk, y) ⊆ θ(tk)(y).

3 ik is the instruction of the form pop x. Since ik is of the form pop x, ωk = ϵ, i.e.,
the PDS rule corresponding to ik is ⟨pk−1, γk−1⟩ ↩→ ⟨pk, ϵ⟩. By the saturation
procedure in Section 5, for every transitions tk−1 = (pk−1, γk−1, q) and
t′k−1 = (q, γ′, q′) in A′, the transition tk = (pk, γ

′, q′) is added to A′. By the
definition in Section 4, there are two cases depending on the topmost stack
symbol γ′:

a If the topmost symbol γ′ of the PDS stack corresponding to this execution at
pk is of the form (y, pℓ), 1 ≤ ℓ ≤ k − 1, we have

Depρ(pk, x) = Depρ(pℓ, y). (17)

Because ik is the instruction of the form pop x. Let tj = (pℓ, γ
′
j , q

′
j),

1 ≤ j ≤ m, be all transitions in A′ outgoing from pℓ [γ′j = (y′j , pℓ) is a
possible topmost stack symbol at pℓ]. Then, by item β5.1, we have

θ(tk)(x) := θ(tk)(x) ∪
∪

1≤j≤m

 ∪
γj=(yj ,pℓ)

θ(tj)(yj) ∪
∪

γj=(cj ,⊤)

{(cj ,⊤)}

 .

Hence, we get

∪
1≤j≤m

 ∪
γj=(y′j ,pℓ)

θ(tj)(y
′
j)

 ⊆ θ(tk)(x). (18)

And there exists a transition tj at pℓ such that γ′j correspond to γ′ and y′j
corresponds to y in equation (17).

Extracting malicious behaviours 21

By the induction hypothesis, we have

Depρ(pℓ, y) ⊆ θ(tj)(y
′
j) where y = y′j . (19)

Therefore, from equations (17), (18) and (19) we get Depρ(pk, x) ⊆ θ(tk)(x).

b If the topmost symbol of the PDS stack corresponding to this execution is
(c,⊤), by the definition in Section 4, we have

Depρ(pk, x) = {(c,⊤)}. (20)

By item β5.1, we have

θ(tk)(x) := θ(tk)(x) ∪ {(c,⊤)}. (21)

Thus, from equations (20) and (21) we get Depρ(pk, x) ⊆ θ(tk)(x).

Moreover, by the definition in Section 4, for every y ∈ X \ {x}, we have

Depρ(pk, y) = Depρ(pk−1, y). (22)

By item β5.0, we have

θ(tk)(y) := θ(tk)(y) ∪ θ(tk−1)(y). (23)

By the induction hypothesis, we have

Depρ(pk−1, y) ⊆ θ(tk−1)(y). (24)

Thus, from equations (22), (23) and (24) we get Depρ(pk, y) ⊆ θ(tk)(y).

4 ik is a call statement to the function f(v1 . . . vm). Then, pk is the return address
of the function f . Let ef and xf be the entry point and the exit point of the
function f , respectively. We will consider the data dependence function at ef and
xf as follows.

Let us consider the variables at the entry point ef of the function. Since ik is of
the form call f(v1 . . . vm), ωk = γef γk−1, i.e., the PDS rule corresponding to ik
is ⟨pk−1, γk−1⟩ ↩→ ⟨ef , γef γk−1⟩. By the saturation procedure in Section 5, for
the transition tk−1 = (pk−1, γk−1, q) in A′, the transitions tef = (ef , γef , qef) and
t′ef = (qef , γk−1, q) are added to A′. Let d be the number of different prefixes of
length m of accepting paths in the MA A′ starting from the transition tk−1. Let
γj1 · · · γjm, for j, 1 ≤ j ≤ d, be such prefixes (γj1 = γk−1 for every j, 1 ≤ j ≤ d).
Hence, the hth element on top of the stack belongs to {γjh|1 ≤ j ≤ d} for every h,
1 ≤ h ≤ m. Then, γjh is either of the form (yjh, p

j
h), where y

j
h ∈ X is a variable

and pjh ∈ P is a control point of the program; or of the form (cjh,⊤), where cjh is
a constant. If γjh is of the form (pjh, y

j
h), 1 ≤ h ≤ m, 1 ≤ j ≤ d, let tsjh ,

22 K.H.T. Dam and T. Touili

1 ≤ sjh ≤ ℓjh be all transitions in A′ of the form tsjh
= (pjh, γ

′
sjh
, qsjh

). By item
β3.0, for every parameter vh (1 ≤ h ≤ m), we get

θ(tef)(vh) := θ(tef)(vh)
∪

1≤j≤d

 ∪
γj
h=(yjh,p

j
h)

 ∪
1≤sjh≤l

j
h

θ(tsjh
)(yjh)


∪

∪
γj
h=(cjh,⊤)

{(cjh,⊤)}

 (25)

By the definition in Section 4, for every parameter vh (1 ≤ h ≤ m) at the entry
point of the function f , there are two cases:

a If the hth element on top of the stack is of the form (yh, ph), we have

Depρ(ef , vh) = Depρ(ph, yh). (26)

We have (yh, ph) ∈ {γjh|1 ≤ j ≤ d} since {γjh|1 ≤ j ≤ d} is a set of the hth
symbols in different prefixes of the stack with length m. Hence, there exists a
transition tsjh ∈ A′ corresponding to stack symbol (yh, ph) ∈ {γjh|1 ≤ j ≤ d}.
By the induction hypothesis, we have

Depρ(ph, yh) ⊆ θ(tsjh
)(yh). (27)

Thus, from equations (25), (27) and (26) we get Depρ(ef , vh) ⊆ θ(tef)(vh).

b If the hth element on top the stack is of the form (ch,⊤), we have

Depρ(ef , vh) = {(ch,⊤)}. (28)

We have (ch,⊤) ∈ {γjh|1 ≤ j ≤ d} since {γjh|1 ≤ j ≤ d} is a set of the hth
symbol in different prefixes of the stack with length m. Hence, there exists
γjh such that γjh = (ch,⊤) such that

{(ch,⊤)} ⊆
∪

γj
h=(cjh,⊤)

{(cjh,⊤)}. (29)

Thus, from equations (25), (28) and (29) we get Depρ(ef , vh) ⊆ θ(tef)(vh).

Moreover, by the definition in Section 4, for every
y′ ∈ Xglobal \ {vh|1 ≤ h ≤ m}, we have

Depρ(ef , y
′) = Depρ(pk−1, y

′). (30)

By item β3.1, every y′ ∈ Xglobal \ {vh|1 ≤ h ≤ m}, we get

θ(tef)(y
′) := θ(tef)(y

′) ∪ θ(tk−1)(y
′). (31)

Extracting malicious behaviours 23

By the induction hypothesis, we have

Depρ(pk−1, y
′) ⊆ θ(tk−1)(y

′). (32)

Therefore, from equations (30), (31) and (32) we get
Depρ(ef , y

′) ⊆ θ(tef)(y
′) for every y′ ∈ Xglobal \ {vh|1 ≤ h ≤ m}.

Besides, by the definition in Section 4, for every
y′ ∈ Xlocal \ {vh|1 ≤ h ≤ m}, we have

Depρ(ef , y
′) = Depρ(pk−1, y

′). (33)

By item β3.2, every y′ ∈ Xlocal \ {vh|1 ≤ h ≤ m}, we get

θ(t′ef)(y
′) := θ(t′ef)(y

′) ∪ θ(tk−1)(y
′). (34)

By the induction hypothesis, we have

Depρ(pk−1, y
′) ⊆ θ(tk−1)(y

′). (35)

Therefore, from equations (33), (34) and (36) we get
Depρ(ef , y

′) ⊆ θ(t′ef)(y
′) for every y′ ∈ Xlocal \ {vh|1 ≤ h ≤ m}.

