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Abstract

Roughly speaking, there is one main model of pattern recognition support vector
machine, with several variants of lower popularity. On the contrary, among the dif-
ferent multi-class support vector machines which can be found in literature, none is
clearly favoured. On the one hand, they exhibit distinct statistical properties. On
the other hand, multiple comparative studies between multi-class support vector ma-
chines and decomposition methods have highlighted the fact that in practice, each
model has its advantages and drawbacks. In this article, we introduce a generic model
of multi-class support vector machine. It provides the first unifying definition of all
the machines of this kind published so far. This contribution makes it possible to
devise new machines meeting specific requirements as well as to analyse globally the

statistical properties of the multi-class support vector machines.

1 Introduction

Among all the statistical models developed for pattern recognition, a great many are based
on a principle that does not change fundamentally with the number of categories. Basically,
they make no difference between dichotomies and polytomies. Things are more complex
in the case of the support vector machines (SVMs). Initially, Cortes and Vapnik (1995)
devised a class of machines dedicated to the computation of dichotomies. Since then, the
attention of the community has focused almost exclusively on one element of this class:
the 1-norm SVM. Although variants exist that exhibit appealing properties, such as the
2-norm SVM (Cortes and Vapnik, 1995) or the least squares SVM (LS-SVM) (Suykens and
Vandewalle, 1999) their use has remained marginal so far. The first studies dealing with
the use of SVMs for multi-category classification, performed by Scholkopf et al. (1995);
Vapnik (1995), report results obtained with decomposition methods involving the 1-norm
SVM. Multi-class support vector machines (M-SVMs) were only introduced three years
later by Weston and Watkins (1998).

During the last decade, many M-SVMs and decomposition methods involving bi-class
SVMs have been introduced and evaluated (see Guermeur, 2007a; Liu, 2007, for a survey).
Currently, the attention of the community is focused on four main models of M-SV Ms:
the model of Weston and Watkins (1998), the one of Crammer and Singer (2001), the
one of Lee et al. (2004), and the M-SVM? (Guermeur and Monfrini, 2011). Although
they operate on the same class of functions and their learning problems all extend in a

straightforward way the one of bi-class SVMs (precisely the 1-norm and the 2-norm ones),



they exhibit distinct properties. In recent years, several comparative studies between
M-SVMs and decomposition methods have been published (see for instance Guermeur,
2002; Hsu and Lin, 2002). In short, they establish that in practice, no model is uniformly
superior or inferior to the others with respect to the standard criteria: prediction accuracy,
sparsity, computational complexity, etc. The behaviours observed are different, which is
in accordance with what was predicted by the theory.

This article introduces a generic model of M-SVM. To the best of our knowledge, this
model provides the first unifying definition of all the machines of this kind published so far.
It is based on the concept of reproducing kernel Hilbert space of vector-valued functions
and locates the M-SVMs in the framework of Tikhonov’s regularization theory (Tikhonov
and Arsenin, 1977). Our unifying definition makes it possible to devise new machines
meeting specific requirements as well as to study globally the statistical properties of the
M-SVMs. The first option is illustrated with an investigation of a new class of M-SVMs
of particular interest from the point of view of model selection: the class of quadratic loss
M-SV Ms.

The organization of the paper is as follows. Section 2 introduces the new generic
model of M-SVM. The four main M-SVMs are then presented as instances of this model.
Section 3 is devoted to the study of the subclass of quadratic loss M-SVMs. At last, we

draw conclusions and outline our ongoing research in Section 4.

2 Generic model of multi-class support vector machine

We are interested here in (Q-category pattern recognition problems with 3 < @ < +oo.
Each object is represented by its description x € & and the set ) of the categories y can be
identified with the set of indices of the categories, i.e., the set of the integers ranging from
1 to @, hereafter denoted by [1,Q]. The assignment of the descriptions to the categories
is performed by means of a classifier, i.e., a function on X taking values in R¥. For such
a function g, the corresponding decision rule d4 is defined as follows:

if Jk €[1,Q]: gx(z) > max x), then d,(x) =k
o [1,Q]: gr(z) 1k 91 () q(2) W

else dgy(z) = *

where * denotes a dummy category introduced to deal with the cases of ex squo. Like
all the SVMs, the M-SVMs belong to the class of kernel machines (Schélkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004), which implies that the family of classifiers on



which they operate is induced by a positive type function/kernel (Berlinet and Thomas-
Agnan, 2004). In what follows, s designates a real-valued kernel on X2 and (Hm (-, >H~)
the corresponding reproducing kernel Hilbert space (RKHS) (Berlinet and Thomas-Agnan,
2004). For all z in X, Kk, is the element of H, such that for all 2’/ in X, K, (') = & (z,2').
For a given pair (@, k), it appears that all the M-SVMs published so far operate on the
same class of functions, hereafter denoted by M. (or simply #). Our generic model

shares this property.

2.1 Definition

Since the Q-category M-SVMs all operate on the same class of R%-valued functions in-
duced by a kernel, it appears appropriate to base a unifying definition of these machines
on an extended definition of the RKHSs dedicated to the case of vector-valued functions.
The main benefit of this choice is to highlight the fact that Tikhonov’s regularization the-
ory provides a natural theoretical framework for their study. This is all the more useful
as the geometrical concept at the basis of the bi-class SVMs, the maximum margin hy-
perplane (Vapnik, 1982), does not extend nicely to the multi-class case (see for instance
Section 2.4.1 in Guermeur, 2007a). The literature provides us with several suitable exten-
sions of the concept of RKHS (see for instance Micchelli and Pontil, 2005). We adopt the
one introduced by Wahba (1992).

Definition 1 (RKHS of R%?-valued functions, after Section 6 in Wahba, 1992) Let
% be a real-valued positive type function on (X x[1,Q])*. For each (z,k) in X x[1,Q],
let us define the R9-valued function F@;Qk) on X by the formula

R () = 7 (2.5) . (5 10)1crcq - 2)

The RKHS of R9-valued functions (Hk(@, (-, ->H~(Q>> consists of the linear manifold of
all finite linear combinations of functions of the form (2) as (x,k) varies in X x [1,Q],
and its closure with respect to the inner product
Y (z,2') € X2,V (k,1) €[1,QT, <g§2,gi‘;{}>H — 7 ((z, k), (2/,1)) .
#(Q)

We can now define the RKHS of R9-valued functions at the basis of the Q-category
M-SVMs as follows.



