
Title:	An	Adaptive	Event-based	System	for	Anytime,	Anywhere,	Awareness	Services	
in	Online	Teamworks	

Vladi	Kolici,	Polytechnic	University	of	Tirana,	Albania	(vkolici@fti.edu.al)		
Fatos	Xhafa,	Technical	University	of	Catalonia,	Spain	(fatos@cs.upc.edu)		
Santi	Caballé,	Open	University	of	Catalonia,	Spain	(scaballe@uoc.edu)		
Leonard	Barolli,	Fukuoka	Institute	of	Technology,	Japan	(barolli@fit.ac.jp)	 
	
	
Abstract:	
The	fast	development	in	mobile	technologies	IS	drastically	changing	the	way	people	
work,	learn,	collaborate	and	socialize.	One	such	important	activity	that	has	emerged	
and	 is	 being	 consolidated	 each	 time	 more	 is	 the	 online	 learning	 through	 virtual	
campuses.	 While	 most	 of	 online	 learning	 services	 are	 at	 present	 offered	 through	
web-based	 platforms,	 due	 to	 ever-increasing	 use	 of	 smart	 devices	 such	 as	
smartphones	and	tablets,	researchers	and	developers	are	paying	attention	to	exploit	
the	 advantages	 of	 mobile	 systems	 to	 support	 online	 learning.	 Specifically,	 the	
implementation	 of	 the	 A3	 paradigm:	 Anytime,	 Anywhere,	 Awareness	 –that	 is,	
notifying	 users	 about	 ongoing	 activity	 in	 their	 online	workspace–	 provides	 various	
advantages	 to	online	 learners	 organized	 in	 online	 teams.	 In	 this	 paper	we	present	
the	requirement	analysis,	the	building	blocks	of	the	architecture	for	efficient	event-
based	system	and	a	prototype	 implementation	of	 the	A3	paradigm	that	adaptively	
supports	the	online	collaborative	activity.	
	
Keywords	:	
Online	learning	;	collaborative	team	work	;	events	;	mobile	computing	;	awareness	;	
	
Short	Biographies	
	
Vladi	Kolici	received	his	BS	and	MS	in	Telecommunication	Engineering	from	the	Polytechnic	University	of	Tirana	(PUT)	
in	1997	and	2005,	 respectively.	He	obtained	his	PhD	 from	PUT	 in	May	2009.	From	1997	 to	2004,	he	was	a	Research	
Associate,	 from	2005	 to	2011	he	has	been	a	 Lecturer	and	at	present	he	 is	Associate	Professor	at	 the	Department	of	
Electronics	 and	 Telecommunications,	 Faculty	 of	 Information	 Technology,	 PUT.	 He	 is	 teaching	 several	 courses	 in	 the	
areas	 of	 wireless	 and	 mobile	 networking,	 P2P	 systems	 and	 quality	 of	 services.	 His	 has	 published	 several	 papers	 in	
international	 and	 national	 conference	 proceedings	 in	 the	 areas	 of	 P2P	 and	 ad	 hoc	 networks.	 His	 research	 interests	
include	P2P	networks,	wireless	and	mobile	wetworks	and	highspeed	networks.	
	
Fatos	Xhafa	holds	a	PhD	in	Computer	Science	from	the	Department	of	Computer	Science	of	the	Technical	University	of	
Catalonia	 (UPC),	Barcelona,	Spain,	where	he	holds	a	permanent	position	of	Professor	Titular	 (Hab.	Full	Professor).	He	
was	a	Visiting	Professor	at	Birkbeck	College,	University	of	London	(UK)	during	academic	year	2009-2010	and	Research	
Associate	at	Drexel	University,	Philadelphia	(USA)	during	academic	term	2004/2005.		Prof.	Xhafa	has	widely	published	in	
peer	reviewed	international	journals,	conferences/workshops,	book	chapters	and	edited	books	and	proceedings	in	the	
field.	 Prof.	 Xhafa	 has	 an	 extensive	 editorial	 and	 reviewing	 service	 and	 is	 actively	 participating	 in	 the	 organization	 of	
several	 international	 conferences.	 	 His	 research	 interests	 include	 parallel	 and	 distributed	 algorithms,	 security,	
optimization,	networking	and	distributed	computing.	More	information	can	be	found	at	http://www.lsi.upc.edu/~fatos/		
 
Santi	Caballé	holds	holds	Ph.D.	(2008),	Master's	(2005)	and	Bachelor's	(2003)	degrees	in	Computing	Engineering	from	
the	Open	 University	 of	 Catalonia	(UOC).	His	 teaching	 activity	 started	 in	 2004	 as	 an	 Assistant	 Professor	 at	 the	
department	of	IT,	Multimedia	and	Telecommunication	of	the	UOC,	where	he	became	Associate	Professor	in	2006	and	
Academic	Director	of	the	Postgraduate	program	of	Software	Engineering	in	2010.	He	received	a	teaching	accreditation	
as	Tenure-track	Lecturer	issued	by	the	Catalan	Government	(2008)	and	was	awarded	with	teaching	merits	for	the	period	
2005-2009	 by	 the	 UOC.	 He	 is	currently	 teaching	 and	 coordinating	 a	 variety	 of	 on-line	 courses	 of	 the	 Bachelor	 and	



Master	in	Computing	Engineering	and	other	post-graduate	programs	in	the	areas	of	Software	Engineering,	Collaborative	
Learning	 and	 Information	 Systems.	 He	 is	 also	 supervising	 several	 Master	 and	 PhD	 thesis	 at	 the	 UOC.	 His	 research	
interests	include	eLearning,	virtual	campuses,	distributed	computing,	Web-based	computing,	among	others.	
	