5 As for the return statement, i.e., ret, at xf of the function f , let us consider the
variables at the exit point xf of the function. At the exit point xf of the function
f(v1 . . . vm), there exists a return statement corresponding to the PDS rule
⟨xf , γxf

⟩ ↩→ ⟨pk, ϵ⟩ ∈ ∆ where γxf
is of the form (pk,⊤).

By the saturation procedure in Section 5, since transitions txf
= (xf , γxf

, qef) and
t′ef = (qef , γk−1, q) are in A′, the transition tk = (pk, γk−1, q) is added to A′.
Note that t′ef = (qef , γk−1, q) is added to A′ since ik is a call statement and the
transition tk−1 = (pk−1, γk−1, q) is in A′ (see item 4).

By the definition in Section 4, for every global variable y ∈ Xglobal, we have

Depρ(pk, y) = Depρ(xf , y). (36)

By the induction hypothesis, we have

Depρ(xf , y) ⊆ θ(txf
)(y). (37)

By item β4.0, for every global variable y ∈ Xglobal, we get

θ(tk)(y) := θ(tk)(y) ∪ θ(txf
)(y). (38)

Therefore, from equations (36), (37) and (38) we get Depρ(pk, y) ⊆ θ(tk)(y).

24 K.H.T. Dam and T. Touili

Moreover, by item β3.2, for every y ∈ Xlocal we get

θ(t′ef)(y) := θ(t′ef)(y) ∪ θ(tk−1)(y). (39)

By item β4.1, we get

θ(tk)(y) := θ(tk)(y) ∪ θ(t′ef)(y). (40)

Thus, from equations (39) and (40) we get

θ(tk−1)(y) ⊆ θ(tk)(y). (41)

By the definition in Section 4, for every y ∈ Xlocal, we have

Depρ(pk, y) = Depρ(pk−1, y). (42)

By the induction hypothesis, we have

Depρ(pk−1, y) ⊆ θ(tk−1)(y). (43)

Therefore, from equations (41), (42) and (43) we get Depρ(pk, y) ⊆ θ(tk)(y).

6 ik is a push instruction. By the definition in Section 4, we have

Depρ(pk, y) = Depρ(pk−1, y). (44)

Since the instruction ik is of the form push y, ωk = γkγk−1, i.e., the PDS rule
corresponding to ik is ⟨pk−1, γk−1⟩ ↩→ ⟨pk, γkγk−1⟩. By the saturation rule in
Section 5, for every transition tk−1 = (pk−1, γk−1, q) ∈ A′, we add
tk = (pk, γk, q

′) and t′k = (q′, γk−1, q) to A′. By item β2.0, we have

θ(tk)(y) := θ(tk)(y) ∪ θ(tk−1)(y). (45)

By item β2.1, we have

θ(t′k)(y) := θ(t′k)(y) ∪ θ(tk−1)(y). (46)

By the induction hypothesis, we have

Depρ(pk−1, y) ⊆ θ(tk−1)(y). (47)

Therefore, from equations (44), (45), (46) and (47) we get
Depρ(pk, y) ⊆ θ(tk)(y) and Depρ(pk, y) ⊆ θ(t′k)(y).

Extracting malicious behaviours 25

7 ik is an instruction which does not change the value of any variable in X. By the
definition in Section 4, we have

Depρ(pk, y) = Depρ(pk−1, y). (48)

Since ik is an instruction which does not change the value of any variable in X,
ωk = γk−1, i.e., the PDS rule corresponding to ik is ⟨pk−1, γk−1⟩ ↩→ ⟨pk, γk−1⟩.
By the saturation procedure in Section 5 , for every transition
tk−1 = (pk−1, γk−1, q) ∈ A′, the transition tk = (pk, γk−1, q) is added to A′. By
item β1.0, we get

θ(tk)(y) := θ(tk)(y) ∪ θ(tk−1)(y). (49)

By the induction hypothesis, we have

Depρ(pk−1, y) ⊆ θ(tk−1)(y). (50)

Thus, from equations (48), (49) and (50) we get Depρ(pk, y) ⊆ θ(tk)(y).

�

We are now ready to prove Theorem 1:

Proof of Theorem 1: Let x ∈ X be a variable. Let ρj = ij1 · · · i
j
kj
, 1 ≤ j ≤ s, be all

the paths leading to p from the entry point p0 of the program. For every instruction
ijhj

∈ ρj , 1 ≤ hj ≤ kj , there exists a transition tj = (p, γj , qj) that is added to A′. By
the definition at the end of Section 4,

Dep(p, x) =
∪

1≤j≤s

Depρj (p, x).

By Lemma 1, Depρj (p, x) ⊆ θ(tj)(x). Hence, we get
∪

1≤j≤sDepρj (p, x) ⊆∪
1≤j≤s θ(tj)(x).
Thus, Dep(p, x) ⊆

∪
1≤j≤s θ(tj)(x). �

6 The extended API call graph

We show in this section how to compute the extended API call graph of a given program
using the data dependence function computed in Section 5.

6.1 Definition

Let F be the set of all API functions that are called in the program. For every API
function f ∈ F , let Para(f) be the set of parameters of f and |Para(f)| be the number
of parameters of f . For each API function, there can be special parameters on which
the behaviour (the output) of the API function depends, e.g., calling the API function
GetModuleFileName with 0 as first parameter returns the current file path of this
execution, thus the value of the first parameter is crucial for the nature of the output of

26 K.H.T. Dam and T. Touili

the call to GetModuleFileName. We call such parameters meaningful parameters. Let
ParaM (f) be such meaningful parameters of f .

An extended API call graph is a directed graph G = (V,E) such that: V =
V1 ∪ V2, where V1 ⊆ {(f, eval) | f ∈ F , ParaM (f) ̸= ∅, and eval : ParaM (f) →
2Z is a function } is the set of vertices consisting of pairs of the form (f, eval) for
an API function f and an evaluation eval that specifies the value of the meaningful
parameters of f , and V2 ⊆ {f | f ∈ F , ParaM (f) = ∅} is the set of vertices labelled
by API functions with no meaningful parameter.

Let v ∈ V . Let f ∈ F be such that v of the form (f, eval) or f . Then, we define
func(v) = f and Para(v) = Para(f). Moreover, if v of the form (f, eval), then
mean(v) = eval, and if v of the form f , then mean(v) = ∅.

E ⊆ {
(
v1, 2

|Para(v1)|×|Para(v2)|, v2
)
| v1 and v2 ∈ V } is the set of edges.(

v1, e, v2
)
∈ E means that the API function func(v1) with meaningful parameter values

defined by mean(v1) is called before the API function func(v2) with meaningful
parameter values defined by mean(v2). Moreover, (i, j) ∈ e means that the ith

parameter of func(v1) and the jth parameter of func(v2) are related.
In the rest of the paper, we can abuse terminology as follows: if v = (f, eval)

is a vertex, we can say that f is a node of the graph labelled with eval.
Moreover, if (v1, e, v2) is an edge, where e ∈ 2|Para(v1)|×|Para(v2)|, we can say that(
func(v1), func(v2)

)
is an edge labelled by e.

For example, let us consider the extended API call graph of Figure 1(c).
Let a1 represent the first argument of function GetModuleFileName. Here, a1
is meaningful, whereas CopyFile does not have any meaningful parameter. Thus,
V = {(GetModuleF ileName, eval), CopyF ile | eval(a1) = {0}}: eval(a1) = {0}
expresses that when GetModuleFileName is called, the first parameter has to be equal to
0. E = {

(
(GetModuleF ileName, eval), (2, 1), CopyF ile

)
}: the pair (2, 1) expresses

that the second parameter of GetModuleFileName serves as first parameter of CopyFile.
Graphical representation: Note that in our graphical representation in Figure 1(c),

1̄ = {0} represents eval(a1) = {0}, whereas 2̄ 1̄ stands for (2, 1).