Definition 2 (RKHS H, ) Let k be a real-valued positive type function on X2. Using
the notations of Definition 1, the RKHS of R¥-valued functions at the basis of a Q-
category M-SVM whose kernel is k, (H,@Q, (-, '>HHQ>’ is the RKHS (HR(Q), (-, -)H_<Q))

corresponding to the following choice for the kernel k:
N (x,:v') e X2 vkl e [[1,@]]2 , R ((:c,k) , (x',l)) = 0k (:c,:v')
where § is the Kronecker symbol.

The function & involved in Definition 2 actually meets the hypotheses of Definition 1 (&
is a kernel on (X x[1, QH)Z) since it is the tensor product of a kernel on X2 and a kernel
on[1, Q]]2 (see for instance Proposition 13.6 in Scholkopf and Smola, 2002). By reasoning
on adequately designed Cauchy sequences, one can easily establish that the definition of

H,. ¢ can be reformulated simply as a function of H,.

Proposition 1 (Alternative characterization of H, g) Let £ be a real-valued posi-
tive type function on X2 and let (HK, (-, >Hr€) be the corresponding RKHS. Then, H,, g =
Hg Furthermore, the inner product of H, o can be expressed as a function of the inner

product of Hy, as follows:

V(b R) €M g = (M) e B = () g (Pl ), o = D (s B,
k=1

Q
Definition 3 (Class of functions H, g) Let k be a real-valued positive type function
on X% and let H, g be the RKHS of RC-valued functions derived from r according to
Definition 2. Let {1} be the one-dimensional space of real-valued constant functions on X.

The class of functions at the basis of a Q-category M-SVM whose kernel is k is
Mo =Heg @ {1}9 = H, @ {1})?.

The functions in H, ¢ can also be seen as multivariate affine functions on H,. Indeed,
due to the reproducing property,

Vh € Hig, Yo € X, h(@) = k() +b= (R mr)y + bk)1<k<Q ,

where the function h = (hy) is an element of HY and b = (Ok)1<keq € R?. Note

1<k<Q
that it is also possible to endow the vector space H, o with a structure of RKHS (of
vector-valued functions). However, this is useless in the context of this study, since the

norm of interest is the one on H, g. Let m € N*. For a given sequence of examples
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dim = (i, Y1) 1<icm I (X X [1,Q])™, we denote RP™ (d,,) the subset of R®™ made up

of the vectors v = ()1 <<y, satisfying:

(U(ifl)Q+yi)1<i<m = O (3)

Similarly, Rgm (dm) = RO™ (d,,) N Rgm. Furthermore, for the sake of simplicity, the

components of the vectors of R9™ (d,,) are written with two indices, i.e., vy in place of

V(i—1)Q+k> for i in[1,mJand kin[1,Q]. Asa consequence, (3) simplifies into (viy,);<;c,, =

Or,. For n in N*, let M,, ,, (R) be the algebra of n x n matrices over R. Let Mg, gm (dm)

be the subset of Mqm,gm (R) made up of the matrices M = (muu )<y < Satistying:
vjellml, (mig ey, ) = 0gm.

1<t<Qm
Once more for the sake of simplicity, the components of the matrices of Mgy, om (dm) are
written with four indices, i.e., m; j; in place of m;_1)g1k,j—1)Q+1, for (i,7) in[1, m]? and
(k,0) in [1, Q]]Q. With these definitions, propositions, and notations at hand, the generic
model of M-SVM that we propose is defined as follows.

Definition 4 (New generic model of M-SVM) Let X be a non empty set and Q €
N\ [0,2]. Let x be a real-valued positive type function on X?. Let Hy g and Hy g be the
two classes of functions induced by k according to Definitions 2 and 3. Let Py, , be the or-
thogonal projection operator from H, g onto Hy . Form € N*, let dp, = (%4, ¥i)) 1 <icm €
(X x[1,Q])™ and & € Re™ (d,,,). A Q-category M-SVM with kernel r and training set d,,
1s a large margin discriminant model trained by solving a conver quadratic programming

problem of the form

Problem 1 (Learning problem of an M-SVM, primal formulation)

rﬂ}éﬂ{HMng + A HPHN-,QhHiIN,Q}

Vie[l,m], Yk €[1,Q)\ {vi}, Kihy (zi) — hp(xi) > Ko — &g
Vi€ [Lm], (k1) € (LQI\ {y:})*, K (& — &) =0

Vi e[Lm], k€ [LQI\ {yi}, (2—p)&a >0

(1= K1) Y i =0

where X € R, M € M@Qm.om (dm) is a matriz of rank (Q —1)m, p € {1,2}, (K1, K3) €
{0, 1}2, and Ko € R If p=1, then M is a diagonal matriz.

s.t.




Definition 5 (Hard and soft margin M-SVM) If an M-SVM is trained subject to the
constraint that the value of the data fit functional of its objective function is null, i.e.,

§ = 0gm, it is called a hard margin M-SVM. Otherwise, it is called a soft margin M-SVM.

2.2 Motivations of the new definition

So far, there was basically one single unifying definition of the M-SVMs, which had been
introduced independently, with minor differences, by several researchers (see for instance
Zou et al., 2006; Guermeur, 2007b). Using the notations of this article, it can be formulated

as follows:

Definition 6 (Standard definition of an M-SVM) Let X be a non empty set and
Q € N\[0,2]. Let x be a real-valued positive type function on X? and H, g = (H, @ {1H<.
For m € N*, let dm = (%, ¥i))1<icm € (X X [1, Q™. A Q-category M-SVM with kernel
Kk and training set d,, is a large margin discriminant model trained by solving a convex

programming problem of the form

Problem 2 (Learning problem of an M-SVM, primal formulation)

m Q
hg{i?@ {ZfM_SVM(yi, h(x;)) + AZ HthiIH}

i=1 k=1

where Lyr.gva 18 a conver loss function.