Leonard	 Barolli	 holds	 a	 Ph.D.	 degree	 from	 Yamagata	 University,	 Japan	 in	 1997.	 He	 is	 presently	 a	 Full	 Professor	 at	
Department	of	 Information	and	Communication	Engineering,	Faculty	of	 Information	Engineering,	Fukuoka	 Institute	of	
Technology	(FIT).	Dr.	Barolli	was	an	Editor	of	Information	Processing	Society	of	Japan	(IPSJ)	Journal	and	has	served	as	a	
Guest	Editor	of	many	International	Journals.	He	is	engaged	as	a	Program	Committee	(PC)	Member	in	many	International	
Conferences.		Dr.	Barolli	has	widely	published	in	Referred	Journals,	International	Conference	Preceedings	and	National	
Workshops.	His	 research	 interests	 include	 high-speed	networks,	mobile	 communication	 systems,	 ad-hoc	 networking,	
sensor	 networks,	 P2P	 systems,	 Quality	 of	 Service	 (QoS),	 traffic	 control	 mechanisms,	 intelligent	 algorithms,	 network	
protocols,	agent-based	systems,	grid	and	 Internet	computing.	Dr.	Barolli	 is	a	member	of	 IPSJ,	 Japan	Society	 for	Fuzzy	
Theory	and	Systems	(SOFT),	IEEE	Society	and	IEEE.	

	
1.	Introduction	and	motivation	
	
A	 new,	 widespread	 family	 of	 applications	 has	 emerged	 as	 a	 combination	 of	 best	
advantages	offered	by	mobile	computing	and	Cloud	computing	 (also	referred	to	as	
“mobile	cloud	computing”	[1]).	Indeed,	on	the	one	hand,	in	the	recent	years	we	have	
seen	how	the	concept	of	mobile	device	has	considerably	evolved	towards	a	variety	
of	applications,	including	more	applications	for	work	purposes.	The	frontier	between	
computers	 and	mobile	devices	 is	 each	 time	more	blurred,	 and	people	 start	 to	use	
massively	new	smart	devices	that	can	carry	with	them	everywhere	not	only	as	means	
of	communication	but	also	to	accomplish	tasks	online.	Staying	online,	connected	to	
online	resources,	and	receiving	information,	from	different	channels,	 in	an	intuitive	
and	 easy	 way	 enables	 to	 shorten	 considerably	 the	 response	 time;	 it	 is	 also	 an	
effective	 way	 to	 request	 help	 and	 support	 from	 others.	 For	 instance,	 in	 online	
learning,	scaffolding	is	very	important	to	learners,	either	 in	a	virtual	classroom	or	a	
virtual	 workspace	 of	 an	 online	 team.	 Traditionally,	 scaffolding	 through	web-based	
online	applications	might	not	have	 the	desired	effect	 given	 that	 considerable	 time	
could	pass	from	the	moment	when	a	help	or	support	request	is	issued	to	the	time	it	
is	done	effective.		
	
By	 combining,	 Web-based	 and	 Cloud	 based	 technologies	 with	 the	 use	 of	 mobile	
devices,	 the	 online	 learning	 and	 collaborative	 activity	 can	 be	 much	 more	 timely,	
efficient	 and	 adaptive	 [2].	 In	 particular,	 scaffolding	 can	 be	 a	much	more	 effective	
way	of	accomplishing	learning	activities	because	learners	can	request	support	at	any	
time	and	other	learners	can	scaffold	their	team	mates	at	any	time,	anywhere	due	to	
the	 awareness	 services.	 	 Currently,	 we	 also	 see	 how	 social	 networks	 have	 been	
widely	 used	 for	 such	 purpose,	 by	 adapting	 to	 this	 idea,	 that	 is,	 using	 social	
networking	 properties	 in	 support	 to	 learners.	 For	 instance,	 one	 such	 feature	
explored	 is	 the	 emotional	 awareness	 as	 the	 emotional	 support	 is	 an	 important	
aspect	of	social	networking.	 	Several	studies	from	mobile	 learning	domain	(e.g.	 [3],	
[4]),	have	pointed	out	that	using	mobile	devices	on	online	learning	can	contribute	to	
increasing	the	perception	of	social	connectedness	of	 learners	yielding	to	emotional	
well-being	 among	 learners	 and	 reducing	 the	 frustration	 often	 produced	 by	 the	
isolation	in	online	virtual	classrooms.	
	