6.2 Computing the extended API call graph

Let A = (Q,Γ, δ,Q0, QF) be a MA of the PDS P = (P,Γ,∆), where Q = P ∪ {qF },
Q0 = {p0} (p0 is the entry point of the program), QF = {qF } and δ = {(p0, ♯, qF)}. A
accepts the initial configuration of the PDS ⟨p0, ♯⟩. Let A′ = (Q′,Γ, δ′, Q0, QF) be the
MA that accepts post∗(⟨p0, ♯⟩) as described in Section 5, and let θ be the annotation
function as computed in Section 5.

Let PAPI ⊂ P be the set of control points where there are calls to API functions.
For each p ∈ PAPI , let η(p) (resp. ι(p)) be the name (resp. the number of parameters) of
the API function called at point p. Let Aψ be the MA obtained from A′ by considering
only API function calls and their corresponding parameters (i.e., we keep only control
points in PAPI corresponding to API function calls, and we cut the stack of A′ in
order to keep only the part of the stack that contains the parameters of these function
calls). More precisely, let Aψ be the MA that accepts {⟨p, ω⟩ ∈ PAPI × Γ∗ | |ω| =
ι(p) and ∃ω′ ∈ Γ∗s.t. ⟨p, ωω′⟩ ∈ L(A′)}. Aψ can be easily computed from A′. Let ψ
be the operator that performs this operation: ψ(A′) = Aψ . Let ⟨p, ω⟩ ∈ Aψ . Let Aω

p be
an MA that accepts the set of configurations {⟨p, ωω′⟩ ∈ L(A′)}, i.e., Aω

p accepts the
set of reachable configurations that are in control point p and that have ω as parameter

Extracting malicious behaviours 27

values of the API η(p). For each configuration c = ⟨p, ω⟩ ∈ Aψ , let f = η(p) be the API
function called at p. Let m be the number of parameters of f . Then c is necessarily of
the form c = ⟨p, γ1 · · · γm⟩. We define mean(c), the function that evaluates the values
of the meaningful parameters of the API function η(p) at configuration c as follows:

• If f has no meaningful parameter (i.e., ParaM (f) = ∅), mean(c) = ∅.

• Otherwise, let ParaM (f) = {ai1 , . . . , aik} be the meaningful parameters of f ,
1 ≤ ij ≤ m, 1 ≤ j ≤ k:

1 If γij is of the form (c,⊤), then mean(c)(aij) = {c}.

2 If γij is of the form (xij , pij), where xij is a variable in X and pij is a
control point (that is necessarily in A′ since A′ represents all the reachable
configurations), then mean(c)(aij) = O(pij)(xij). [Remember, (xij , pij) is
in the stack because xij is pushed at control point pij . Thus, we get from the
oracle the value of xij at control point pij].

We compute the extended API call graph in two phases as follows. The first phase
computes the nodes of the graph and their labels by using the oracle O (remember that,
as mentionned in Section 3, we use an oracle to get the possible values of a variable at
each program’s location: O(p)(x) gives all possible values of variable x at the program
location p. In our implementation, we use Jakstab (Kinder and Veith, 2008) and IDA Pro
(Eagle, 2011) to get this oracle). The second phase computes the links between nodes
in the graph by using the data dependence function Dep. Intuitively, the first phase
computes the set of nodes from the API functions that are called at each location in the
program. For each configuration ⟨p, ω⟩ ∈ L(Aψ), the API function called at p, together
with the value of its meaningful parameters at ⟨p, ω⟩ are added to the graph. This API
function name is given by the operator η(p). The values of the meaningful parameters
of each API function are determined by the stack content. The edges are computed in
the second phase: Given two nodes v1 and v2 corresponding to configurations ⟨p, ω⟩ ∈
L(Aψ) and ⟨p′, ω′⟩ ∈ L(Aψ), respectively, we add an edge from v1 to v2 if ⟨p′, ω′⟩ can
be reached from ⟨p, ω⟩. The data dependence function Dep is used to add labels to the
edges of the graph that describe the data dependence relation between the parameters of
the different API functions.

More precisely, the extended API call graph G = (V,E) is computed as follows:

1 Initially, V = ∅ and E = ∅.

2 We compute the set of nodes V as follows: For each configuration c = ⟨p, w⟩ in
L(ψ(A′)), let f = η(p) be the API function called at p. We add to V the node
(f,mean(c)), where if f has no meaningful parameter and mean(c) = ∅, then(
f,mean(c)

)
stands for the node f .

3 We compute the set of edges E as follows: for every configuration
c = ⟨p, ω⟩ ∈ L(ψ(A′)), for every configuration
c′ = ⟨p′, ω′⟩ ∈ L

(
ψ(post∗(L(Aω

p))
)
[starting from control p, with ω as values for

the parameters of η(p), we can reach control point p′ with ω′ as values for the
parameters of η(p′)]. Let f = η(p) and f ′ = η(p′) be the API functions called at
p and p′, respectively. Let m (resp. m′) be the number of parameters of f (resp.

28 K.H.T. Dam and T. Touili

f ′). Then, necessarily, ω is of the form γ1 · · · γm and ω′ is of the form γ′1 · · · γ′m′ .
Let e = ∅. For every 1 ≤ h ≤ m and 1 ≤ k ≤ m′:

• If γh is of the form (xh, ph), where xh is a variable and ph is a control point
of the program, then:

a If γ′k is of the form (x′k, p
′
k), where x′k is a variable and p′k is a control

point of the program, then if Dep(p, xh) ∩ Dep(p′, x′k) ̸= ∅, we add
(h, k) to e.

b If γ′k is of the form (ck,⊤), for a constant ck, then if
(ck,⊤) ∈ Dep(p, xh), we add (h, k) to e.

• If γh is of the form (ch,⊤) for a constant ch, then:

a If γ′k is of the form (x′k, p
′
k), where x′k is a variable and p′k is a control

point of the program, then if (ch,⊤) ∈ Dep(p′, x′k), we add (h, k) to e.

b If γ′k is of the form (ck,⊤), then if ck = ch, we add (h, k) to e.

Then, we add
((
f,mean(c)

)
, e,

(
f ′,mean(c′)

))
to E. Note that from the above

construction, (h, k) is added to e means that the hth parameter of f and the kth
parameter of f ′ are related (they depend on the same variable or on the same
value). Thus, we add (h, k) to the set labelling the edge corresponding to these
configurations c and c′ and relating f to f ′.

7 Extracting malicious behaviours

Given a set of extended API call graphs that correspond to malwares and a set of
extended API call graphs corresponding to benign programs, we want to extract in
a completely automatic way a malicious API graph that corresponds to the malicious
behaviours of the malwares. This malicious extended API graph should represent the
parts of the API call graphs of the malwares that correspond to the malicious behaviours.
Thus, we need to retrieve from these graphs the set of subgraphs that are relevant for
malicious behaviours, and discard the nonrelevant (benign) ones. As mentionned in the
introduction, this can be seen as an IR problem. The IR community has proposed several
techniques that have been shown to be efficient for text and image retrieval. Our goal
is to adapt these techniques to extract malicious API graphs. We show in this section
how this can be done. In what follows, we first recall the techniques that are used in
the IR community, and then we show how they can be adapted to our problem.