Definition 4 has been introduced to encompass models that do not fit in Definition 6. In
what follows, we call quadratic loss M-SV Ms the M-SVMs for which p = 2. The instances
of our generic model whose learning problems cannot be reformulated as instances of
Problem 2 are the quadratic loss M-SVMs for which M is not diagonal. When a machine
of this kind is considered, solving Problem 1 for a given function h in H, ¢ (feasible but not
necessarily optimal), still amounts to solving a convex quadratic programming problem in
£. On the contrary, one can easily check that when p = 1, or p = 2 and M is diagonal, there
is an analytical expression of the optimal value of £ as a function of h for any feasible h,
which implies that Problem 1 can be reformulated as an instance of Problem 2. Switching
from the standard definition to our generic model could be justified by the sole fact that our
generic model covers all the M-SVMs published so far, including the M-SVM?, precisely
a quadratic loss M-SVM for which M is not diagonal (see Section 2.4). Furthermore, we



will see in Section 3 that the class of quadratic loss M-SVMs includes other models with
appealing properties.

The first set of constraints of Problem 1 corresponds to the constraints of good classi-
fication. They are derived from the expression of the decision rule given by (1) and make
use, in the case when K7 = 0, of the sum-to-0 constraint Zgzl hir = 0. In Guermeur
(2002), we highlighted this equality constraint, which had remained implicit previously.
This allowed us to establish that most of the M-SVMs that had been published at that
time were simply alternate formulations of the model of Weston and Watkins. It has
multiple consequences, among which the fact that the 1-norm SVM and the 2-norm SVM
are embedded in both multi-class extensions. Indeed, the equation of the separating hy-
perplane of a bi-class SVM, h(x) +b = 0, with » € H, and b € R, can be rewritten as
follows:

iL(CL‘) +b= Bl(.’L‘) — EQ(.Z') +by—by=2 (711(1‘) + bl) =0,

with hy = —hy = %B and by = —by = %b. If the constraint 28:1 hy = 0 is introduced
explicitly only in the case when K; = 0, it is for the sake of parsimony. Indeed, it is
satisfied in all cases (irrespective of the value of K), as will be established in Section 2.3.
As usual, slack variables are introduced to relax the constraints of good classification, and
make it possible to tolerate some misclassifications. Given the definition of the decision
rule associated with a classifier, a description x; is correctly classified by A if and only if
the @ — 1 differences hy, (x;) — hy(x;) for k # y; are positive. This can be accounted for
by using either () — 1 slack variables &;; or only one slack variable &; per training example.
The second set of constraints implements the second option (for K3 = 1). As in the
bi-class case, the constraints of nonnegativity of the slack variables are only introduced
in the case when p = 1 (the data fit term in the objective function is then linear in the
slack variables). This choice is discussed in Section 3.4. The other term of the objective
function, the penalizer HPHN,QhH;mQ = Hl_LH;&Q = Zi):l HEkHiIK’ appears as a direct
extension of its bi-class counterpart thanks to the introduction of the RKHS H, . All
in all, the specificity of Definition 4 compared to the bi-class one rests in the presence of
the matrix M. Its role differs as a function of the value of the parameter p. If p = 1,
then the diagonal terms m;y, ;. define different “misclassification costs” for each training
example. The introduction of these additional degrees of freedom provides us with a
multi-class extension of the scheme introduced by Veropoulos et al. (1999) for adjusting
the sensitivity and specificity of the 1-norm SVM and the 2-norm SVM. This extension
subsumes the one introduced by Lee et al. (2004). The role played by the matrix M when



p = 2 will be highlighted in Section 3. In the sequel, for the sake of simplicity, when no
confusion is possible, # and H will be used respectively in place of He, and Hy g.

2.3 Wolfe dual of Problem 1

The theory of RKHSs ensures that the minimizer of Problem 1 lies in a finite dimensional
space, even when H, is an infinite dimensional vector space. The simplest way to make use
of this essential property consists in solving Problem 1 through its Wolfe dual. Applying
the Lagrangian duality here raises no difficulty precisely because Hy is a Hilbert space. It
can be identified with its topological dual so that the constraint 23:1 hi = 0 can be split
into two constraints, namely ZkQ:l hi, = 0 and Zgzl b = 0, associated with Lagrange
multipliers respectively belonging to H,, (or its topological dual) and R. The precise set of
hypotheses that enables us to derive the dual of Problem 1 the way we do in this section
can be found in Chapter 3 of Bonnans (2006).

Without loss of generality, in the case when p = 1, we can assume that the diago-
nal elements of matrix M are nonnegative, i.e., (Mik,ik)<jcmi<recq € Rgm (dm). Once
more for notational simplicity, in the case when K3 = 1, the vector of slack variables is
written £ = (51- (1 =0y, %), <k <Q>1<i<m and the constraints of Problem 1 are adapted in
consequence. Let & = (Qik)1<icm1<k<q € Rgm (dm,) be the vector of Lagrange multipliers
associated with the constraints of good classification. Let § be the vector of Lagrange mul-
tipliers associated with the constraints of nonnegativity of the slack variables. If K3 = 0,
then 8 = (Bik)1<icm1<k<q € Rgm (dm), otherwise 8 = (8i),<;jc,, € RT. v € Hyand 0 € R
are the Lagrange multipliers respectively associated with the constraints Egzl hi, = 0 and
Zgzl br = 0. With these notations at hand, the Lagrangian function of Problem 1 is given
by:

L(h7£7a757’775):
IMEE + M PrhlF =Y > awm {B by, (@) — by (i) — Ko + Ka& + (1 - K3) &}
i=1 ky;
m Q Q
—(2-p)> A E3Bi&+ (1—K3) > Badir p—(1— K1) <%th> ~(1-K1)6) b
i=1 ktys k=1 /g, k=1