The	implementation	of	the	A3	paradigm:	anytime,	anywhere,	awareness	would	make	
online	systems	more	adaptive,	because	 the	online	 learners	can	adapt	 their	activity	
and	 needs	 to	 those	 of	 others	 “as	 they	 go”.	 Being	 anytime,	 anywhere	 and	 aware	



about	 what	 happens	 in	 online	 setting	 is	 therefore	 a	 constant	 demand	 in	 online	
collaborative	work.	In	this	paper,	we	discuss	about	this	paradigm	focused	on	online	
teams,	describing	in	a	practical	way,	how	the	team	communication	can	significantly	
improve	by	using	mobile	devices.	Starting	from	a	bottom-up	approach	we	describe	
how	 the	 A3	 paradigm	 can	 be	 applied	 to	 different	mobile	 team	working	 scenarios	
[5].		 Our	 approach	 is	 based	 on	 the	 definition	 and	 use	 of	 events	 linked	 to	 state	
changes	 of	 the	 objects	 in	 the	 common	 learning	 workspace.	 The	 events	 are	 then	
processed	and	sent	to	mobile	clients	for	consumption	following	the	A3	paradigm.	
	
In	 the	 current	 state	 of	 the	 art	 of	 the	 event-based	 system,	 we	 can	 find	 many	
interesting	methodological	proposals	for	designing	event-based	mobile	applications.	
Thus,	the	authors	in	[6]	proposed	an	event-based	coordination	approach	to	execute	
process	 oriented	composite	 applications,	 with	 components	 on	 server	 and	 at	 the	
client	 site.	 Another	 interesting	 work	 in	 this	 context,	 but	 rather	 focused	 on	 task	
oriented	 team	 collaboration,	 deals	 with	 notification	 and	 awareness	 synchronizing	
task-oriented	collaborative	activity	[7].	The	authors	 in	 [8]	proposed	the	use	of	XML	
messaging	 for	 mobile	 devices	 for	 effectice	 communication.	 Different	 from	 these	
approaches,	 in	 our	 approach,	 the	 objective	 is	 to	 make	 the	 system	 as	 simple	 as	
possible,	so	even	it's	possible	to	adapt	the	approach	in	[6],	we	want	to	use	existing	
communication	 channels	 between	 clients,	 widely	 used	 by	 users	 in	 their	 social	
networking	 life,	without	 the	need	of	use	new	protocols.		Additionally,	we	consider	
that	 in	 the	 teamwork,	 people	 prefer	working	 together	 using	 exiting	 tools	 and	 our	
research	 aims	 to	 study	 how	mobile	 devices	 can	 be	 integrated	 into	 existing	 online	
applications.		
	
As	 per	 the	 use	 of	 protocols,	 again	 the	 idea	 is	 not	 to	 use	 any	 specific	 protocol	 to	
deliver	messages,	but	instead,	to	use	existing	ones	building	a	gateway	between	our	
platform	and	the	delivery	platform.	In	all,	our	aim	is	to	build	a	new	layer	integrated	
onto	existing	 teamwork	systems,	which	can	be	also	possible	 to	be	used	 in	another	
kind	 of	 systems,	 which	 need	 to	 spread	 messages	 and	 notifications	 to	 groups	 or	
particular	 users.	 Taking	 into	 account	 the	 current	 convergence	 between	 computers	
and	mobile	devices,	the	system	should	be	used	not	only	to	add	mobile	capabilities	to	
existing	 systems,	 but	 also	 to	 add	a	 complete	delivery	 system	 to	 those	 that	 do	not	
have	such	delivery	services,	namely,	A3	services.	
	
Due	to	the	computational	 limitation	of	mobile	devices,	the	extension	of	web-based	
systems	to	support	also	mobile	clients	require	specific	design	and	implementation	to	
make	the	system	usable,	efficient	and	scalable.	In	this	work	we	use	an	event-based	
approach	 to	 extend	 web-based	 applications	 to	 support	 Anytime,	 Anywhere,	
Awareness	 in	online	 teams.	 It	 should	be	noted	 that	 the	A3	paradigm	 is	meant	not	
only	as	informing	channel	but	also	for	social	support	and	scaffolding.	The	key	feature	
here	is	the	definition	of	events	linked	to	state	changes	of	the	objects	in	the	common	
workspace.	 The	 events	 are	 then	 processed	 and	 sent	 to	 mobile	 clients	 for	
consumption.	
	
