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ABSTRACT 

We propose a multidimentional time-point model and algorithm to solve Multi-Event Expert 

Query Parametric Estimation (ME-EQPE) problems over multivariate time series. Our 

proposed model and algorithm combine the strengths of both domain-knowledge-based and 

formal-learning-based approaches to learn optimal decision parameters for maximizing utility 

over multivariate time series. More specifically, our approach solves the decision 

optimization problems to maximize the utility from multiple decision time points, as well as 

maintaining an optimality of the learned multiple sets of decision parameters in their 

respective events during the computations. We show that our approach guarantees a 

remarkable forecasting result by using the learned multiple sets of decision parameters.  
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1. INTRODUCTION 

Making decisions over multivariate time series is an important topic which has gained 

significant interest in the past decade, as two or more time series are often observed 

simultaneously in many fields. In business and economics, financial analysts and researchers 

monitor daily stock prices, weekly interest rates, and monthly price indices to analyze 

different states of stock markets. In medical studies, physicians and scientists measure 

patients’ diastolic and systolic blood pressure over time and electrocardiogram tracings to 

evaluate the patients’ health of respiratory systems. In social sciences, sociologists and 

demographers study annual birth rates, mortality rates, accident rates, and various crime rates 

to dig out hidden social problems within a community. The purpose of these measures over 

multivariate time series is to assist the specialists in understanding the same problem from 

different perspectives within particular domains. The events identified and detected over 

multivariate time series can lead the professionals to make better decisions and take timely, 

appropriate actions. Those events may include index bottoms and tops in financial markets, 

irregular readings on blood pressure and pulse anomalies on electrocardiogram, as well as 

low birth but high death rates in a population region. 

Currently, existing approaches to identifying and detecting those interesting events can be 

roughly divided into two categories: domain-knowledge-based and formal-learning-based. 

The former relies solely on domain expert knowledge. Based on their knowledge and 

experiences, domain experts determine the conditions that trigger the events of interest. 

Consider one particular example of the timely event detection of certain conditions in the 

stock market, e.g., the bear market bottom, that can provide investors a valuable insight into 

the best investment opportunity. Such identification and detection can aid in the task of 

decision-making and the determination of action plans. To assist users in making better 

decisions and determinations, domain experts have identified a set of financial indices that 

can be used to determine a bear market bottom. The indices include the S&P 500 percentage 

decline (SPD), Coppock Guide (CG), Consumer Confidence point drop (CCD), ISM 

Manufacturing Survey (ISM), and Negative Leadership Composite ―Distribution‖ (NLCD). If 

these indices satisfy the pre-defined, parameterized conditions, e.g., SPD < -20%, CG < 0, 

etc., [1], it signals that the best period for the investors to buy the stocks is approaching. 

Often these parameters may reflect some realities since they are set by the domain experts 

based on their past experiences, observations, intuitions, and domain knowledge. However, 

they are not always accurate. In addition, the parameters are static, but the problem that we 

deal with is often dynamic in nature. The market is constantly impacted by many unknown 

and uncontrollable factors from the business surroundings. Thus, this approach lacks a formal 

mathematical computation that dynamically learns the parameters to meet the needs of the 

changing environment.  

An alternative approach is to utilize formal learning methods such as non-linear logit 

regression models. [2, 3, 4] The logit regression models are used to predict the occurrence of 

an event (0 or 1) by learning parametric coefficients of the logistic distribution function of the 

explanatory variables. This is done based on the historical data by applying nonlinear 

regression models and Maximum Likelihood Estimation (MLE). The main challenge 

concerning using formal learning methods to support decision-making is that they do not 

always produce satisfactory results, as they do not consider incorporating domain knowledge 

into their formal learning aproaches. Without domain experts’ knoweledge, formal learning 

methods become computationally intensive and time consuming. The whole model building 

is an iterative and interactive process, including model formulation, parameter estimation, 

and model evaluation. Despite enormous improvements in computer software in recent years, 
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fitting such nonlinear quantitative decision model is not a trival task, especially if the 

parameter learning process involves multiple explanatory variables, i.e., high dimensionality. 

Moreover, working with high-dimensional data creates difficult challenges, a phenomenon 

known as the ―curse of dimensionality.‖ Specifically, the amount of observations required in 

order to obtain good estimates increases exponentially with the increase of dimensionality. In 

addition, many learning algorithms do not scale well on high dimensional data due to the high 

computational cost. The parameter computations by formal-learning-based approaches, e.g., 

logit regression model, are complicated and costly, and they lack the consideration of 

integrating experts’ domain knowledge into the learning process – a step that could 

potentially reduce the dimensionality. Clearly, both approaches, domain-knowledge-based 

and formal-learning-based, do not take advantage of each other to learn the optimal decision 

parameters, which are then used to monitor the events and make better recommendations. 