By application of the reproducing property,

Vk € [17 Q]]a vﬁkL (haga Oé,ﬁ,’}/, 5) = 2)‘Bk_[(l Z Zail’ﬁxi"i' Z aik“zi_(l - Kl) -
{iryi=k} I#k {i:yi#k}



Thus, at the optimum,
VEe[1,Q], (1-K)y" =20h;— K1 > Y ajkia, + > Qlkia,. (4)
{izyi=k} £k (i 2k}

Summing over the index k gives:

(- K z TEELD ol SPYIN

i=1 ksy;
A direct consequence of this equation is that even when K7 =1,
Q —
hy = 0.
k=1

By substitution into (4), we get

Vk € [LQ]]» Blt - i}\ Z Zazl’%wl 1 - Kl Z Zazlﬁwl - Z a;(k’%wi

{Z yi=k} l#k i=1 l£y; {iyi#k}

1 & 1
—)\ Z Z {Kl(syi,k + (1 - Kl) @ - 5k,l} O‘;(l'%xi‘

Taking into account the fact that (auy,) = Oy, this simplifies into

1<i<m
_ 1 & Q
vk e[1,Q], h %;;{Kléy“k“‘( Kl)Q—5k1} g, - (5)
8
Vke[[l Q]] (h 57 5777 Z Za1l+ Z Al — 1—K1)5
{lyz k} I#k {i:ys#k}

Thus, at the optimum,

VEe[LQl, (1-K)o" =—K1 > > ap+ Y aj (6)

{z yi=k} I#k {i:yi £k}

A summation over the index k gives:

By substitution into (6), taking once more into account the fact that (auy,);<;c,, = Oms

we get

vk e[1,Q], ZZ{K@ZH 1—K1)22—5,§,} = 0. (7)



To compute the gradient of the Lagrangian function with respect to vector &, we distinguish
the four cases corresponding to the possible values of (K3, p).

*(K3=0)A(p=1)

i€ [Lm], vk ILQIN (i}, oL (h&,,57.8) = mine — e — B
As a consequence, we get
Vie[l,m], vk €[1,Q)\{yi}, oip + Bix = Mk (8)
o (K3=0)A(p=2)
i€ [Lm], ¥k € [LQIN (), 5oL (16.0,5,7,0) =2 (MTME),, - .
Thus,
i € [Lm], Wk € [LQI\ fu}, 2(MTME),, = o )

Note that since M € Mgm om (dm), we also have
vie[l,m], (MTME), =0,

so that (9) can be extended to:
oMT M = o, (10)

0
ViE[[lvm]]v 7L(h 5’ ﬁary’é)zzmzk,zk_zalk_ﬁl

%; kyi kyi
As a consequence,
Vie]| Z azk + 67 = Z Mk ik- (11)
k#y; k#y;
*(K3=1)A(p=2)
Vi e[1,m] 0 L(h&a,B,7,0)=2> (MTME), — > o
) ) agl 7 b ) (2
k#y; k#y;
Thus,
Vie[l,m], 2> (MTM¢), =) o (12)
k#y; k#yi

10



At the optimum, the terms of the Lagrangian function involving vector b vanish, i.e.,

=20 > e {Kiby, b} =0, (13)

i=1 kty;

Indeed,

m Q
“SOS i vk =Y -k Y San+ S

i=1 k#y; k=1 {iryi=k} I#k {izyi#k}

and due to (6), the right-hand side of this equation can be rewritten as follows:

Q Q
Shd g Y Yait Y ail -y n0-K)r -0
k=1 {iwyi=k} l#k {i:yi#k} k=1
By application of (5),
A [gh* |3 =
m Q

Q m Q
1 1 1
o D3NN {Kléyi,k +(1—Ky) g 5k,l} {Klayj,k +(1—Ky) g 5k,n} K (21, 5) afo,.

k=1 i=1 j=1 I=1 n=1

Since

Q
1 1

> {Kléyi,k +(1 - Ky) g 5k,l} {Klayj,k + (1 - Ky) g 5,m} =

k=1

1
_Kléyj,l — (1 — Kl) — +5ln =

1 1
K10y, y; = K1y + (1 = K1) 5 = (1= K1) & gt

Q Q

1
Ky (5yi7yj - 63/1‘7" - 5yj,l) - (1 - Kl) é + 5l,m

the expression of the penalizer at the optimum simplifies into

A Prh*|l3; =

m Q
1 1 . x
I Z Z Z Z {Kl (6%’7?]]’ — 0y,1 — 5yj,k) - (1-Ky) 6 + 5/4,1} K (i, ) Qg (14)

i=1 j=1 k=1 I=1

Making use of the reproducing property, one obtains

505 o (K o) — o)} = z<hk,m S a3 >H

i=1 ky; {izyi=k} I#k {i:yi#k}

K

By application of (4), we get

Q
Z > ag Kk (i) = Bip(aa) } = > (hi, 2005, — (1= K1) 7" )y
k=1

i=1 k#y;

11



Q
=2\ || Pgh3; — <(1 - K1) Zh}’;m*> :
H,

k=1
Since (1 — K1) EQ h; = 0 according to the constraints of Problem 1 (we have even

established a stronger result, namely Zgzl h; = 0), this simplifies into

>0 > ai {Kihy, (x:) = hi(xi)} = 2 | Prh* |15 - (15)

i=1 kty;

Let H € M@gm,gm (R) be the matrix of general term:

YV (i, 5,k 1) €[l,m]x[1,m]x[1,Q] x[1,Q],

1
hik,jl = {Kl (6yi,yj — 6yi,l — 6y]-,k) — (1 — Kl) é =+ (51@1} H,(ﬂfi,SCj). (16)
Combining (14), (15), and (16) gives:
* - * 7% 7% 1 *
MPsh 5, =Y D e { Kby, (1) = hi(a) } = = 0" Ha' (17)
i=1 k#y;