Goals:	The	main	design	goals	of	an	adaptive	A3	paradigm	for	onlione	collaborative	
setting	can	be	listed	as	follows:		



	
-	Simplicity:	reusing	existing	communication	channels	and	technologies.	
-	High	availability:	building	a	system	that	relies	on	technologies	that	can	support	high	
availability	by	default.	
-	Scalability:	taking	into	account	in	the	design	that,	without	a	big	effort,	the	system	
can	scale	efficiently	to	more	users	and	larger		amounts	of	online	teamwork.	
-	Modularity:	 choosing	 a	 software	 architecture	 that	 guarantees	 that	 the	 different	
parts	 can	 be	 improved,	 changed	 or	 new	 ones	 added	 without	 affecting	 the	 other	
parts	of	the	system.	
-	 Independency	 from	devices:	 again	 the	modular	 software	 architecture	will	 help	 to	
add	new	devices	without	big	efforts.	
-	Security:	 in	 the	event-based	 system	we	need	 to	ensure	 that	 the	 system	will	 take	
into	account	the	needed	security	features.	
-	Openness:	 building	 an	 open	 system	 is	 a	 key	 requirement	 nowadays	 to	 facilitate	
integration	and	 inter-connection	with	other	 systems	 that	use	or	need	event-based	
notifications.	
	
The	 rest	 of	 the	 paper	 is	 structured	 as	 follows.	 In	 Section	 2,	we	 describe	 the	main	
concepts	 and	 requirements	 upon	which	 our	 proposal	 relies.	 Then,	 we	 outline	 the	
design	 of	 the	 event	 management	in	 Section	 3.	 In	 Section	 4,	 we	 introduce	 the	
implementation	 issues	 and	 prototyping	 in	 order	 to	 demonstrate	 how	 the	 event	
management	could	be	done.	In	section	5,	we	present	how	the	system	can	be	fit	into	
an	eLearning	scenario.	Finally,	we	present	some	conclusions	and	an	outlook	to	future	
research	opportunities	in	Section	6.	
	
	
2.	Main	concepts	and	requirements	
	
					
We	follow	the	transactional	model	of	communication	[9]	where	the	source	sends	a	
message,	 through	 a	 channel,	 to	 the	 receiver	and	 a	 feedback	 comes	 back	 to	 the	
sender:	
	

	
	
Then,	we	 transform	 it	 into	 the	model	where	an	event	originates	a	message	 that	 is	
sent,	through	a	channel	(SMS,	Twitter,	email,	etc.)	to	a	user.	
	

Message

Sender Receiver

Feedback



	
Once	the	message	is	received,	the	user	can	take	some	further	actions	in	order	to	get	
more	 information	 relevant	 to	an	object,	a	user,	etc.	 Let	us	 see	now	more	 in	detail	
these	steps.	
	
Event	is	the	main	concept	in	our	system.	We	define	an	event	as	the	change	of	one	of	
the	 attributes	 of	 an	 object.	Objects	 are	 entities	 that	 have	 properties	 that	 can	 be	
observable.	 	 These	 attributes	 can	 change	 overtime,	 but	 while	 they	 remain	 the	
unchanged,	they	define	one	possible	state	of	the	object.		In	our	system	each	object	
has	 associated	 a	 process,	 called	 observer,	 which	 will	 detect	 the	 changes	 in	 the	
objects’	 state.	 In	order	 to	group	all	 the	objects	 that	are	 related	according	 to	 some	
coherent	 criteria,	 we	 have	 defined	 the	 notion	 of	 context.	 Also	 each	 object	 has	
associated	one	or	more	possible	actions,	namely	retroactions,	which	are	actions	that	
users	can	further	take	with	the	system	when	a	message	notification	is	received	from	
the	system.		
	
In	the	system,	we	have	the	targeted	users	–the	ones	that	will	receive	the	messages.	
In	many	applications,	however,	we	may	have	a	collection	of	users,	joined	together	in	
a	group.	 In	 the	 former	case,	notifications	are	sent	 to	a	particular	user	while	 in	 the	
later,	the	messages	are	sent	to	all	users	belonging	to	the	same	group.	We	can	talk	in	
this	 case	 about	 group	 notification.	 This	 introduces	 the	 concept	 of	 subscription.	 A	
subscription	 is	the	link	between	particular	users,	or	groups	of	users,	and	the	events	
that	 produce	 the	 objects	 due	 to	 changes	 in	 their	 state.	 In	 case	 of	 a	 group	
subscription,	 sending	 a	 message	 to	 the	 group	 means	 sending	 a	 message	 to	 each	
member	of	the	group.	Unsubscription	will	happen	when	a	user,	or	a	group	of	users,	
cancel	a	subscription.		
	
The	action	of	sending	a	message	is	called	notification.	Messages	can	vary	depending	
on	 the	 communication	 channel	 we	 use,	 so	 we	 can	 talk	 about	 SMS,	 MMS,	 email,	
tweet,	etc.,	messages.		Messages	can	be	sent	in	two	modes:	push	and	pull.	In	a	push	
mode,	the	user	will	receive	the	message	as	soon	as	the	message	becomes	available.	
In	 pull	 mode,	 the	 user	 will	 only	 receive	 the	 message	 through	 queries	 for	 new	
messages.	 The	 former	 is	 a	 synchronous	 transmission	 mode	 while	 the	 later	 is	 an	
asynchronous	transmission	mode.	
	