To mitigate the shortcomings of the existing approaches, we have proposed a 

mathematical model, Expert Query Parametric Estimation (EQPE), and algorithm, 

Checkpoint [5, 6], that combines the strengths of both domain-knowledge-based and formal-

learning-based approaches. More specifically, we take the template of conditions identified 

by domain experts—such template consists of inequalities of values in the time sequences—

and ―parameterize‖ it, e.g., SPD < p1. Our goal is to efficiently find parameters that maximize 

the objective function, e.g., earnings in our financial example, in which the objective function 

is dependent on the time points from which the parameters are learned. The Checkpoint 

algorithm guarantees a true optimal time point and has the complexity of O(kNlogN), where 

N is the size of the learning data set, and k is the number of parametric time series. As a proof 

of concept, we have conducted an experiment in the financial domain and shown that our 

algorithm is more effective and produces results that are superior to the two approaches 

mentioned above. 

However, the EQPE model and the Checkpoint algorithm are only able to learn one set of 

decision parameters for one particular event at a single time point, whereas there are many 

real-world scenarios that the parameter learning is at multiple time points in sequence. For 

instance, consider our financial example again, in which the investors would like to decide on 

both when the S&P 500 fund is purchased at tpurchased and when the fund is sold at tsold rather 

than either tpurchased or tsold only. Using the EQPE model and the Checkpoint algorithm, the 

investors would not be able to obtain the optimal decision parameters simultaneously for the 

two interrelated decision time points and then to gain the maximal earning of the S&P 500 

index fund.    

To address the shortcomings of our one-dimensional-time-point model and algorithm, in 

this paper, we propose an extended model, Multi-Event Expert Query Parametric Estimation 

(ME-EQPE), and an algorithm, Multidimensional M-Checkpoint, to solve the problems. The 

new extended model and algorithm not only maintain the advantages of one-dimensional-

time-point model, EQPE, and algorithm, Checkpoint, but also learn decision parameters at 

multiple, inter-related time points optimally for mutli-events. More specifically, the 

contributions of this paper are as follows: 

 Combines the strengths of both domain-knowledge-based and formal-learning-based 

approaches to solve the decision optimization problems that involve multiple decision 

time points to maximize the utility. 

 Maintains an optimality of the learned multiple sets of decision parameters in their 

respective events during the computations. 

 Guarantees a satisfactory forecasting result by using the learned multiple sets of 

decision parameters. 



4 

The rest of the paper is organized as follows. In Section 2, we review the mathematical 

model, EQPE, the computational algorithm, Checkpoint, and the experimental evaluation on 

our financial example, i.e., the bear market bottom. Section 3 describes our extended model, 

ME-EQPE, and algorithm, M-Checkpoint, that simultanesly learn multiple sets of decision 

parameters at their respective time points in sequence. Using the ME-EQPE model and the 

M-Checkpoint algorithm, we illustrate the remarkably experimental results on the stock 

market data, i.e., the parameter learning at multiple time points for the ―Besy Buy‖ and ―Best 

Sell‖ investment, in Section 4. Note that our new extension is applicable to solve the 

problems in different domains and scenarios. Section 5 contains the conclusions and future 

work. 

 

2. LEARNING DECISION PARAMETERS AT A SINGLE TIME POINT  

In this section, we first explain the methodologies used in the parameter learning from a 

single time point. More specifically, we review the mathematical formulations of the Expert 

Query Parametric Estimation (EQPE) problem and solution. [5, 6] We then illustrate the 

computational algorithm, Checkpoint, used for the parameter learning. 

2.1 Expert Query Parametric Estimation (EQPE) Model 

The goal of an EQPE is to find optimal values of decision parameters that maximize an 

objective function over historical, multivariate time series. For an EQPE problem being 

constructed, we need to define a set of mathematical notations and a model for it. We assume 

that the time domain T is represented by a set of natural numbers: T = N, and that we are also 

given a vector of n real-valued parameter variables (p1, p2, …, pn). 

 

Definition 1. Time Series: A time series S is a function S: T → R, where T is the time 

domain, and R is the set of real numbers.  

 

Definition 2. Parametric Monitoring Constraint: A parametric monitoring constraint C(S1(t), 

S2(t), …, Sk(t), p1, p2, …, pn) is a symbolic expression in terms of S1(t), S2(t), …, Sk(t), p1, p2, 

…, pn, where S1(t), S2(t), …, Sk(t) are time series, t ∈ T is a time point, and (p1, p2, …, pn) is a 

vector of parameters. 