Let 1¢y, be the vector of R9™ whose components are all equal to 1. Given (13) and (17),

at the optimum,

L (h*, €, a*, 85, 7%, 6%) = —ﬁa*THa* + Ky15, o + (€7,

with
J (&) = [|IME|p—- Z > an K + (1K) g} —(2-p) > S KsBiéy + (1 - Ks) Y Biéin
i=1 k#y; =1 k#y;

Thus, to obtain the expression of the dual objective function, it remains to express J (£*)
as a function of a*. To that end, we distinguish the cases p =1 and p = 2.

op=1

=3 maa K& + (1= Ka) &5} =D D af {8 + (1 - K3) )

i=1 ktyi i=1 ktyi

_ Z K3B:er + (1 — K3) Z Bik&in
=1

k#y;

= K3 Z Z Mk ik — Z Oz:k — 5: 1 - K3 Z Z {mzk ik ™ 1k}€zk

i=1 \ k#y; k#yi i=1 k#y;

12



Reporting (8) and (11) in the right-hand side of this equation gives:
J(€) =0.

op=2

m
J(€)=€TMIME =) ) aj {Ksg) + (1 K3) €}
i=1 ktyi
Here, we distinguish once more the cases K3 =0 and K3 = 1.

«(p=2) A (K3 = 0)

Let N = MTM. By definition of M, the rows and columns of N whose indices are
those of dummy slack variables are equal to the null vector. Let N € Mo-1)m,(@-1ym (R)
be the submatrix of NV obtained by suppressing these rows and columns. Once more by
definition of M, N is regular. Let N(=1 ¢ M@gm,om (R) be the matrix deduced from
N~! by “adding” to N~! the aforementioned rows and columns of zeros. Given (10), by
construction,

£ = %N(_l)a*. (18)
Thus,

* * * * * 1 * * * * 1 * — *
J(E) =T MTMe* — ¢ = Ja Tex _ o#Te ~—a TN (D>,

e(p=2)A(Kz=1)
Let a = (Zk#y, aik> and € = (&);<;c,,- The vectors G* and & are deduced

from & and € by replacing a;; with o, and & with &. Then,

where M = (Mikj)1<i jemi<heg € M@mm (R) is the matrix deduced from M as follows:

Q
V(i 4. k) €[1,m]x [Lm]x[1,Q], ;= mikj.
=1

Furthermore, (12) can be rewritten as follows:

13



Putting things together, we get the following expression for the objective function of the
Wolfe dual of Problem 1:

Invsvmd (@) =

% {aT (iH +(1-K3)(p—1) N<—1>> a+Ksz(p—1) dTN‘ld} + Kol,on (19)

In the case when p = 1, the inequality constraints are deduced from (8) and (11), as a

function of the value of K3. In the case when p = 2, we get simply
Vi e [[lvm]]v Vk € [[LQ]]\ {yz} , i = 0.

The equality constraints are deduced from (7). Note that we can take benefit from the
fact that

m

Q
Z ZZ {Kl‘syi,k + (1 - K1) 22 - 5k,z} a; =0

k=11i=1 [=1

and
S i Y {Kl%,k +(1-Ki)g - 51:,1} oy =0

vkell,Q-1], ¥ Y2, {Kl5yi,k +(1-K1)g— 5k,z} o =0

to reduce their number to @) — 1. Thus, the Wolfe dual of Problem 1 is:
Problem 3 (Learning problem of a soft margin M-SVM, dual formulation)

max Jm-svi,d (o)

Vie[l,m], Vk € [1,Q]\ {vi}, 0< (1 —K3)(2—p)air < (2—p) miik
Vie[l,m], 0<Ks(2—p)> sy, dik < (2= D) Xjry, Mikik
vie[l,m], vk €[1,QN\{vi}, (p—1)air >0

vke[1,Q-1], ¥, X2, {K15yi,k+(1—K1)$—5k,l}au=0

where Jyrgvu,d (@) is given by (19).

s.t.

With slight modifications, the derivation above can be adapted to express the Wolfe dual

of the learning problem of a hard margin machine. We then get:

Problem 4 (Learning problem of a hard margin M-SVM, dual formulation)
max —iaTHa—i-Kle o
a 40 Qm
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" VZE[[l,m]],VkE[[l,Q]]\{yz}, azk>0
S.T.

vk E[1,Q 1], Sy SR {Kidy + (1= K1) & — ki f o =0

The value of b* = (b;) is deduced from the Karush-Kuhn-Tucker (KKT) com-

1<k<Q
plementary conditions. In the case when K; = 0, the values of the components of this
vector are obtained individually, and it suffices to check that they do satisfy the sum-to-0
constraint 151)* = 0. In the case when K; = 1, the KKT complementary conditions only
provide us with values for the differences between the values of the components. This
means that these latter values are only known up to an additive constant. This additional
degree of freedom can be used to enforce the constraint 161)* = 0. This completes the

discussion on the reason why the constraint Egzl hi = 0 appears in Problem 1 only for

K =0.

2.4 Characterization of the four main M-SVMs

In chronological order, the first M-SVM is the one of Weston and Watkins (1998). As was
pointed out in Section 2.2, it was independently introduced by other researchers under
various forms (see for instance Vapnik, 1998; Bredensteiner and Bennett, 1999). If we
reformulate its learning problem as an instance of Problem 2, then the corresponding loss
function fww is given by:
tvw (y, h(@)) =Y (1= hy(x) + hi(@))
k#y
where (+)4 denotes the troncate function max(0, -). The second M-SVM is due to Crammer

and Singer (2001). It is based on the class of functions H, i.e., it satisfies the additional

restriction (bk)lékéQ = 0g. The expression of its loss function /¢g is:

los(y, h(x)) = <1 — hy(z) + max ﬁk(w)> :
Y +

The machine of Lee et al. (2004) corresponds to the loss function ¢y given by:

1
14 shix)) = hip(x) + —— | .
L (9. h(@)) %(k<>+Q_1)+

At last, the most recent model is the M-SVM? (Guermeur and Monfrini, 2011). Contrary
to the three former models, its definition cannot be based on a specification of Problem 2
(see Section 2.2). It springs from a specification of Problem 1. Precisely, it is the M-

T
SVM corresponding to p = 2 and (Ki), ;5 = (O, ﬁ,O) , with the matrix M being
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instantiated by the matrix M® of general term:

\/Q_1>5,.
Q-1)""

mfi)ﬂ =(1- 5yi7k) (1 - 5yj,l) <5k7l +
Let N = M@ @) Its general term is:
m = (1= 8yk) (1= 8,,0) (G + 1) Gy (20)
Let Igm (dy,) designate the diagonal matrix of Mg, om (dm) given by:

Igm (dm) = (8;,50k, (1 — 5yi,k))1gi7jgmy1gk7ng .