7.1 Term weighting scheme

IR consists of retrieving documents with relevant information from a given set of
documents (a collection). Web search, email search, etc. are IR examples. Effective
retrieval ensures that items likely to be relevant are retrieved, whereas items likely
to be irrelevant must be rejected. This problem was extensively studied the last 30
years. IR research has focused on the retrieval of text documents and images. The IR

Extracting malicious behaviours 29

community came up with several techniques that were proven to be efficient. All these
techniques are based on extracting from each document the set of terms that allow to
distinguish this document from the other documents in the collection. This is achieved
by associating a weight to each term in every document in the collection. The term
weight represents the relevance of a term in a document. The higher the term weight is,
the more relevant the term is in the document. A large number of weighting functions
have been investigated. An intuitive and well known scheme of term weighting that has
proven itself to be efficient is the TFIDF scheme, where TF stands for term frequency
and IDF stands for inverse document frequency. The TFIDF term weight is measured
from the occurrences of terms in a document and their appearances in other documents.
A term is relevant to a document if it occurs frequently in this document and rarely
appears in other documents. Intuitively, a common term which appears in a lot of
documents is not relevant (like ‘the’, ‘a’, ‘with’, ‘of’, etc. are terms that can be found
in every document but are irrelevant) and a term which occurs frequently in a document
and rarely in the other documents is more relevant to this document. According to this
scheme, the weight of a term i in document j is formally defined as follows.

w(i, j) = tf(i, j)× idf(i) (51)

where tf(i, j) is the number of occurrences of term i in document j, called term
frequency. The idf factor ensures that terms concentrated in a few documents of a
collection are favoured. It varies inversely with the number of documents df(i) to which
a term i is assigned in a collection of N documents. A typical factor may be computed
as log(N

df(i)).
To improve the performances of this weighting scheme, several adjustements can be

made:

• The weights in the document can be normalised by the length of the document, so
that long documents are not automatically favoured over short documents. Indeed,
term frequencies are usually bigger for longer documents. A normalisation factor
can then be introduced (Singhal et al., 1996). The length normalisation component
can be computed as follows:

S(j)
AVG(D)

× b+ (1− b), 0 ≤ b ≤ 1

where S(j) is the length of document j and AVG(D) is the average length of
documents in the collection D. In the above formula, by setting b to 1, document
length normalisation is fully performed, while setting b to 0 turns off the
normalisation effect.

• To ensure that high tf for a relevant term in a document does not place that
document ahead of other documents which have multiple relevant terms but with
lower tf values, the logarithmic tf-factor (1 + ln

(
1 + ln(tf)

)
) by referring to

Singhal et al. (1999) and Singhal and Kaszkiel (2001) or the BM25 tf-factor
(tf/(k + tf) for some k > 0) by referring to Robertson and Zaragoza (2009) and
Robertson et al. (1995) or the sigmoid tf-factor (1/(1 + e−tf)) by referring to Yao
et al. (2006) can be introduced, since these functions increase slowly wrt tf, not
like raw tf.

30 K.H.T. Dam and T. Touili

Thus, to obtain better performances, the tf factor can be replaced by F (tf), for a function
F that can be defined as follows:

• F1(tf(i, j)) = tf(i, j) leads to the raw factor.

• F2(tf(i, j)) = (k1+1)×tf(i,j)
tf(i,j)+k1(S(j)

AVG(D)
×b+1−b)

implements the length normalised BM25

factor.

• The length normalised logarithmic factor can be implemented by function F3

defined as follows:{
1+ln(1+ln(tf(i,j))

S(j)
AVG(D)

×b+1−b
if tf(i, j) > 0

0 if tf(i, j) = 0

• The length normalised sigmoid factor can be implemented by function F4 defined
as follows:{

k1+1

k1(
S(j)

AVG(D)
×b+1−b)+e−tf(i,j) if tf(i, j) > 0

0 if tf(i, j) = 0

All these functions were applied in IR and have shown good performances. There is no
real theoretical reason why these functions are used. They are used just because they
work well. Depending on the application, one function can be better than the others.

7.2 Term weights in extended API call graphs

An extended API call graph is a set of nodes and edges. Thus, to extract the relevant
subgraphs, it is sufficient to extract the relevant nodes and edges that compose it. Our
goal is then to isolate the few relevant nodes and edges from the nonrelevant ones. To
this aim, we follow the IR community and associate a TFIDF weight to each node and
each edge in the extended API call graphs of the collection.

Let then G be a set of extended API call graphs. Let i be a term (either a node or
an edge), and j be an extended API call graph. Then,

wg(i, j) = F
(
tf(i, j)

)
× idf(i) (52)

here tf(i, j) is the number of occurrences of the term i in the graph j, i.e., term
frequency, and idf(i) = log(N

df(i)), is the inverse document frequency, where N is the
total number of graphs and df(i) is the number of graphs containing the term i. As
discussed previously, the idf factor ensures that a common term (an API function node
or an edge) which appears in a lot of graphs is not relevant (for example the API
functions strlen, strcpy, strcat, etc. appear frequently in all the API call graphs but are
not concerned with malicious behaviours).

F can be instanciated by the functions F1, F2, F3 or F4 defined in Subsection 7.1,
where D is substituted by G, S(j) is the size of graph j measured by the number of
occurrences of terms in this graph [S(j) is the number of nodes (resp. edges) in the
graph j if we are computing the weight of a node (resp. edge)]. AVG(G) =

∑|G|
i=1 S(i)
|G| is

Extracting malicious behaviours 31

the average size of graphs in G. As previously, these F functions apply the optimisations
that are made in the IR community in order to normalise graph sizes and to ensure that
high tf for a relevant term in an extended API call graph does not place that graph
ahead of other graphs which have multiple relevant terms but with lower tf values.

As mentioned previously, these Fi functions were considered in the IR community
because they have shown good performances rather than any theoretical reason.
Depending on the application, one function can be better than the others. Thus, we will
apply all these 4 functions in our context and see which one gives the best results.

The relevance of a term i in G is measured by its relevance in each graph in this
set: it is computed as the sum of the term weights of i in each graph of G:

W (i,G) = 1

K

|G|∑
j=1

wg(i, j) (53)

where K = maxi,j wg(i, j) is a normalising coefficient. It is used to normalise the term
weight values in the different graphs to make them comparable in the summation.
W (i,G) is the weight of term i in the set G. A term with a higher weight is more
relevant to graphs in set G.

7.3 Term weights wrt. malicious and benign graphs

Let GM and GB be respectively the sets of malicious and benign extended API call
graphs. Let i be a term (a node or an edge in these graphs). If i is relevant for both GM
and GB , then it is not relevant for us, as it does not correspond to a malicious behaviour.
Thus, we need to extract terms that are relevant in GM and not in GB . For this, we
compute the relevance of i in both GM and GB , and then we rank the relevance of i in
GM wrt. GB . Thus, for every term i, we need to compute a new weight that computes
the relevance of a term i in set GM with respect to its relevance in set GB . We apply
two intuitive equations.

Firstly, we use the Rocchio equation (Manning and Raghavan, 2009), which
computes the relevance of a term i in a set of graphs GM against the other set GB as
follows:

W (i,GM ,GB) = β × W (i,GM)

|GM |
− γ × W (i,GB)

|GB |
(54)

where |GM | and |GB| are the sizes of the sets GM and GB , β and γ are parameters to
control the effect of the two sets GM and GB . Parameters β and γ are typically set to
0.75 and 0.15, respectively (Manning and Raghavan, 2009). Thus, we take these values
in our experiments. This means that the weight of term i in GM has a high impact for
its relevance weight.

The equation above computes the relevance of a term i as the distance between the
weight of i in the set GM and its weight in the set GB . A higher distance means that i
is more relevant for GM than for GB .

Secondly, we compute the relevance of a term i as follows:

W (i,GM ,GB) =
W (i,GM)

|GM |
× λ+ |GB |
λ+W (i,GB)

(55)

32 K.H.T. Dam and T. Touili

Intuitively, this is computed as the weight of i in GM divided by the weight of i in GB .
Thus, if i has a high weight in GM and a low weight in GB , it will have a high relevance
weight. So, a higher weight indicates a bigger relevance of i in GM . The coefficient λ
is added to avoid having a problem when W (i,GB) = 0. In the experiments, we set
λ = 0.5. The above equation will be referred to as ‘the ratio equation’ in the rest of the
paper.

As the two equations above (Rocchio and ratio) are natural and intuitive, and since
there is no theoretical evidence that shows the advantage of taking one equation over
the other, we compare the performances of these two equations in our experiments.