 

We assume a constraint C written in a language that has the truth-value interpretation I: R
k
 

x R
n
 → {True, False}, i.e., I(C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn)) = True if and only if the 

constraint C is satisfied at the time point t ∈ T and with the parameters (p1, p2, …, pn) ∈ R
n
. In 

this paper, we focus on conjunctions of inequality constraints: C(S1(t), S2(t), …, Sk(t), p1, p2, 

…, pn) = ∧i (Si(t) op pj), where op ∈ {≤, =, ≥}.  

 

Definition 3. Time Utility Function: A time utility function U is a function U: T → R.  

 

Definition 4. Objective Function: Given a time utility function U: T → R and a parametric 

constraint C, an objective function O is a function O: R
n
 → R, which maps a vector of n 

parameters in R
n
 to a real value R, defined as follows. For (p1, p2, …, pn) ∈ R

n
, O(p1, p2, …, 

pn) ≝ U(t), where U is the utility function, and t ∈ T is the earliest time point that satisfies C, 

i.e.,  

(1) S1(t) op1 p1 ∧ S2(t) op2 p2 ∧ … ∧ Sn(t) opn pn is satisfied, and  

(2) There does not exist 0 ≤ t' < t, such that S1(t') op1 p1 ∧ S2(t') op2 p2 ∧ … ∧ Sn(t') opn pn 

is satisfied. 
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Definition 5. Expert Query Parametric Estimation (EQPE) Problem: An EQPE problem is a 

tuple <  ,   , C, U>, where    = {S1, S2, …, Sk} is a set of k time series,    = {p1, p2, …, pn} is a 

set of n real-value parameter variables, C is a parametric constraint in    and   , and U is a 

time utility function.  

 

Intuitively, a solution to an EQPE problem is an instantiation of values into the vector    of 

n real-value parameters that maximizes the objective O. 

 

Definition 6. Expert Query Parametric Estimation (EQPE) Solution: A solution to the EQPE 

problem <  ,   , C, U> is argmax O(p1, p2, …, pn), i.e., the (estimated) values of parameters, 

p1, p2, …, pn, that maximize O, where O is the objective function corresponding to U.  

 

The base time series in our financial example, i.e., detecting the bearish market bottom, are 

shown in Table 1. We suppose that the first starting date in any time-series data set is t = 0. 

Table 1: Base Time-Series Data 

Base Time Series S Abbreviation 

S&P 500 SP500(t) 

Coppock Guide CG(t) 

Consumer Confidence CC(t) 

ISM Manufacturing Survey ISM(t) 

Negative Leadership Composite NLC(t) 

 

Note that some base time series are the direct inputs, whereas some are used to derive 

another set of time series. For instance, the derived time series in our case study are shown in 

Table 2. 

Table 2: Derived Time-Series Data 

Derived Time Series S Abbreviation 

Percentage decline in SP(t) at the time point t SPD(t) 

Points drop in CC(t) at the time point t CCD(t) 

Number of consecutive days in Bear Market ―DISTRIBUTIOIN‖ of NLC(t) at and before the 

time point t 
NLCD(t) 

Time Utility Earning at the time point t, i.e., the index fund is bought at t and sold at ts, where 

ts is the last day of the learning data set 
Earning(t) 

 

The decision parameters used in the case study are defined in Table 3. 

Table 3: Decision Parameters 

Parameter Interpretation 

p1 Test if SPD(t) is less than p1 at t. 

p2 Test if CG(t) is less than p2 at t. 

p3 Test if CCD(t) is less than p3 at t. 

p4 Test if ISM(t) is less than p4 at t. 

p5 Test if NLCD(t) is greater than p5 at t. 

 

Let us consider the following constraint C as an illustration: 

 

C(SPD(t), CG(t), CCD(t), ISM(t), NLCD(t), p1, p2, p3, p4, p5)  

= SPD(t) < p1 ∧ CG(t) < p2 ∧ CCD(t) < p3 ∧ ISM(t) < p4 ∧ NLCD(t) > p5 
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It means that the parametric monitoring constraint C is satisfied, i.e., its interpretation is 

True, if the above inequalities with the decision parameters are satisfied at the time point t. 

The interpretation also indicates that the monitoring event occurs. We assume that the 

investor buys the S&P 500 index fund at the decision variable time t and sell it at the given tS, 

which is the last day of the given training data set. The earning function SP(tS)/ SP(t) – 1 ∈ R 

is the utility, which is maximized by choosing the optimal value t ∈ T, where SP(tS) and SP(t) 

are the sell and buy value of the S&P 500 index fund at the time tS and t respectively. The 

EQPE problem and solution for our financial example can be constructed by putting the 

considered time series, parameters, constraints, and functions to the definitions shown in 

Table 4. 