We	sum	up	the	key	concepts	of	the	event-based	notification	system	in	Table	I.	
	

Table	I:	Concepts	and	terminology.	

Event	 The	change	in	one	of	the	attributes	of	the	object.	
Attribute	 Property	of	the	object	that	can	be	observed.	
Object	 Things	that	has	properties	that	can	be	observable.			

Message

Event User

More info



Observer	 Process	that	detects	events.	
Context	 Group	 of	 objects/properties	 that	 are	 coherently	

related.	
Retroactions	 Actions	 that	 users	 can	 take	 in	 order	 to	 interact	

with	the	objects	/	the	system.	
User	 Person	that	use	the	system.	
Group	 User	association.	
Message	 Information	that	a	user	receives.	
Notification	 Action	of	sending	a	message.	
State	 Values	of	the	objects	attributes	in	a	certain	period	

of	time.	
Subscription	 Link	 between	 users,	 o	 groups	 of	 users,	 and	 the	

events	 that	 produce	 the	 changes	 in	 objects’	
states.	

Unsubscription	 Cancelation	of	the	subscription.	
Push	mode	 Mode	 of	 sending	 a	 message	 when	 it	 becomes	

available,	once	an	event	happens.	
Pull	mode	 The	message	is	sent	due	users’	queries	about	new	

messages.	
	
	
The	analysis	led	to	the	entity	diagram	shown	in	Figure	1.	

	
Figure	1:	Entity	diagram	of	the	event-based	system	

		
	



3.	Design	of	the	event	management	
	
The	 event	 management	 model	 includes	 management	 of	 users,	 subscriptions	 and	
events	(see	Figure	2	for	a	graphical	representation).	
	

	
Figure	2:	System	model	

	
As	can	be	seen,	the	system	is	divided	into	two	main	building	blocks	or	modules:	
	
3.1	User	management	and	 interaction	module:	 In	 this	module	we	manage	all	 the	
users,	 groups,	 events,	 objects	 and	 subscriptions	 /	 un-subscriptions.	 We	 take	 into	
account	that	third	parties	system	could	use	our	system.	
					
3.2	Core	system	module:	In	this	module,	we	manage	all	the	processes	that	observe	
the	objects,	 in	order	 to	detect	 events,	 and	generate	notifications	 to	 the	groups	or	
particular	users.	Again,	we	take	into	account	that	third	parties	can	use	this	module	of	
our	 system.	 In	 this	 later	 case,	 it	 is	 upon	 third	 parties	 systemsto	 take	 the	
responsibility	to	observe	the	objects	and	send	to	our	system	all	the	notifications.	
	
In	 terms	of	 system	architecture,	 the	notification	system	 is	organized	 into	 following	
layers.	
	
Client	layer	
This	 layer	 interacts	with	 the	system.	Users	use	existing	client	 interfaces	 to	 interact	
with	 the	 system	 depending	 on	 the	 implementation	 of	 the	 presentation	 layer.	 The	
client	 interface	 can	be	of	 various	 forms:	 from	a	web	browser	 (in	 order	 to	 interact	
with	the	presentation	layer	 in	charge	of	manage	the	accounts)	to	a	SMS	client	that	
shows	the	messages	sent	by	the	system	to	the	user.	
	
Presentation	layer	
This	layer	is	in	charge	of	interacting	with	clients.		We	have	a	variety	of	presentation	
layers:	web,	wap,	SMS…,	one	 for	each	client	 layer.	Also	we	have	defined	an	API	 in	
order	to	be	used	by	third	parties.	This	API	offers	the	possibility	to	users	to	subscribe	
and	unsubscribe	and	also	to	do	queries	to	the	system	(especially,	for	the	pull	mode).	
Additionally,	in	this	layer	we	have	designed	also	the	packages	that	are	used	to	send	



messages.	 Depending	 on	 the	 preferred	 communication	 channel,	 we	 can	 find	 SMS	
connections,	twitter	account,	email	account…etc.	
	
Business	layer	
This	layer	implements	all	the	logics	of	the	application	by	carefully	implementing	the	
observer	 objects,	 the	 subscriptions	 as	 well	 as	 the	 mapping	 of	 groups/users	 to	
subscribed	 events.	 We	 implement	 the	 observer	 so	 that	 the	 processes	 that	 are	
constantly	 observing	 the	 objects	 in	 order	 to	 detect	 events,	 and	 the	 dispatcher	
processes	 in	 charge	 to	 deliver	 the	 message(s)	 to	 the	 corresponding	 groups/users	
once	an	event	is	detected.	Each	time	a	new	event	is	detected	by	the	observer,	a	new	
message	 is	queued	 into	a	messaging	queue	 (see	Figure	3).	 In	order	 to	 simplify	 the	
notification	 processes,	 the	 queue	 manages	 only	 “generic”	 users	 messages,	 this	
means	 that	 messages	 to	 groups	 are	 converted	 into	 users	 messages	 as	 well.	 	 The	
dispatcher	is	then	the	process	in	charge	of	the	delivery	and	applies	the	retry	policy	if	
a	message	is	not	delivered	to	its	destination.	
	