7.4 Computing the malicious extended API call graphs

A malicious extended API call graph is a tuple GM = (VM , EM , V0, VF), where VM is
the set of nodes, EM is the set of edges, V0 is the set of initial vertices, and VF is the
set of final nodes. It is a combination of terms which have a high malicious relevance.
Since terms of a graph are either nodes or edges, we compute the malicious extended
API call graph as follows. We consider a parameter n which is chosen by the user. n
corresponds to the number of nodes that are taken into account in the computation. We
show how to compute the sets VM and EM , the sets V0 and VF are the sets of nodes
that do not have entering (resp. exiting) edges. In what follows, by ‘weight of a term i’,
we refer to W (i,GM ,GB). We consider all the nodes and the edges in all the extended
API call graphs of the collection. Let {v1, . . . , vn} be the set of vertices that have the
n highest weights. Intuitively, this means that the vertices in {v1, . . . , vn} are the most
relevant ones. Then, a natural way to compute the malicious extended API call graphs
is to take the nodes in {v1, . . . , vn} and connect them using edges with the highest
weight: Given a node v, if there are k outgoing edges e1, . . . , ek from v to nodes in
{v1, . . . , vn}, we add to the graph the edge ej that has the highest weight.

7.5 Malware detection using malicious graphs

Given a program represented by its extended API call graph G = (V,E) and a set M
of malicious behaviours represented by an extended malicious API call graph GM =
(VM , EM , V0, VF), in order to check whether the program contains one of the malicious
behaviours in M, we need to check whether the two graphs G and GM contain common
paths. If this holds, we conclude that the program contains a malicious behaviour. To
check whether the two graphs contain a common path, we compute a kind of product
as follows: GP = (VP , EP , V

0
P , V

F
P) such that VP = {(v1, v2) ∈ V × VM , func(v1) =

func(v2) = f, and if ParaM (f) ̸= ∅, then for every a ∈ ParaM (f), mean(v1)(a) ∩
mean (v2)(a) ̸= ∅} is the set of vertices (v1, v2) such that v1 and v2 correspond to the
same API function f , and for every meaningful parameter a of f , v1 and v2 require
at least one common value for a. V 0

P = {(v1, v2) ∈ VP | v2 ∈ V0}, V FP = {(v1, v2) ∈
VP | v2 ∈ VF }. EP = {

(
(v1, v2), (v

′
1, v

′
2)
)
∈ VP × VP | ∃(v1, e1, v′1) ∈ E, (v2, e2, v

′
2) ∈

EM , e2 ⊆ e1} is the set of edges
(
(v1, v2), (v

′
1, v

′
2)
)
such that there exist edges

(v1, e1, v
′
1) in E and (v2, e2, v

′
2) in EM such that the relation between the parameters

of func(v1) and func(v′1) imposed by the malicious behaviour in e2 are satisfied by
e1. Then, the program contains a malicious behaviour in M iff GP contains a path that
leads from an initial node in V 0

P to a final node in V FP .

Extracting malicious behaviours 33

8 Experiments

To evaluate the performance of our approach, we consider a dataset of 2,249 benign
programs and 4,035 malicious programs collected from Vx Heaven (vxheaven.org) and
from VirusShare.com. The proportion of malware categories is shown in Figure 2. We
randomly divide the dataset in two partitions: one partition consisting of 1,009 benign
programs and 2,124 malicious programs will serve as a training set that will allow us
to compute the extended malicious API call graph, and the other partition consisting of
1,240 benign programs and 1,911 malicious programs will serve as a test set in order
to evaluate the relevance of the computed malicious graphs. The experiements in this
section are implemented on the laptop HP ZBook G2 Mobile Workstation – Intel Core
i7-4710MQ 2.50 GHz and 8 GB RAM.

Figure 2 Malware categories in our dataset (see online version for colours)

First, we need to determine what function (amongst F1, F2, F3 and F4), and what
equation (amongst the Rocchio and ratio equations [equations (54) and (55)] have
the best performance). For each pair (function/equation), we construct the extended
malicious API call graph from the training set. Then, these specifications are evaluated
on this training set to choose the configuration which gives the best performance on
our dataset. The performance is measured by the following quantities. True positives
(TP) is the number of malware’s extended API call graphs which contain at least one
behaviour in the computed malicious extended API call graphs. False positive (FP) is the
number of benign extended API call graphs which contain at least one behaviour in the
computed malicious extended API call graphs. False positive rate (FPR or false alarm) is
FP divided by the number of benign extended API call graphs. Recall (detection rate or
TPR) is TP divided by the number of malware’s extended API call graphs. Precision is
TP divided by the sum of TPs and FPs. The F-measure is a harmonic mean of precision
and recall that is computed as F-measure = 2 × Precision × Recall / (Precision +
Recall). These are standard evaluation measures in the IR community. High precision
means that the technique computes more relevant items than irrelevant, while high recall
means that most of the relevant retrieved items are relevant and all relevant items have
been retrieved.

34 K.H.T. Dam and T. Touili

Figure 3 Results of different formulas on the training set, (a) Rocchio equation (b) ratio
equation (see online version for colours)

(a) (b)

Figure 3 shows the F-measure for every weighting formula F1, F2, F3 and F4 by
increasing n from 5 to 40. Figure 3(a) considers the Rocchio equation, whereas Figure
3(b) considers the ratio equation. We stop at n = 40 because we observe that the
performance decreases for n greater than 40: the F-measure decreases, while the number
of FPs increases. The results show that the best performance (F-measure = 97.78%,
precision = 100%, and recall = 95.66%) is obtained if we consider formula F4, the ratio
equation, and n = 15. Thus, we apply this configuration (ratio equation, formula F4 and
n = 15) to compute the extended malicious API call graph from the training set. Then,
we apply this graph for malware detection on the test set (see Subsection 7.5). We obtain
a detection rate of 95.66% with 0 false alarms. Computing the extended malicious API
call graph from the training set takes 12.61 seconds, whereas malware detection on the
test set takes 0.394 seconds (average time).

To compare the performance of our extended API call graph with that of standard
API call graphs (in API call graphs, only API functions are considered, neither the
values of parameters, nor the relation between function parameters are taken into
account), we applied the techniques of Dam and Touili (2016) to our test set. We
obtained 95.29% as detection rate, with 12.58% as false alarms, whereas with our
approach, we get a detection rate of 95.66% with 0 false alarms. Thus, our extended API
call graph representation and our approach allow an enormous decrease of the number
of false alarms, and even improve a bit the detection rate. This shows the big advantage
of using extended API call graphs over standard API call graphs.

9 Examples of malicious behaviours

Using our techniques, we were able to extract several extended API call graphs that
represent meaningful malicious behaviours. For example, we were able to automatically
extract the extended API call graph of Figure 1(c). We show in what follows other
graphs that were automatically extracted using our techniques.

• Windows directory infection: The graph in Figure 4 describes the malicious
behaviour that consists in replacing a system file by a malicious executable and
then updating this change in the registry key listing.

Extracting malicious behaviours 35

Figure 4 The extended malicious API graph of the malicious behaviour of Windows directory
infection (see online version for colours)

GetWindowsDirectory

CopyFile

3̄ = {0}

RegSetValueEx

4̄ = {1}

1̄ 2̄ 2̄ 5̄

First, the function GetWindowsDirectory is called to get the location of
Windows directory in the system. This location is stored in the first parameter
(the output of the function). Then, the function CopyFile with 0 as third
parameter and the Windows directory as second parameter is called to replace the
system file in the Windows directory by a malicious executable. Finally, the
function RegSetValueEx is called with 1 as fourth parameter and the Windows
directory (the second parameter of the previous function) as its fifth parameter to
update this change of the system folder in the registry key listing.

• Searching files and sending them via the network: In Figure 5, the graph
describes the malicious behaviour that consists in searching files on the system
and sending them via the network.

Figure 5 The extended malicious API graph of the malicious behaviour of searching files and
sending them via the network (see online version for colours)

Extracting Malicious Behaviors 33

GetWindowsDirectory
CopyFile

3̄ = {0}

RegSetValueEx

4̄ = {1}

1̄ 2̄ 2̄ 5̄

Figure 4 The extended malicious API graph of the malicious behavior of Windows directory
infection.

second parameter of the previous function) as its fifth parameter to update this change of
the system folder in the registry key listing.