Table 4: EQPE Problem and Solution Formulation for the S&P 500 Index Fund 

Problem and Solution 

Problem: 

<  ,   , C, U>, where 

   = {SPD, CG, CCD, ISM, NLCD} 

   = {p1, p2, p3, p4, p5} 

C = SPD(t) < p1 ∧ CG(t) < p2 ∧ CCD(t) < p3 ∧ ISM(t) < p4 ∧ NLCD(t) > p5 

U = SP(ts)/SP(t) - 1 

 

Solution:  

argmax O(p1, p2, p3, p4, p5) ≝ U(t) 

 

The values of the optimal decision parameters can be determined by using the learning 

algorithm, Checkpoint. [5, 6] Before explaining the Checkpoint algorithm in detail, we first 

review the concept of Dominance. 

 

Definition 7. Dominance ≻: Given an EQPE problem <  ,   , C, U> and any two time points 

t, t' ∈ T, we say that t' dominates t, denoted by t' ≻ t, if the following conditions are satisfied:  

(1) 0 ≤ t' < t, and  

(2) ∀(p1, p2, …, pn) ∈ R
n
, C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn) → C(S1(t'), S2(t'), …, Sk(t'), 

p1, p2, …, pn). 

 

Intuitively, t' dominates t if for any selection of parametric values, the query constraint 

satisfaction at t implies the satisfaction at t'. Clearly, the dominated time points should be 

discarded when the optimal time point is being determined. We formally claim that: 

 

Claim 1 - Given the conjunctions of inequality constraints, S1(t) op1 p1 ∧ S2(t) op2 p2 ∧ … ∧ 

Sk(t) opk pk and the two time points t', t such that 0 ≤ t' < t, t' ≻ t if and only if S1(t') op1 S1(t) ∧ 

S2(t') op2 S2(t) ∧ … ∧ Sk(t') opk Sk(t). 

 

For example, suppose there are three time series S1, S2, S3 and three decision parameters 

p1, p2, p3. And the constraints are C(S1(t), S2(t), S3(t), p1,  p2, p3) = S1(t) ≥ p1 ∧ S2(t) ≥ p2 ∧ S3(t) 

≤ p3. Also assume the values for S1, S2, and S3 at the time point t1, t2, and t3 respectively in 

Table 5. 

Table 5: Values of S1, S2, S3, and U at the time point t1, t2, and t3 

Time S1 S2 S3 U 

t1 13 27 3 10 
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t2 25 15 2 200 

t3 10 20 5 150 

 

In this case, the time point t3 is dominated because there is a time point t1 that make the 

inequality, S1(t1) ≥ S1(t3) ∧ S2(t1) ≥ S2(t3) ∧ S3(t1) ≤ S3(t3), equal to true. On the contrary, for all 

t' < t, if S1(t') ¬op1 S1(t) ∨ S2(t') ¬op2 S2(t) ∨…∨ Sn(t') ¬opn Sn(t) is satisfied, t is not dominated 

by t' denoted by t' ⊁ t. Let us consider the same example above. Because S1(t1) < S1(t2) ∨ 

S3(t1) > S3(t2), t2 is not dominated. 

2.2 Checkpoint Algorithm and Experimental Evaluation 

Conceptually, we can search a particular set of parameters {p1, p2, …, pn} which is at the 

earliest time point t that is not dominated by any t' such that the value of the objective 

function O is maximal among all the instantiations of values into parameters. However, the 

problem of this approach is that for every single parameter set at t in a learning data set, the 

parameter set at t has to be examined with all the previous sets of parameters at t' for 

checking the non-dominance before the optimal solution can be found. In fact, due to the 

quadratic nature, the conceptual approach is time consuming and expensive particularly if the 

size of the learning data set is significantly large. Instead, the Checkpoint algorithm [5, 6] 

uses the KD-tree data structure and searching algorithm [7, 8, 9] to evaluate whether a time 

point t is dominated based on the Claim 1 for checking the non-dominance. The pseudo code 

of the algorithm is: 

 
Input: <  ,   , C, U> 

 

Output: p[1…k] is an array of the optimal parameters that maximize the objective. 

 

Data Structures:  

1. N is the size of the learning data set. 

2. Tkd is a KD tree that stores the parameter vectors that are not dominated so far. 

3. MaxT is the time point that gives the maximal U so far, denoted by MaxU. 

 

Processing: 

 

STEP 1: Tkd := <S1(0), S2(0), …, Sk(0)>; MaxT := 0; MaxU := U(0); 

 

STEP 2: FOR t := 1 TO N - 1 DO { 

Non-Dominance Test: Query the Tkd to find if there exists a point ( 1,  2, …,  k) in the Tkd, 

which is in the range [S1(t), ) x [S2(t), ) x … x [Sk(t), ). 