Integration	layer	
This	 layer	 is	 in	charge	of	 integrating	data	 layer	and	business	 layer,	that	 is,	 the	data	
layer	interaction	with	the	business	layer	and	the	IO	layer.	
	
IO	Layer	
In	 this	 layer	 we	 implement	 the	 data	 persistence	 chosen	 to	 store	 all	 the	 system	
information.	
	

	
	

Figure	3:	Message	dispatcher	and	observer	



The	diagram	of	Figure	4	 illustrates	the	architecture	described,	 following	a	standard	
layered	architecture.	
	

	
Figure	4:	System	architecture	

	
4.	Implementation	issues,	prototyping	and	evaluation	
	
In	 order	 to	 achieve	 scalability	 and	 high	 availability,	 we	 choose	 first	 of	 all	 HTTP	
protocol.	With	a	combination	of	load	balancing	and	web	server	nowadays	both	goals	
can	be	reached	easily.	In	order	to	ensure	the	same	flexibility	on	data	persistence,	we	
choose	MongoDB.		On	presentation	layer	we	develop	the	following	interfaces:	
	
Web	admin	
This	 interface	 allows	 the	 management	 of	 users,	 events	 and	 subscriptions.	 In	 the	
prototyping	there	was	a	unique	interface	without	authorization	and	authentication.	
	
The	prototyping	divides	this	interface	into	three	blocks:	
- Users:	in	order	to	manage	users	and	groups	
- Warnings:	in	order	to	manage	events,	objects,	context	and	retroactions	
- Subscriptions:	 in	 order	 to	 manage	 users	 and	 groups	 subscriptions	 and	 un-

subscriptions.	
	
Mobile	interface	
This	 interface	 enables	 users	 to	 receive	 messages	 on	 their	 mobile	 devices	 and	 do	
some	actions	at	their	end.		
	
The	prototype	has	the	following	interfaces:	
	

- Pull:	 In	 order	 to	manage	 pull	messages	 users	will	 be	 able	 to	 activate	 reception	 of	
single	 messages	 or	 messages	 between	 any	 two	 dates.	 Activating	 a	 pull	 mode	
message	means	that	the	user	will	receive	the	message	through	the	channel	that	was	
defined	on	the	event	action.	

- Also,	we	 implemented	an	 interface	to	receive	an	SMS	with	a	 link	 in	order	to	check	
the	 pull	 that	 needs	 to	 be	 activated	 between	 two	 dates.	 This	 interface	 doesn’t	
activate	the	messages	but	just	visualize	them.	

- Mobile:	as	an	example	of	mobile	interfaces	the	prototype	offers	an	interface	to	view	
a	message	still	 to	be	delivered,	all	 the	pull	messages	between	two	dates	as	well	as	
historical	information.	

- All	the	messages	show	the	retroaction	that	the	user	can	do	on	them.	



	
Third	parties	interfaces	
Third	parties	can	use	the	following	interface	in	order	to	interact	with	the	system.	The	
prototype	 implements	 the	 interface	 Subscribe	 in	 order	 to	 subscribe	 third	 parties	
users.	 Prior	 to	 the	 subscriptions	 the	 events	 have	 to	 be	 defined	 in	 the	 system.	
External	 users	 can	 use	 an	 external	 reference	 that	 the	 system	 uses	 in	 order	 to	
subscribe	the	users	to	the	events.	 In	order	to	manage	this	subscription	on	external	
systems,	we	implement	the	list,	read,	create,	update	and	delete	actions.	In	this	way	
all	the	actions	can	be	done	through	the	interface.	
	
The	prototype	implements	all	the	functionalities	needed	to	define	users	and	groups	
and	the	subscription	to	events	of	these	users	and	groups.	In	terms	of	objects,	and	for	
the	purposes	of	this	work,	we	defined	just	the	discussion	forum	and	files	as	context	
where	 events	 arise	 due	 activity	 of	 online	 users	 and	online	 teamworks.	 In	 order	 to	
detect	 changes	 on	 forums,	 the	module,	which	 detects	 the	 changes,	 reads	 the	 RSS	
associated	 to	 the	 forum	 to	 detect	 new	 posts	 (or	 replies	 to	 existing	 ones).	 For	 the	
files,	 the	module	developed	checks	 the	modified	date	of	 the	 local	 file.	These	were	
the	actions	that	the	observer	uses	to	detect	the	events,	once	the	observer	detects	an	
event,	 it	 find	 the	 subscribers	 associated	 to	 that,	 either	 being	 groups	 or	 particular	
users.	 In	 order	 to	 deliver	 the	 resulting	 notifications	 to	 the	 groups,	 all	 the	 users	
belonging	to	the	group	are	identified	and	the	message	is	stored	with	the	status	“to	
be	delivered”	on	the	warning	queue	for	each	user;	for	a	single	user,	the	system	just	
queues	the	messages	to	be	delivered	to	the	user.	In	this	way	there	is	no	difference	
between	 delivery	 of	 the	 messages	 to	 groups	 and	 single	 users,	 there	 is	 just	 one	
unique	queue	with	user	messages.		
	