- Searching files and sending them via the network. In Figure 5, the graph describes
the malicious behavior that consists in searching files on the system and sending them via
the network. This malicious behavior is implemented by first calling FindFirstFile

FindFirstFile sendto
1̄ 2̄

Figure 5 The extended malicious API graph of the malicious behavior of Searching files and
sending them via the network.

with a specific filename as first parameter to look for this file on the system. Then, the
function sendto with this filename as second parameter is called to transfer this file via
the network.

- Capturing system processes. The graph in Figure 6 describes the malicious
behavior that consists in getting all system processes running on the system and
then storing them in a file. This malicious behavior is implemented by first calling

CreateToolhelp32Snapshot

1̄ = {2}
Process32First

Process32Next WriteFile

0̄ 1̄

1̄ 1̄, 2̄ 2̄

2̄ 2̄

Figure 6 The extended malicious API graph of the malicious behavior of Capturing system
processes.

CreateToolhelp32Snapshotwith 2 as first parameter to capture all system processes
running on the system. Then, the function Process32First and Process32Next
with the output (0̄) of the previous function (all the processes captured by the previous
function) as first parameter are called to traverse all captured processes. The information
about processes are saved by calling function WriteFile with information of processes
(the second parameter of the previous function) as second parameter.

- Dropping and executing a file from the Internet. The graph in Figure 7 describes
the malicious behavior that consists in downloading a file to Windows directory from the

This malicious behaviour is implemented by first calling FindFirstFile with a
specific filename as first parameter to look for this file on the system. Then, the
function sendto with this filename as second parameter is called to transfer this
file via the network.

• Capturing system processes: The graph in Figure 6 describes the malicious
behaviour that consists in getting all system processes running on the system and
then storing them in a file.

Figure 6 The extended malicious API graph of the malicious behaviour of capturing system
processes (see online version for colours)

Extracting Malicious Behaviors 33

GetWindowsDirectory
CopyFile

3̄ = {0}

RegSetValueEx

4̄ = {1}

1̄ 2̄ 2̄ 5̄

Figure 4 The extended malicious API graph of the malicious behavior of Windows directory
infection.

second parameter of the previous function) as its fifth parameter to update this change of
the system folder in the registry key listing.

- Searching files and sending them via the network. In Figure 5, the graph describes
the malicious behavior that consists in searching files on the system and sending them via
the network. This malicious behavior is implemented by first calling FindFirstFile

FindFirstFile sendto
1̄ 2̄

Figure 5 The extended malicious API graph of the malicious behavior of Searching files and
sending them via the network.

with a specific filename as first parameter to look for this file on the system. Then, the
function sendto with this filename as second parameter is called to transfer this file via
the network.

- Capturing system processes. The graph in Figure 6 describes the malicious
behavior that consists in getting all system processes running on the system and
then storing them in a file. This malicious behavior is implemented by first calling

CreateToolhelp32Snapshot

1̄ = {2}
Process32First

Process32Next WriteFile

0̄ 1̄

1̄ 1̄, 2̄ 2̄

2̄ 2̄

Figure 6 The extended malicious API graph of the malicious behavior of Capturing system
processes.

CreateToolhelp32Snapshotwith 2 as first parameter to capture all system processes
running on the system. Then, the function Process32First and Process32Next
with the output (0̄) of the previous function (all the processes captured by the previous
function) as first parameter are called to traverse all captured processes. The information
about processes are saved by calling function WriteFile with information of processes
(the second parameter of the previous function) as second parameter.

- Dropping and executing a file from the Internet. The graph in Figure 7 describes
the malicious behavior that consists in downloading a file to Windows directory from the

This malicious behaviour is implemented by first calling
CreateToolhelp32Snapshot with 2 as first parameter to capture all system
processes running on the system. Then, the function Process32First and
Process32Next with the output (0̄) of the previous function (all the processes

36 K.H.T. Dam and T. Touili

captured by the previous function) as first parameter are called to traverse all
captured processes. The information about processes are saved by calling function
WriteFile with information of processes (the second parameter of the previous
function) as second parameter.

• Dropping and executing a file from the internet: The graph in Figure 7 describes
the malicious behaviour that consists in downloading a file to Windows directory
from the internet and then executing this file.

Figure 7 The extended malicious API graph of the malicious behaviour of dropping and
executing a file from the internet (see online version for colours)34

GetWindowsDirectory URLDownloadToFile
ShellExecute

6̄ = {0}

1̄ 3̄ 3̄ 3̄

Figure 7 The extended malicious API graph of the malicious behavior of Dropping and executing
a file from the Internet.

internet and then executing this file. This malicious behavior is implemented by first calling
GetWindowsDirectory to get the Windows Directory stored in the first parameter.
Then, the function URLDownloadToFile with Windows directory (the first parameter
of the previous function) as third parameter is called to download a file to this directory.
Finally, the function ShellExecute with 0 as sixth parameter and the downloaded file
as third parameter is called to open this file in the background.

- Stopping the local service and starting a new thread. In Figure 8, the graph describes
the malicious behavior that consists in stopping the security service in the system and then
creating a new thread to handle malicious code. This malicious behavior is implemented by

OpenSCManager

1̄ = {0}

ControlService

2̄ = {1}

CreateThread

5̄ = {4}

0̄ 1̄

Figure 8 The extended malicious API graph of the malicious behavior of Stopping the local
service and starting a new thread.

first calling OpenSCManager with 0 as first parameter to get the service manager of the
system. Then, ControlServicewith the output (0̄) of the previous function (a handle of
the secured service) as second parameter is called to stop the secured service in the system.
Finally, CreateThread with 4 as fifth parameter is called to execute the malicious code.

- Deleting files in the system folder. The graph in Figure 9 describes the
malicious behavior that consists in deleting files in the Windows/System directory.
The behavior is implemented by first calling GetWindowsDirectory (resp.

GetWindowsDirectory

DeleteFile

GetSystemDirectory

1̄ 1̄

1̄ 1̄

Figure 9 The extended malicious API graph of the malicious behavior of Deleting files in the
system folder.

GetSystemDirectory) to get the Windows (resp. System) directory as first parameter.
Then, calling DeleteFile takes the first parameter of the previous call (the path of
Windows (resp. System) directory) as first parameter. With this parameter, this call deletes
files in the Windows (resp. System) directory.

This malicious behaviour is implemented by first calling GetWindowsDirectory
to get the Windows directory stored in the first parameter. Then, the function
URLDownloadToFile with Windows directory (the first parameter of the previous
function) as third parameter is called to download a file to this directory. Finally,
the function ShellExecute with 0 as sixth parameter and the downloaded file as
third parameter is called to open this file in the background.

• Stopping the local service and starting a new thread: In Figure 8, the graph
describes the malicious behaviour that consists in stopping the security service in
the system and then creating a new thread to handle malicious code.

Figure 8 The extended malicious API graph of the malicious behaviour of stopping the local
service and starting a new thread (see online version for colours)

34

GetWindowsDirectory URLDownloadToFile
ShellExecute

6̄ = {0}

1̄ 3̄ 3̄ 3̄

Figure 7 The extended malicious API graph of the malicious behavior of Dropping and executing
a file from the Internet.

internet and then executing this file. This malicious behavior is implemented by first calling
GetWindowsDirectory to get the Windows Directory stored in the first parameter.
Then, the function URLDownloadToFile with Windows directory (the first parameter
of the previous function) as third parameter is called to download a file to this directory.
Finally, the function ShellExecute with 0 as sixth parameter and the downloaded file
as third parameter is called to open this file in the background.