IF (NOT AND t is not dominated AND U(t) > MaxU) THEN  

Add <S1(t), S2(t), …, Sk(t)> to Tkd;  

MaxT := t;   

MaxU := U(t); 

} 

 

STEP 3: FOR i := 1 TO k DO { 

p[i] := Si(MaxT); 

} 

 

STEP 4: RETURN p[1…k]; 

 

Clearly, the first time point is not dominated because there is no time point preceding it. 

Therefore, <S1(0), S2(0), …, Sk(0)> can be added to Tkd. 0 and U(0) can be assigned to MaxT 

and MaxU respectively. Using the Checkpoint algorithm step by step for the problem shown 



8 

in Table 5, we can search through a particular set of parameters {p1, p2, p3} which is at the 

earliest time point t that is not dominated by any t' such that the value of the utility function U 

is maximal. In STEP 1, the <S1(t1), S2(t1), S3(t1)> is added to the Tkd since it is the first time 

point. Then t1 and U(t1) are assigned to MaxT and MaxU respectively. In STEP 2, t2 is not 

dominated because S1(t1) < S1(t2) ∧ S2(t1) > S2(t2) ∧ S3(t1) > S3(t2) does not satisfy the Claim 1. 

However, t3 is dominated because S1(t1) > S1(t3) ∧ S2(t1) > S2(t3) ∧ S3(t1) < S3(t3) does satisfy 

the Claim 1. <S1(t2), S2(t2), S3(t2)> is added to the Tkd because t2 is not dominated and U(t2) > 

U(t1). Thus t2 and U(t2) are assigned to MaxT and MaxU respectively. In STEP 3, p[1] := 

S1(MaxT), p[2] := S2(MaxT), and p[3] := S3(MaxT) in the for-loop statement. In STEP 4, the 

algorithm returns 25, 15, and 2. 

 

Theorem 1: For N parameter vectors in the data set, the Checkpoint algorithm correctly 

computes an EQPE solution, i.e., argmax O(p1, p2, p3, p4, p5), where O is the objective 

function of the EQPE problem, with the complexity O(kNlogN). 

 

Using the Checkpoint algorithm, we can obtain the optimal decision parameters and the 

maximal earning from the training data set for the financial problem shown in Table 6. The 

time complexity of the MLE for the logit regression model is O(k
2
N), where k is the number 

of decision parameters, and N is the size of the learning data set. For the Checkpoint 

algorithm, the complexity is O(kNlogN). Using the decision parameters from the financial 

expert (i.e., -20%, 0, -30, 45, 180 days), the logit regression model, and the Checkpoint 

algorithm, the ―Best Buy‖ opportunities in stock and their earnings are shown in Table 7. 

Note that the Checkpoint algorithm considerably outperforms both the financial expert’s 

criteria and the logit regression model. 

Table 6: Optimal Parameters and Maximum Earning (%) from the Learning Data Set
1
 

p1 p2 p3 p4 p5 O(p1,p2,p3,p4,p5) 

-29.02 -20.01 -26.61 49 70 53.37 

Table 7: Investors’ Earning of the S&P 500 Index Fund from the Test Data Set
2
 

Decision Approach Best Buy S&P 500 Index Earning% 

Financial Expert’s Criteria 10/09/08 909.92 1.03 

Logit Regression Model 11/26/08 887.68 3.56 

Checkpoint Algorithm with Financial Expert’s Template 03/10/09 719.6 27.8 

  

3. LEARNING DECISION PARAMETERS AT MULTIPLE TIME POINTS 

For solving the formulations which the utility is determined from the multiple time points, 

a Multi-Event Expert Query Parametric Estimation (ME-EQPE) model is proposed. The 

model assists users finding optimal values of decision parameter vectors that maximize an 

objective function and satisfy their corresponding parametric constraints over historical, 

multivariate time series. In this section, we describe our extension based on the EQPE model 

and Checkpoint algorithm presented in Section 2.1 and 2.2 respectively.  

3.1 Multi-Event Expert Query Parametric Estimation (ME-EQPE) Model 

Now we consider a sequence of   events that we would like to detect. Each event i has  a 

                                                 
1 The learning data set is from 06/01/1997 to 06/30/2005. 
2 The test data set is from 07/01/2005 to 06/30/2009 that is the sell date of the fund with the value of 919.32. 
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vector of real parameters      that will be learned from the training data set of its mutlivariate-

parametric-time-series vector       . After the learning process, the vector of the learned 

parameters      is used to detect the occurrence of the event i.  