In order to characterize the four main M-SVMs as instances of our generic model of M-
SVM, we express the primal formulation of their learning problems as a specification of

Problem 1. The corresponding values of the hyperparameters are reported in Table 1.

M-SVM M p| Ki| Ko | K3
WW-M-SVM | Ign(dyn) |1] 1 | 1 | 0
CS-M-SVM | olqlgm (dn) [ 1] 1 1 1
LIW-M-SVM | Igm(dm) |1] 0 | g5 | O
M-SVM? M®) 210 | g5 0

Table 1: Specifications of the four main M-SVMs. The first three machines are the ones of
Weston and Watkins (WW), Crammer and Singer (CS), and Lee, Lin, and Wahba (LLW).

As mentioned in introduction, those machines exhibit distinct properties. The M-SVM
of Crammer and Singer can be programmed more efficiently than the model of Weston
and Watkins (Crammer and Singer, 2001; Aiolli and Sperduti, 2002). This springs from
the fact that the class of functions that it uses is H (instead of H). As a consequence, the
Wolfe dual of its learning problem involves no equality constraint, which implies that it
can be decomposed into multiple small optimization problems. This statement must be
specified. The standard formulation of the aforementioned dual problem actually contains

the following equality constraints:

Q
Viel[lm], Y =Y miri
k=1

k#yi
They are derived from (11), by setting for all ¢ in [ 1, m], oy, = B;. However, as in the case

of all the other M-SV Ms, there is no reason why the multipliers ensuring the nonnegativity
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of the slack variables should appear in the dual problem. Thus, (11) precisely generates
inequality constraints, as stated in Section 2.3. By getting rid of the (true) equality
constraints of Problem 3, it is possible to devise iterative training algorithms such that
at each step, the optimization is performed with respect to the dual variables associated
with one single training example. The speed-up is obtained at the expense of the use of a
model of lower capacity, since the margin Natarajan dimension (Guermeur, 2007b) of H
is inferior to the margin Natarajan dimension of H. The M-SVM of Lee, Lin and Wahba
was the first multi-class machine implementing asymptotically the Bayes decision rule. Its
loss function is Fisher consistent (Zhang, 2004; Liu, 2007; Tewari and Bartlett, 2007). The
main property of the M-SVM? is discussed in the next section. MSVMpack (Lauer and

Guermeur, 2011) provides a unifying implementation of all four machines.

3 Quadratic loss multi-class support vector machines

The 2-norm SVM is the instance of Vapnik’s model of SVM obtained by setting the data
fit term of the objective function of the primal formulation of the learning problem equal
to the square of the 5 norm of the vector of slack variables. Its main advantage is that
the dual formulation of its learning problem can be expressed as the dual formulation of
the learning problem of a hard margin machine using a different kernel. Thus, its leave-
one-out cross-validation error can be upper bounded thanks to the radius-margin bound
(Vapnik, 1998). Unfortunately, a naive extension of the 2-norm SVM to the multi-class
case, resulting from substituting in the objective function of either of the three main M-
SVMs for which p = 1 the empirical term with [|£||3, does not preserve this property.
Section 2.4.1.4 of Guermeur (2007a) gives detailed explanations about that point. The
strategy that we advocate to exhibit interesting multi-class extensions of the 2-norm SVM
consists in studying the class of M-SVMs which motivated the introduction of our generic
model, i.e., the class of quadratic loss M-SVMs (for which p = 2). In this section, we
focus on three subclasses made up of the quadratic loss extensions of the three main M-
SVMs for which p = 1. We establish whether or not these subclasses include a machine
sharing the main property of the 2-norm SVM. The corresponding proofs are based on an
alternate definition of the Hessian matrix H. It must be borne in mind that since this
matrix appears in the formulas only through the quadratic form a” Ho and a € Rgm (dm),
its rows and columns corresponding to dummy variables can be set arbitrarily. Formula

(16) corresponds to the simplest (most compact) expression. In the sequel, we use instead
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the sparsest option:
V (i, 4, k1) € [1,m] x[1,m] x[1,Q] x[1,Q],

1
hikji = (1 = by, k) (1 - 5yj7l) {Kl (5yi7yj — Oy, 0 — 5yjak) - (1 - K1) Q + 5’671} K(Ti, T,
which is more appropriate from a computational point of view. At last, the vectors and

matrices considered are those introduced in Section 2.

3.1 The M-SVM? as a quadratic loss extension of the LLW-M-SVM

The M-SVM? was precisely designed to meet the requirement discussed above. The cor-

responding property can be formulated as follows.

Proposition 2 The dual formulation of the learning problem of the M-SVM? is identical
to the dual formulation of the learning problem of a hard margin LLW-M-SVM (using a
different kernel).

To keep the article self-contained, we give the sketch of the proof of this proposition (details
are given by Guermeur and Monfrini, 2011).

Proof The specification of Problem 4 corresponding to the hard margin LLW-M-SVM is:

Problem 5 (Learning problem of a hard margin LLW-M-SVM, dual formulation)
1 1
max {—MaTHa + Qllgma}
Vi e [[Lm]]v Vk € [[LQ]]\ {yl}a ajr = 0
Vk € [[I,Q — 1]], Zgl ZlQ:l (é — (Sk,l> oG = 0

with the general term of the Hessian matriz H being

s.t.

1
hik,jl = (1 — 5yi,k) (1 — 5yj,l) <5k,l — Q) H(l‘i,xj).