- Stopping the local service and starting a new thread. In Figure 8, the graph describes
the malicious behavior that consists in stopping the security service in the system and then
creating a new thread to handle malicious code. This malicious behavior is implemented by

OpenSCManager

1̄ = {0}

ControlService

2̄ = {1}

CreateThread

5̄ = {4}

0̄ 1̄

Figure 8 The extended malicious API graph of the malicious behavior of Stopping the local
service and starting a new thread.

first calling OpenSCManager with 0 as first parameter to get the service manager of the
system. Then, ControlServicewith the output (0̄) of the previous function (a handle of
the secured service) as second parameter is called to stop the secured service in the system.
Finally, CreateThread with 4 as fifth parameter is called to execute the malicious code.

- Deleting files in the system folder. The graph in Figure 9 describes the
malicious behavior that consists in deleting files in the Windows/System directory.
The behavior is implemented by first calling GetWindowsDirectory (resp.

GetWindowsDirectory

DeleteFile

GetSystemDirectory

1̄ 1̄

1̄ 1̄

Figure 9 The extended malicious API graph of the malicious behavior of Deleting files in the
system folder.

GetSystemDirectory) to get the Windows (resp. System) directory as first parameter.
Then, calling DeleteFile takes the first parameter of the previous call (the path of
Windows (resp. System) directory) as first parameter. With this parameter, this call deletes
files in the Windows (resp. System) directory.

This malicious behaviour is implemented by first calling OpenSCManager with 0
as first parameter to get the service manager of the system. Then,
ControlService with the output (0̄) of the previous function (a handle of the
secured service) as second parameter is called to stop the secured service in the
system. Finally, CreateThread with 4 as fifth parameter is called to execute the
malicious code.

• Deleting files in the system folder: The graph in Figure 9 describes the malicious
behaviour that consists in deleting files in the Windows/system directory.

The behaviour is implemented by first calling GetWindowsDirectory (resp.
GetSystemDirectory) to get the Windows (resp. system) directory as first
parameter. Then, calling DeleteFile takes the first parameter of the previous call
[the path of Windows (resp. system) directory] as first parameter. With this
parameter, this call deletes files in the Windows (resp. system) directory.

Extracting malicious behaviours 37

Figure 9 The extended malicious API graph of the malicious behaviour of deleting files in
the system folder (see online version for colours)

34

GetWindowsDirectory URLDownloadToFile
ShellExecute

6̄ = {0}

1̄ 3̄ 3̄ 3̄

Figure 7 The extended malicious API graph of the malicious behavior of Dropping and executing
a file from the Internet.

internet and then executing this file. This malicious behavior is implemented by first calling
GetWindowsDirectory to get the Windows Directory stored in the first parameter.
Then, the function URLDownloadToFile with Windows directory (the first parameter
of the previous function) as third parameter is called to download a file to this directory.
Finally, the function ShellExecute with 0 as sixth parameter and the downloaded file
as third parameter is called to open this file in the background.

- Stopping the local service and starting a new thread. In Figure 8, the graph describes
the malicious behavior that consists in stopping the security service in the system and then
creating a new thread to handle malicious code. This malicious behavior is implemented by

OpenSCManager

1̄ = {0}

ControlService

2̄ = {1}

CreateThread

5̄ = {4}

0̄ 1̄

Figure 8 The extended malicious API graph of the malicious behavior of Stopping the local
service and starting a new thread.

first calling OpenSCManager with 0 as first parameter to get the service manager of the
system. Then, ControlServicewith the output (0̄) of the previous function (a handle of
the secured service) as second parameter is called to stop the secured service in the system.
Finally, CreateThread with 4 as fifth parameter is called to execute the malicious code.

- Deleting files in the system folder. The graph in Figure 9 describes the
malicious behavior that consists in deleting files in the Windows/System directory.
The behavior is implemented by first calling GetWindowsDirectory (resp.

GetWindowsDirectory

DeleteFile

GetSystemDirectory

1̄ 1̄

1̄ 1̄

Figure 9 The extended malicious API graph of the malicious behavior of Deleting files in the
system folder.

GetSystemDirectory) to get the Windows (resp. System) directory as first parameter.
Then, calling DeleteFile takes the first parameter of the previous call (the path of
Windows (resp. System) directory) as first parameter. With this parameter, this call deletes
files in the Windows (resp. System) directory.

10 Conclusions

In this paper, we propose to use extended API call graphs to obtain a more precise
representation of malicious behaviours. In order to compute such graphs, we need
to compute the relation between program’s variables at the different locations of the
program. To this aim, we propose a new translation from binary code to PDSs different
from the standard one (Song and Touili, 2016), where we push a pair (x, n) into the PDS
stack if at the location n, the variable x is pushed (whereas in the standard translation,
only the value of x at location n is pushed in the PDS stack). Then, to compute the
relation between the different variables and functions’ arguments of the program, we
present potentially infinite configurations of programs (PDSs) using finite automata,
and we adapt the PDS post∗ saturation procedure of Esparza et al. (2000) in order to
compute an annotation function from which we can compute the variable dependence
function at each location in the program. This allows to compute the relation between
program variables and function’s arguments, and thus, to compute the extended API call
graph of the program. Using this representation, we apply the IR techniques to compute
the extended malicious API graph corresponding to malicious behaviours from a set of
malwares and a set of benign programs. Compared to the API call graph representation,
using the extended API call graphs improves the detection rate and the number of
false alarms. Indeed, we obtain 95.66% as detection rate, with 0% false alarms for the
extended API call graphs. Thus, the extended API call graph representation and our new
approach in this paper allow an enormous decrease of the number of false alarms. This
shows the big advantage of using extended API call graphs, compared to standard API
call graphs.

References

Anderson, B., Quist, D., Neil, J., Storlie, C. and Lane, T. (2011) ‘Graph-based malware detection using
dynamic analysis’, Journal in Computer Virology, Vol. 7, No. 4, pp.247–258, ISSN: 1772-9904,
DOI: 10.1007/s11416-011-0152-x.

Baldangombo, U., Jambaljav, N. and Horng, S-J. (2013) A Static Malware Detection System using
Data Mining Methods, arXiv preprint arXiv:1308.2831.

Bergeron, J., Debbabi, M., Erhioui, M.M. and Ktari, B. (1999) ‘Static analysis of binary code to
isolate malicious behaviors’, in Proceedings of the 8th Workshop on Enabling Technologies on
Infrastructure for Collaborative Enterprises, WET ICE‘99, DOI: 10.1109/ENABL.1999.805197.

Bhatkar, S., Chaturvedi, A. and Sekar, R. (2006) ‘Dataflow anomaly detection’, in 2006 IEEE
Symposium on Security and Privacy (SP‘06), May, pp.15–62, DOI: 10.1109/SP.2006.12.

38 K.H.T. Dam and T. Touili

Bouajjani, A., Esparza, J. and Maler, O. (1997) ‘Reachability analysis of pushdown automata:
application to model-checking’, in International Conference on Concurrency Theory, Springer,
pp.135–150.

Canzanese, R., Mancoridis, S. and Kam, M. (2015) ‘System call-based detection of malicious
processes’, in 2015 IEEE International Conference on Software Quality, Reliability and Security,
pp.119–124.

Cheng, J.Y-C., Tsai, T-S. and Yang, C-S. (2013) ‘An information retrieval approach for malware
classification based on windows API calls’, in 2013 International Conference on Machine
Learning and Cybernetics.

Christodorescu, M. and Jha, S. (2003) ‘Static analysis of executables to detect malicious patterns’, in
Proceedings of the 12th Conference on USENIX Security Symposium, SSYM‘03, Vol. 12 [online]
http://dl.acm.org/citation.cfm?id=1251353.1251365.

Christodorescu, M., Jha, S. and Kruegel, C. (2007) ‘Mining specifications of malicious behavior’,
in Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC-FSE‘07,
ACM, ISBN: 978-1-59593-811-4, DOI: 10.1145/1287624.1287628.

Cyber Security Ventures (2017) Ransomware Damage Report [online] https://cybersecurityventures.
com/ransomware-damage-report-2017-5-billion/ (accessed 25 August 2017).