Before explaining the new learning algorithm, we first extend a set of mathematical 

notations and a model for the ME-EQPE problem. We still assume that the time domain T is 

represented by the set of natural numbers: T = N. We are also given a set of time sequences 

(                      ), and the learning algorithm generates a set of   vectors of real 

parameters (                   ), where                          
    ∈     and      

            
 ∈     for 1 ≤ i ≤  , ki , ni ∈ Z

+
, ki is the number of parametric time series in 

       for the event i, ni is the number of parameters in      for the event i, and   is the number 

of time points that are corresponding to their events is being monitored.  

 

Definition 8. Parametric Monitoring Constraint: A parametric monitoring constraint 

                 is a symbolic expression in terms of        and     , where        is the i
th

 time 

sequence vector at the time t, and      is the i
th

 decision parameter vector for 1≤ i ≤  .  

 

We assume a constraint Ci written in a language that has the truth-value interpretation 

                      , i.e.,                          if and only if the constraint Ci is 

satisfied at the time point t ∈ T with the vectors, time sequence 

                         
    ∈     and parameter                  

 ∈    . Again we 

focus on a combinational conjunction of inequality constraints:                            ∧

          ∧  ∧    
         

, where op ∈ {≤, =, ≥}.  

 

Definition 9. Time Utility Function: A time utility function U is a function U: T  → R, 

where   is the number of time points. 

 

Definition 10. Objective Function: Given a time utility function U: T  → R and   

parametric constraints (C1, C2, …, C ), an objective function O is a function 

                 , which maps a set of vectors of parameters on               to 

a real value R, defined as follows: For a set of (                ), O(                ) ≝ U(t1, t2, …, 

t ), where U is the utility function, and (t1, t2, …, t ) are the earliest time points that satisfies 

their corresponding parametric constraints, i.e.,  

(1) 0 ≤ t1 < t2 < … < t  

(2)                                                     are satisfied, and  

(3) There does not exist ( ≤   
    

      
 ) such that 

(a)   
 ≤      

 ≤        
 ≤     

(b) for some i = 1, 2, …,  ,   
    , and 

(c)          
                  

                    
         are satisfied. 

 

Definition 11. Multi-Event Expert Query Parametric Estimation (ME-EQPE) Problem: A 

ME-EQPE problem is a tuple <  ,   , C, U>, where    = {                      } is a set of   

vectors of time sequences,                       is a set of   decision parameter vectors, C = 

(C1, C2, …, C ) is a set of   parametric constraints in    and   , and U is a time utility 

function.  

 



10 

Intuitively, a solution to a ME-EQPE problem is an instantiation of values into all the 

parameter vectors,                 , that maximize the objective. 

 

Definition 12. Multi-Event Expert Query Parametric Estimation (ME-EQPE) Solution: A 

solution to the ME-EQPE problem <  ,   , C, U> is argmax O(                ), i.e., the 

estimated values of all the parameter vectors,                 , that maximize O, where O is the 

objective function corresponding to U.  

 

Definition 13. Time Length (TL): TL is the length of the time duration in terms of  the number 

of business days that the events among them may occur.   

 

The base time series, the derived time series, and the decision parameters in our financial 

example, i.e., the ―Best Buy‖ and ―Best Sell‖ opportunities in the investment, are shown in 

Table 8, Table 9, and Table 10 respectively. 

Table 8: Base Time-Series Data 

Base Time Series S Abbreviation 

S&P 500 SP500(t) 

Coppock Guide CG(t) 

Consumer Confidence CC(t) 

ISM Manufacturing Survey ISM(t) 

Negative Leadership Composite ―Distribution‖ NLC(t) 

Negative Leadership Composite ―Selling Vacuum‖ NLCSV(t) 

Table 9: Derived Time-Series Data 

Derived Time Series S Abbreviation 

Percentage decline in SP(t) at the time point t SPD(t) 

Percentage increase in SP(t) at the time point t SPI(t) 

Points drop in CC(t) at the time point t CCD(t) 

Points increase in CC(t) at the time point t CCI(t) 

Number of consecutive days in Bear Market ―DISTRIBUTIOIN‖ of NLC(t) at and before the 

time point t 
NLCD(t) 

Time Utility Earning at the time points t1 and t2, i.e., the index fund is bought at t1 and sold at 

t2 of the learning data set 
Earning(t1, t2) 

Table 10: Decision Parameters 

Parameter Interpretation 

p1 Test if SPD(t) is less than p1 at t1. 

p2 Test if CG(t) is less than p2 at t1. 

p3 Test if CCD(t) is less than p3 at t1. 

p4 Test if ISM(t) is less than p4 at t1. 

p5 Test if NLCD(t) is greater than p5 at t1. 

q1 Test if SPI(t) is greater than or equal to q1 at t2. 

q2 Test if CG(t) is greater than or equal q2 at t2. 

q3 Test if CCI(t) is greater than or equal q3 at t2. 

q4 Test if ISM(t) is greater than or equal q4 at t2. 

q5 Test if NLCSV(t) is greater than q5 at t2. 