5.	Implementing	eLearning	scenarios	
	
In	this	section	we	see	how	the	system	could	add	benefits	to	the	followings	learning	
pedagogical	 methodologies:	 constructivism,	 problem-based	 learning	 and	 informal	
learning.	
	
5.	1	Constructivism	
	
In	this	methodology	it	is	really	important	the	student’s	interaction	in	order	to	learn.	
Our	system	would	give	the	possibility	to	the	students	to	be	more	in	touch	with	the	
virtual	 classroom	 and	 the	 resources	 (discussion	 forums,	 files)	without	 the	 need	 to	
visit	each	time	the	web	interface,	for	 instance,	 in	order	to	find	new	messages.	This	
will	allow	them	to	be	more	quick	and	dynamic	 in	their	relationship	with	the	virtual	
classroom	and	other	learners.	For	the	case	of	a	group	of	students	working	together,	
say	 in	 a	 document,	 the	 students	 could	 be	warned	when	 some	 student	 adds	 some	
contributions,	 informing	both	the	fact	that	the	contribution	was	done	but	and	also	
who	did	it	and	having	the	possibility	to	do	retroaction	on	that.	In	this	way	students	
will	be	more	focused	on	learning	not	on	the	technology	they	are	using.		
	
Taking	into	account	that	the	system	supports	mobile	devices,	students	can	have	the	
possibility	to	interact	even	when	they	are	not	in	front	of	a	computer,	but	anywhere	



as	 long	 as	 they	 are	 connected	 to	 a	 network	 and	 can	 receive	 notifications,	 thus	
enabling	an	efficient	sharing	of	work	and	knowledge.	
	
5.2	Problem-based	learning		
	
There	 has	 been	 identified	 the	 following	 core	 characteristics	 of	 problem-based	
learning:	centred	learning,	learning	occurs	in	small	groups,	teachers	act	as	facilitators	
or	guides,	a	problem	 forms	 the	basis	 for	organized	 focus	and	stimulus	 for	 learning	
problems	 stimulate	 the	 development	 and	 use	 of	 problem	 solving	 skills,	 new	
knowledge	is	obtained	through	means	of	self.	We	can	apply	again	the	same	benefits	
as	in	the	case	of	the	constructivism.	Because	the	learning	takes	place	in	groups	that	
develop	a	concrete	project,	if	the	teacher	gives	a	challenge	to	the	group	of	students,	
the	group	will	immediately	be	aware	of	it,	and	also	the	teacher	can	receive	almost	in	
real	 time	 (if	 the	 system	 is	 configured	 with	 an	 appropriate	 channel)	 about	 the	
progress	of	the	group	and	in	this	way	supervise	the	work	in	progress	in	the	best	way	
possible	with	the	support	of	the	awareness	information.	
	
5.3	Informal	learning	
	
In	 this	methodology,	students	“learn	on	the	 fly”.	 In	 this	scenario	we	can	think	 that	
our	 system	 is	a	kind	of	knowledge	hub,	where	we	have	producers	and	consumers.	
Producers	 are	 all	 the	 users	 of	 the	 system	 that	 create	 objects	 linked	with	 different	
areas,	from	mathematics	to	philosophy,	from	cooking	recipes	to	jazz	music…	While,	
consumers,	 according	 to	 their	 motivations,	 subscribe	 to	 it	 and	 become	 part	 of	
different	 communities.	Maybe	 they	 can	work	 on	 a	 document,	 or	 be	 just	 informed	
about	the	last	news	that	happens	at	the	CERN.	Again,	our	A3	implemented	paradigm	
can	 help	 members	 of	 the	 community	 to	 stay	 tuned	 for	 any	 changes	 in	 the	
information	and	offer	the	interaction	services	with	other	members’	community.	
	
6.	Conclusions	and	outlook	
	
In	this	work	we	have	explored	the	enormous	possibilities	brought	by	mobile	devices	
to	 the	 online	 teamwork	 activities.	 One	 such	 important	 advantage	 is	 the	
implementation	 of	 the	 A3	 paradigm:	 Anytime,	 Anywhere,	 Awareness,	 that	 is,	
notifying	users	 about	 ongoing	 activity	 in	 their	 online	workspaces.	 In	 this	work,	we	
presented	 an	 event-based	 system	 that	 extends	web-based	 applications	 to	 support	
Anytime,	Anywhere,	Awareness	in	online	workteams.		The	system	not	only	can	serve	
as	 informing	 channel	 but	 also	 for	 social	 support	 and	 scaffolding	 through	 fast	
notifications	 of	 learner’s	 requests.	 In	 designing	 and	 prototyping	 the	 system,	 the	
efficient	 event	 detection,	 which	 is	 the	main	 activity	 of	 the	 system,	 is	 the	 hardest	
part.	For	this	reason	the	idea	of	a	system	being	a	notification	HUB	for	other	online	
learning	systems	seems	interesting.		
	