Dam, K-H-T. and Touili, T. (2016) ‘Automatic extraction of malicious behaviors’, in Proceedings
of the 11th International Conference on Malicious and Unwanted Software (MALWARE), IEEE,
pp.1–10.

Dam, K.H.T. and Touili, T. (2018) ‘Precise extraction of malicious behaviors’, in 2018 IEEE
42nd Annual Computer Software and Applications Conference (COMPSAC), July, pp.229–234,
DOI: 10.1109/COMPSAC.2018.00036.

Eagle, C. (2011) The IDA Pro Book, 2nd ed., No Starch Press, San Francisco, CA, USA.
Elhadi, E., Maarof, M.A. and Barry, B. (2013) ‘Improving the detection of malware behaviour using

simplified data dependent API call graph’, International Journal of Security and Its Applications,
Vol. 7, pp.29–42, DOI: 10.14257/ijsia.2013.7.5.03.

Esparza, J., Hansel, D., Rossmanith, P. and Schwoon, S. (2000) ‘Efficient algorithms for model
checking pushdown systems’, in International Conference on Computer Aided Verification,
Springer, pp.232–247.

Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R. and Yan, X. (2010) ‘Synthesizing near-optimal
malware specifications from suspicious behaviors’, 2010 IEEE Symposium on Security and
Privacy, pp.45–60, ISBN: 978-0-7695-4035-1, DOI: 10.1109/SP.2010.11.

Gavrilut, D., Cimpoesu, M., Anton, D. and Ciortuz, L. (2009) ‘Malware detection using perceptrons
and support vector machines’, in 2009 Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, IEEE.

Kapoor, A. and Dhavale, S. (2016) ‘Control flow graph based multiclass malware detection using
bi-normal separation’, Defence Science Journal, Vol. 66, p.138.

Khammas, B.M., Monemi, A., Bassi, J.S., Ismail, I., Nor, S.M. and Marsono, M.N. (2015) ‘Feature
selection and machine learning classification for malware detection’, Jurnal Teknologi, Vol. 77.

Kinable, J. and Kostakis, O. (2011) ‘Malware classification based on call graph clustering’, J. Comput.
Virol., November, Vol. 7, No. 4, ISSN: 1772-9890, DOI: 10.1007/s11416-011-0151-y.

Kinder, J. and Veith, H. (2008) ‘Jakstab: a static analysis platform for binaries’, in Gupta, A. and
Malik, S. (Eds.): Computer Aided Verification, Vol. 5123, ISBN: 978-3-540-70543-7.

Kinder, J., Katzenbeisser, S., Schallhart, C. and Veith, H. (2010) ‘Proactive detection of computer
worms using model checking’, IEEE Transactions on Dependable and Secure Computing,
October, Vol. 7, No. 4, ISSN: 1545-5971, DOI: 10.1109/TDSC.2008.74.

Extracting malicious behaviours 39

Kolter, J.Z. and Maloof, M.A. (2004) ‘Learning to detect malicious executables in the wild’, in
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ISBN: 1-58113-888-1, DOI: 10.1145/1014052.1014105.

Kong, D. and Yan, G. (2013) ‘Discriminant malware distance learning on structural information
for automated malware classification’, in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Kruegel, C., Mutz, D., Valeur, F. and Vigna, G. (2003) ‘On the detection of anomalous system
call arguments’, Computer Security – ESORICS 2003, pp.326–343, ISBN: 978-3-540-39650-5,
DOI: 10.1007/978-3-540-39650-5 19.

Lin, C-T., Wang, N-J., Xiao, H. and Eckert, C. (2015) ‘Feature selection and extraction for malware
classification’, Journal of Information Science and Engineering, Vol. 31, pp.965–992.

Macedo, H.D. and Touili, T. (2013) ‘Mining malware specifications through static reachability
analysis’, in European Symposium on Research in Computer Security, Springer, pp.517–535.

Manning, H.S.C.D. and Raghavan, P. (2009) An Introduction to Information Retrieval, Cambridge
University Press, New York, NY, USA.

Masud, M.M., Khan, L. and Thuraisingham, B. (2008) ‘A scalable multi-level feature extraction
technique to detect malicious executables’, Information Systems Frontiers, Vol. 10, pp.33–45.

Nikolopoulos, S.D. and Polenakis, I. (2016) ‘A graph-based model for malware detection and
classification using system-call groups’, Journal of Computer Virology and Hacking Techniques,
pp.1–18, ISSN: 2263-8733, DOI: 10.1007/s11416-016-0267-1.

Ravi, C. and Manoharan, R. (2012) ‘Malware detection using windows API sequence and machine
learning’, International Journal of Computer Applications, Vol. 43, pp.12–16.

Rieck, K., Holz, T., Willems, C., Düssel, P. and Laskov, P. (2008) ‘Learning and classification of
malware behavior’, in International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, pp.108–125.

Robertson, S. and Zaragoza, H. (2009) The Probabilistic Relevance Framework: BM25 and beyond,
Now Publishers Inc.

Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M. et al. (1995) OKAPI at
TREC-3, Vol. 109, NIST Special Publication SP.

Santos, I., Ugarte-Pedrero, X., Brezo, F., Bringas, P.G. and Gómez-Hidalgo, J.M. (2013) ‘NOA: an
information retrieval based malware detection system’, Computing and Informatics, Vol. 32,
No. 1, pp.145–174.

Schultz, M.G., Eskin, E., Zadok, E. and Stolfo, S.J. (2001) ‘Data mining methods for detection of
new malicious executables’, in Proceedings 2001 IEEE Symposium on Security and Privacy,
S&P 2001, DOI: 10.1109/SECPRI.2001.924286.

Schwoon, S. (2002) Model-Checking Pushdown Systems, PhD thesis, Technische Universiẗat München.
Shafiq, M.Z., Tabish, S.M., Mirza, F. and Farooq, M. (2009) ‘PE-miner: mining structural information

to detect malicious executables in realtime’, in Kirda, E., Jha, S. and Balzarotti, D. (Eds.): Recent
Advances in Intrusion Detection, RAID 2009, Lecture Notes in Computer Science, Vol. 5758,
Springer, Berlin, Heidelberg.

Singhal, A. and Kaszkiel, M. (2001) ‘A case study in web search using trec algorithms’, in
Proceedings of the 10th International Conference on World Wide Web, ACM.

Singhal, A., Buckley, C. and Mitra, M. (1996) ‘Pivoted document length normalization’, in
Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM.

Singhal, A., Choi, J., Hindle, D., Lewis, D.D. and Pereira, F. (1999) AT&T at TREC-7, NIST Special
Publication SP.

Song, F. and Touili, T. (2013) ‘LTL model-checking for malware detection’, in Proceedings of the
19th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS.

40 K.H.T. Dam and T. Touili

Song, F. and Touili, T. (2016) ‘Model-checking software library API usage rules’,
Software & Systems Modeling, October, Vol. 15, No. 4, pp.961–985, ISSN: 1619-1374,
DOI: 10.1007/s10270-015-0473-1.

Tahan, G., Rokach, L. and Shahar, Y. (2012) ‘Mal-ID: automatic malware detection using
common segment analysis and meta-features’, J. Mach. Learn. Res., April, Vol. 13, No. 1,
ISSN: 1532-4435 [online] http://dl.acm.org/citation.cfm?id=2503308.2343677.

Xu, M., Wu, L., Qi, S., Xu, J., Zhang, H., Ren, Y. and Zheng, N. (2013) ‘A similarity metric method
of obfuscated malware using function-call graph’, Journal of Computer Virology and Hacking
Techniques, Vol. 9, No. 1, pp.35–47, ISSN: 2263-8733, DOI: 10.1007/s11416-012-0175-y.

Yao, J., Wang, J., Li, Z., Li, M. and Ma, W-Y. (2006) ‘Ranking web news via homepage visual
layout and cross-site voting’, in European Conference on Information Retrieval.

Ye, Y., Li, T., Jiang, Q., Han, Z. and Wan, L. (2009) ‘Intelligent file scoring system for malware
detection from the gray list’, in Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