 

The constraints C1 and C2 are illustrated as follows: 

  

C1(SPD(t1), CG(t1), CCD(t1), ISM(t1), NLCD(t1), p1, p2, p3, p4, p5)  
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= SPD(t1) < p1 ∧ CG(t1) < p2 ∧ CCD(t1) < p3 ∧ ISM(t1) < p4 ∧ NLCD(t1) > p5 

 

C2(SPI(t2), CG(t2), CCI(t2), ISM(t2), NLCSV(t2), q1, q2, q3, q4, q5)  

= SPI(t2) ≥ q1 ∧ CG(t2) ≥ q2 ∧ CCI(t2) ≥ q3 ∧ ISM(t2) ≥ q4 ∧ NLCSV(t2) > q5 

 

The earning function U(t1, t2) = SP(t2)/ SP(t1) – 1 ∈ R is the utility, which is maximized by 

choosing the optimal value t1 and t2 ∈ T, where SP(t2) and SP(t1) are the sell and buy value of 

the S&P 500 index fund at the time t2 and t1 respectively. The ME-EQPE problem and 

solution for our financial example can be constructed by putting the considered time 

sequence vectors, parameter vectors, constraints, and functions to the definitions shown in 

Table 11. 

Table 11: ME-EQPE Problem and Solution Formulation for the S&P 500 Index Fund 

Problem and Solution 

Problem: 

<  ,   , C, U>, where 

   = {       ,        }, where         = (SPD(t1), CG(t1), CCD(t1), ISM(t1), NLCD(t1)) and  

        = (SPI(t2), CG(t2), CCI(t2), ISM(t2), NLCSV(t2)) 

 

   = {     ,      }, where       = (p1, p2, p3, p4, p5) and      = (q1, q2, q3, q4, q5) 

 

C = {C1, C2}, where C1 = SPD(t1) < p1 ∧ CG(t1) < p2 ∧ CCD(t1) < p3 ∧ ISM(t1) < p4 ∧ NLCD(t1) > p5 and 

C2 = SPI(t2) ≥ q1 ∧ CG(t2) ≥ q2 ∧ CCI(t2) ≥ q3 ∧ ISM(t2) ≥ q4 ∧ NLCSV(t2) > q5 

 

U = SP(t2)/SP(t1) - 1 

 

Solution:  

argmax O(     ,      ) ≝ U(t1, t2) 

 

The values of the optimal decision parameters can be determined by using the learning 

algorithm, M-Checkpoint.  

3.2 Multidimensional M-Checkpoint Algorithms for the ME-EQPE Problem 

The extended version, M-Checkpoint algorithm, which keeps using the KD-tree data 

structure and searching techniques to evaluate whether or not the time point t1 of the first 

event is dominated. The pseudo code of the M-Checkpoint algorithm is: 

 
Input: <  ,   , C, U> 

 

Output: p[i][j] is a two-dimensional array of the optimal parameter vectors that maximize the objective, 

where 1 ≤ i ≤  , 1 ≤ j ≤ ni, and  , ni ∈ Z
+
. 

 

Data Structures:  

1. N is the size of the learning data set. 

2. Tkd is a KD tree that stores the parameter vectors that are not dominated so far for the 1
st
 event. 

3. isDominated[t1] is a boolean array to signal that a time point t1 of the 1
st
 event is dominated, i.e., 

isDominated[t1] := true, by at least one previous time point, or else isDominated[t1] := false. 

4. MaxT[i] is the array of time points that gives the maximal U so far, denoted by MaxU, where 1 ≤ i ≤   

and MaxT[1] < MaxT[2] < …< MaxT[ ]. 
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Initialization: FOR i := 1 TO   DO { 

ti := MaxT[i] := 0; 

} 

 

MaxU := U(0, 0, …, 0) := 0; 

 

TL := 365; // Assume that the event occurrences among them are within 365 business 

days. 

 

Pre-processing:  

 

STEP 1: Tkd :=       ; isDominated[0] = false; 

 

STEP 2: FOR t1 := 1 TO N - 1 DO { 

Non-Dominance Test: Query the Tkd to find if there exists a point ( 1,  2, …,  k) in the Tkd, 

which is in the range      
        

   . 