The specification of Problem 3 corresponding to the M-SVM? is:
Problem 6 (Learning problem of an M-SVM?, dual formulation)

1 1 1
max {—ZD\QTHa - ZozTN(fl)oz + Q—llea}

Vie[l,m], vk €[1,Q)\{vi}, >0
Vke[1,Q-1], X Y2, (é —5k,l> i =0

s.t.
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with the matriz H being the one of Problem 5 and the general term of the matrix N being

Nik,ji = (1— 5yi,k) (1 — 5yj,l) (5k,l +1) i j-

N is the block diagonal matrix I,, ® (05, + 1)1<k 1<Q—1) where I, designates the identity
matrix of size m and ® denotes the Kronecker product. We first check that this matrix

is actually symmetric positive definite, since its spectrum is made up of two positive

eigenvalues: 1 and Q. N°! = I, ® (((5k,l + 1)1@67[@2_1) =1In® <5k,l —é

and finally, N(=1) is the matrix of general term

>1<k7l<Q—1

— 1

It appears that nggjll) is equal to hii j; with k(x;, ;) replaced with 6; ;. Thus, if we define

the kernel ' as follows:
Y(i,5) €[1,m], & (xi2;) = \ij, (22)

then we get

1 1 1
aaTHa + ZaTN(_l)a = ﬁaTH"oz,

where H” is the matrix deduced from H by replacing the kernel x with the kernel x” =
k + /. This implies that Problems 5 and 6 are identical up to a change of kernel, which

concludes the proof. |

It is noteworthy that the change of kernel considered in the proof above is the same as
the one of the bi-class case. The introduction of the M-SVM? is useful indeed, since an
extended radius-margin bound is available for the hard margin LLW-M-SVM: Theorem 2

in Guermeur and Monfrini (2011).

3.2 Quadratic loss extensions of the WW-M-SVM

In this section, we establish that the class of quadratic loss M-SV Ms provides us also with

an extension of the WW-M-SVM sharing the main property of the 2-norm SVM.

Proposition 3 There exists a quadratic loss extension of the WW-M-SVM such that the
dual formulation of its learning problem is identical to the dual formulation of the learning

problem of a hard margin WW-M-SVM (using a different kernel).

Proof The specification of Problem 4 corresponding to the hard margin WW-M-SVM is:
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Problem 7 (Learning problem of a hard margin WW-M-SVM, dual formulation)

L 7 T
max {—4)\04 Ho+ 1Qma}

Vie[[lﬁm]]7Vke[[1aQ]]\{yi}v azk>0
Yk €[1,Q —1], ST 0%, (Jy e — Gt) it = 0

with the general term of the Hessian matriz H being

s.t.

hik,jl = (1 — 6yi7/€) (1 — 5yj,l) (5y¢,yj - 5yi7l - (Syj7]<; + 5,1971) Ii(l‘i,$]’).

Exhibiting a quadratic loss extension of the WW-M-SVM such that the dual formulation
of its learning problem is Problem 7 up to a change of kernel amounts to exhibiting a
matrix M satisfying the hypotheses of Definition 4 such that the general term of the

corresponding matrix N1 is:
1 1
nz('k,jl) DY (1 — Oy, ) (1 - 5yj7l) (6111‘»?4]' — Oy, 0 — Oy + 61&1) ’i/(xi’xj)- (23)
If we make the assumption that s’ is once more given by (22), then (23) simplifies into
-1
Mgt = (1= 0,0 (1= 8,,0) (1+ 610) 6, (24)
which, according to (20), means that N(~1) is equal to the matrix N associated with the
M-SVM?. This is possible if and only if the matrix N that we are looking for can be equal
to the matrix N(—1) associated with the M-SVM?, i.e., can be the matrix of general term:

1
Nk g = (1= 8y,) (1 — 5yj,l) <<5k,l - Q) 8ij (25)

Thus, to complete the proof, it suffices to exhibit a matrix M satisfying the hypotheses of
Definition 4 such that the general term of the matrix M7 M is given by (25). A possible

solution is the matrix of general term:

(26)

-1
Mkt = (1 = 8y, ) (1 — 5y].7l) <5k7l — vQ ) 8ij-

V@ (Q-1)
To sum up, a quadratic loss extension of the WW-M-SVM such that the dual formu-
lation of its learning problem is identical to the dual formulation of the learning prob-
lem of a hard margin WW-M-SVM is the machine parameterized as follows: p = 2 and
(Kt)1<ie3 = (1,1, 0)”, with M being the matrix whose general term is given by (26). This

concludes the proof. |
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3.3 Quadratic loss extensions of the CS-M-SVM

In the case of the CS-M-SVM, the result available is negative.

Proposition 4 There exists no quadratic loss extension of the CS-M-SVM such that the
dual formulation of its learning problem is identical to the dual formulation of the learning

problem of a hard margin M-SVM.

Proof Given the fact that the CS-M-SVM operates on H instead of H, the specification

of Problem 3 corresponding to a quadratic loss extension of this machine is given by:

Problem 8 (Learning problem of a quadratic loss CS-M-SVM, dual formulation)

1 1 7~
max {—ZD\aTHa — ZdTN_ld + lea}

st. Vie[l,m], Yk e[1,Q]\ {vi}, @ir >0

with the matriz H being the one of Problem 7.