As	nowadays	the	border	between	mobile	devices	and	computers	is	each	time	more	
blurred,	the	system	needs	to	be	enough	modular	to	ensure	that	it	can	deal	with	new	
communication	 channels	 and	 with	 new	 ways	 to	 deliver	 messages.	 Indeed,	 some	
years	ago	mobile	devices	have	 rather	 specific	 channels	 and	 types	of	messages,	 for	



instance	SMS,	MMS,	WAP	push…	and	mobile	browsers	needed	specific	markup,	like	
WML	 or	 XHTML,	 because	 the	 computational	 limitations	 of	 the	 devices.	 However,	
nowadays	 smartphones,	 and	 also	 feature	 phones,	 can	 receive	 the	 same	 kind	 of	
messages	as	a	computer,	 for	 instance	email,	and	can	open	web	pages	 in	 the	same	
way	as	a	computer.	This	opens	up	many	possibilities	to	design	and	implement	very	
efficient	notification	systems	for	mobile	learners.		
One	interesting	aspect	that	we	would	like	to	further	develop	is	define	taxonomy	of	
events	that	would	fully	support	the	A3	paradigm	of	anywhere,	anytime,	awareness	in	
groupware	systems,	following	work	in	[10,11,12].		
	
REFERENCES		
	
[1] Niroshinie	Fernando,	Seng	W.	Loke,	Wenny	Rahayu,	Mobile	cloud	computing:	A	

survey.	Future	Generation	Computer	Systems,	Volume	29,	Issue	1,	January	2013,	
84–106.	doi:10.1016/j.future.2012.05.023		

[2] Razek,	 M.A.,	 	 Bardesi,	 H.J.Towards	 Adaptive	 Mobile	 Learning	 System,	 In	
Proceedings	of	 the	11th	 International	Conference	on	Hybrid	 Intelligent	Systems	
(HIS),	493	-	498,	2011,	IEEE	CPS	

[3] Richard	 M.	 Lee	 and	 Steven	 B.	 Robbins.	 Measuring	 Belongingness:	 The	 Social	
Connectedness	 and	 the	 Social	 Assurance	 Scales.	 Journal	 of	 Counseling	
Psychology,	vol.	42,	no.	2	(1995),	pp.	232–241.		

[4] Thomas	Visser,	Pavan	Dadlani,	Daan	van	Bel,	and	Svetlana	Yarosh,	Designing	and	
Evaluating	Affective	Aspects	of	Sociable	Media	to	Support	Social	Connectedness.	
Proceedings	 of	 the	 28th	 International	 Conference	 on	 Human	 Factors	 in	
Computing	Systems,	Atlanta,	Georgia,	2010.	

[5] Xavier	Rivadulla,	Fatos	Xhafa.	Disseny	i	prototipatge	d'un	sistema	d'events	per	a	
dispositius	 mòbils	 en	 el	 treball	 en	 grup.	Master’s	 Thesis	 in	 Computer	 Science.	
Open	University	of	Catalonia.		

[6] Tore	Fjellheim,	Stephen	Milliner,	Marlon	Dumas,	and	 Julien	Vayssiere	 (2007).	A	
process-based	 methodology	 for	 designing	 event-based	 mobile	 composite	
applications.	Data	Knowl.	Eng.	61,	1	(April	2007),	6-22.		

[7] Eduardo	 S.	 Barrenechea,	 Paulo	 S.	 C.	 Alencar:	 An	 Adaptive	 Context-Aware	 and	
Event-Based	Framework	Design	Model.	Procedia	CS	5:	593-600	(2011).	2010	

[8] Jaakko	Kangasharju,	Tancred	Lindholm,	Sasu	Tarkoma	(2007).	XML	messaging	for	
mobile	 devices:	 From	 requirements	 to	 implementation.	 Computer	 Networks	
51(16):	4634-4654	

[9] D.	 C.	 Barnlund	 (2008).	 A	 transactional	 model	 of	 communication.	 In.	 C.	 D.	
Mortensen	 (Eds.),		Communication	 theory	(2nd	ed.,	 pp.	 47-57).	New	Brunswick,	
New	Jersey:	Transaction.	

[10] Fatos	 Xhafa,	 Alex	 Poulovassilis:	 Requirements	 for	 Distributed	 Event-Based	
Awareness	in	P2P	Groupware	Systems.	AINA	Workshops	2010:	220-225	

[11] Fatos	 Xhafa,	 Alex	 Poulovassilis:	 Awareness	 in	 P2P	 Groupware	 Systems:	 A	
Convergence	of	Contextual	Computing,	Social	Media	and	Semantic	Web.	EIDWT-
2011:	14-21	

[12] Alexandra	 Poulovassilis,	 Fatos	 Xhafa:	 Building	 Event-Based	 Services	 for	
Awareness	in	P2P	Groupware	Systems.	3PGCIC	2013:	200-207	