IF (NOT AND t1 is not dominated) THEN  

Add         to Tkd;  

isDominated[t1] = false; 

ELSE 

isDominated[t1] = true; 

ENDIF 

} 

 

Processing: 

 

STEP 1: FOR (t  := N – 1; t  ≥ 0; t  := t  – 1) DO { 

  FOR (t -1 := t  – 1; t -1 ≥ 0 AND t -1 ≥ t  - TL AND t -1 ⊁ t ; t -1 := t -1 – 1) DO { 

FOR (t -2 := t -1 – 1; t -2 ≥ 0 AND t -2 ≥ t -1 - TL AND t -2 ⊁ t -1; t -2 := t -2 – 1) DO { 

  : 

  : 

FOR (t1 := t2 – 1; t1 ≥ 0 AND t1 ≥ t2 - TL AND t1 ⊁ t2; t1 := t1 – 1) DO { 

IF ((NOT isDominated[t1]) AND U(t1, t2, …, t ) > MaxU) THEN 

MaxU := U(t1, t2, …, t );  

MaxT[1] := t1, MaxT[2] := t2, …, MaxT[ ] := t ; 

ENDIF 

} 

: 

: 

}  

} 

} 

 

STEP 2: FOR i := 1 TO   DO { 

FOR j := 1 TO ni DO { 

p[i][j] :=    
         ; 

} 

} 

 

STEP 3: RETURN p[i][j], where 1 ≤ i ≤   and 1 ≤ j ≤ ni; 

 

Theorem 2: For   sets of N parameter vectors in the data set, the M-Checkpoint algorithm 

correctly computes a ME-EQPE solution, i.e., argmax O(                ), where O is the 

objective function of the ME-EQPE problem, with the complexity O(N ). 
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4. STOCK MARKET EXPERIMENTAL EVALUATION 

The time complexity of the MLE for the logit regression model is O( k
2
N), where   is 

the number of time points, k is the number of decision parameters, and N is the size of the 

learning data set. For the M-Checkpoint algorithm, the complexity is O(N ). Although the 

time complexity of the MLE is more efficient than that of the M-Checkpoint algorihtm, the 

M-Checkpoint algorithm generates the vectors of optimal learned parameters that maximize 

the earning from the training data set for this financial problem shown in Table 12. Using the 

M-Checkpoint algorithm, we can use the optimal decision parameters for detecting both 

investment events, the ―Best Buy‖ and ―Best Sell‖ opportunities on the S&P 500 Index Fund. 

Using the logit regression model and the M-Checkpoint algorithm, the ―Best Buy‖ and ―Best 

Sell‖ opportunities in this investment and their earnings are shown in Table 13. Note that the 

M-Checkpoint algorithm considerably outperforms the logit regression model. 

Table 12: Optimal Parameters and Maximum Earning (%) from the Learning Data Set
3
 

p1 p2 p3 p4 p5 

O(     ,      )  

= 55.70% 

-15.34 19.70 -16.89 48.70 79 

q1 q2 q3 q4 q5 

0.09 16.24 -4.60 54.9 0 

Table 13: Investors’ Earning of the S&P 500 Index Fund from the Test Data Set
4
 

Decision Approach Best Buy S&P 500 Index Best Sell S&P 500 Index Earning% 

Logit Regression Model 10/14/08 998.01 09/03/09 1003.24 0.52% 

M-Checkpoint Algorithm with 

Financial Expert’s Template 
10/31/08 968.75 09/07/10 1091.84 12.71% 

* Note that the financial experts do not provide the decision parameters that can be used to determine the ―Best 

Buy‖ and ―Best Sell‖ opportunity in the sequence of occurrence. 

 

5. CONCLUSIONS AND FUTURE WORK 

To the best of our knowledge, this is the first paper to propose a multidimentional time-

point model and algorithm to solve the ME-EQPE problems over multivariate time series. 

The new extensions, ME-EQPE model and M-Checkpoint algorithm, provide the 

contributions that 1) combine the strengths of both domain-knowledge-based and formal-

learning-based approaches to learn the optimal decision parameters; 2) solve the decision 

optimization problems to maximize the utility from multiple decision time points; 3) maintain 

an optimality of the learned multiple sets of decision parameters in their respective events 

during the computations; and 4) guarantee a remarkably forecasting result by using the 

learned multiple sets of decision parameters. However, there are still many open research 

questions, for example, what other methodologies, such as heuristic and decomposition, 

would be able to solve the same problems at a low time complexity, and whether those 

approaches could present a reasonably forecasting results. 
 

 

 

                                                 
3 The learning data set is from 06/01/1997 to 01/31/2004. 
4 The test data set is from 02/01/2004 to 03/31/2011. 
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