Thus, proving Proposition 4 is equivalent to establishing that Problem 8 cannot be refor-
mulated as an instance of Problem 4 (without the equality constraints, to take into account
once more the fact that the optimization is performed over H instead of H). This boils
down to establishing that the objective function of Problem 8 cannot be reformulated as
an instance of the objective function of Problem 4. A sufficient condition is to establish
that one cannot exhibit a matrix O = (045),; j<,, € Mmm (R), a value of Ky in {0,1},

and a kernel s’ such that the two quadratic forms:
m m
DD 05 ) ik ) a
i=Lj=1  ktu Ay
and
1 o= 1
Iy IS {Kl (Oysy — Oyt — Oy;.) — (1 — K1) o™ 5k,Z} K (i, 1) ipay
i=1 j=1 k#y; I#y;
are identical. This is the case indeed, since irrespective of the value of K7, the coefficient of

a;,0y; in the first quadratic form, o5, depends only on (7, j), whereas the same coefficient

in the second quadratic form also depends on (k,1). |
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3.4 Discussion

Even though the primal formulation of the learning problem of the 2-norm SVM does
not incorporate explicitly the constraints of nonnegativity of the slack variables, these

constraints are satisfied by the optimal solution, for which we get:
€* — 7@*

The primal formulation of the learning problem of the quadratic loss M-SVMs does not in-
corporate these constraints either. In that case however, this makes a significant difference
since some of these variables can be negative. In the case when K3 = 0 (case for which
we could exhibit interesting quadratic loss M-SVMs), at the optimum, the expression of
vector ¢ is given by (18). Thus, in the case of the M-SVM?, for which the expression of
the general term of the matrix N(=1) is given by (21), we get:

Q 1 Q
Vi e[l,m], Zﬁfk = @Za%
k=1 k=1

In the case of the quadratic loss extension of the WW-M-SVM introduced in Section 3.2,

for which the general term of the corresponding matrix N(—1) is given by (24), we get:

Q 0 Q
Vi 6[[1,771]], Zgz*k = gza;kk
k=1 k=1

These equations establish that although the nonnegativity of the slack variables is not
ensured, a weaker result remains available in both cases: for each training example, the
optimal values of the slack variables are nonnegative on average.

The relaxation of the constraints of nonnegativity of the slack variables obviously
alters the meaning of the constraints of good classification, although the global connection
between a small value of the norm of £ and a small training error is preserved. We
conjecture that for any of the three main M-SVMs for which p = 1, no choice of the
matrix M can give rise to a quadratic loss extension such that the dual formulation of
its learning problem is the one of a hard margin machine and its slack variables are all

nonnegative.

4 Conclusions and ongoing research

In this article, a generic model of multi-class support vector machine has been introduced.

To the best of our knowledge, it provides the first unifying definition of all the machines
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of this kind published so far. Using it in place of the standard unifying definition, which
does not encompass the class of quadratic loss M-SVMs, opens new perspectives. It can be
applied to the design of new machines exhibiting specific properties. In that respect, with
the machine introduced in Section 3.2 at hand, deriving an extended radius-margin bound
dedicated to the hard margin WW-M-SVM has become a problem of high interest. In our
opinion, the main advantage of the generic model is to make it possible to analyse globally
the statistical properties of the M-SVMs. Here, the first example that comes to mind is
consistency. We already know that some of the M-SVMs asymptotically implement the
Bayes decision rule whereas some others do not. Our current aim is to establish infinite-

sample consistency conditions as a function of the values of the hyperparameters M, p,

and (Kt)lgtg&

Acknowledgments

The author would like to thank S. Canu for sharing his knowledge on optimization in

RKHSs.

References

F. Aiolli and A. Sperduti. An efficient SMO-like algorithm for multiclass SVM. In Neural
Networks for Signal Processing 2002, pages 297-306, 2002.

A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and
Statistics. Kluwer Academic Publishers, Boston, 2004.

F. Bonnans. Optimisation Continue: Cours et probléemes corrigés. Dunod, Paris, 2006.

(in French).

E.J. Bredensteiner and K.P. Bennett. Multicategory classification by support vector ma-

chines. Computational Optimization and Applications, 12(1-3):53-79, 1999.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297,
1995.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based

vector machines. Journal of Machine Learning Research, 2:265-292, 2001.

23



Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Anal-

ysis and Applications, 5(2):168-179, 2002.

Y. Guermeur. SVM multiclasses, théorie et applications. Habilitation a diriger des

recherches, UHP, 2007a. (in French).

Y. Guermeur. VC theory of large margin multi-category classifiers. Journal of Machine

Learning Research, 8:2551-2594, 2007b.

Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for which a radius-margin

bound applies. Informatica, 22(1):73-96, 2011.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines.

IEEE Transactions on Neural Networks, 13(2):415-425, 2002.

F. Lauer and Y. Guermeur. MSVMpack: a multi-class support vector machine package.

Journal of Machine Learning Research, 12:2293-2296, 2011.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data. Journal

of the American Statistical Association, 99(465):67-81, 2004.

Y. Liu. Fisher consistency of multicategory support vector machines. In FEleventh Inter-

national Conference on Artificial Intelligence and Statistics, pages 289-296, 2007.

C.A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computation,

17(1):177-204, 2005.

B. Scholkopf and A.J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. The MIT Press, Cambridge, MA, 2002.

B. Scholkopf, C. Burges, and V. Vapnik. Extracting support data for a given task. In
KDD’95, pages 252-257, 1995.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, 2004.

J.A K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural

Processing Letters, 9(3):293-300, 1999.

A. Tewari and P.L. Bartlett. On the consistency of multiclass classification methods.

Journal of Machine Learning Research, 8:1007-1025, 2007.

24



A.N. Tikhonov and V.Y. Arsenin. Solutions of Ili-Posed Problems. V.H. Winston & Sons,
Washington, D.C., 1977.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New
York, 1982.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.
V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York, 1998.

K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the sensitivity of support
vector machines. In IJCAI’99, pages 55-60, 1999.

G. Wahba. Multivariate function and operator estimation, based on smoothing splines
and reproducing kernels. In M. Casdagli and S. Eubank, editors, Nonlinear Modeling
and Forecasting, SFI Studies in the Sciences of Complexity, volume XII, pages 95-112.
Addison-Wesley, 1992.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-
TR-98-04, Royal Holloway, University of London, Department of Computer Science,
1998.

T. Zhang. Statistical analysis of some multi-category large margin classification methods.

Journal of Machine Learning Research, 5:1225-1251, 2004.

H. Zou, J. Zhu, and T. Hastie. The margin vector, admissible loss and multi-class margin-

based classifiers. Technical report, School of Statistics, University of Minnesota, 2006.

25



