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Abstract: As the information flowing around in social network systems is 
mainly related or can be attributed to their users, controlling access to such 
information by individual users becomes a crucial requirement. The intricate 
semantic relations among data objects, different users, and between data objects 
and users further add to the complexity of access control needs. In this paper, 
we propose an access control model based on semantic web technologies  
that takes into account the above mentioned complex relations. The proposed 
model enables expressing much more fine-grained access control policies on a 
social network knowledge base than the existing models. We demonstrate the 
applicability of our approach by implementing a proof-of-concept prototype of 
the proposed access control framework and evaluating its performance. 
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1 Introduction 

Social network(ing) systems (SNSs) are increasingly becoming a major type of  
online applications that facilitate online social interactions and information sharing 
among a large number of users. The scale of active entities, interactions, and digital 
content in these complex environments brings about new security and privacy  
challenges. Users constantly provide contents and information to these systems, either 
explicitly, such as by uploading a photo, or implicitly by leaving behind interaction 
traces, such as by responding to an invitation. Because they are related to the users,  
such contents may include privacy-sensitive information. Besides data protection 
challenges for such contents from a system perspective, protecting users privacy from 
other users of the system is a unique requirement in SNSs. As per a general goal of SNSs, 
users are motivated to expand their social connectivity and awareness through 
interactions and content sharing with each other. However, as the social connections  
of a user grows, so does the complexity of privacy implications for him. The increased 
variety of social connections requires more fine-grained control on privacy-sensitive 
information. 

Current major SNSs such as Facebook and MySpace provide some privacy control 
settings to their users. However, the access and privacy control features provided by these 
systems are usually limited, and not so flexible and robust. Moreover, they seem to be 
implemented incrementally without detailed formal modelling, which is not appropriate 
for such systems with huge user base and high volume of privacy-sensitive content. 
Several desirable control features are missing and there exists no basis of verifying 
consistency in policy enforcement. For instance in Facebook, a user can choose to hide 
her status of relationship with a second party. But one can learn about that relationship if 
the second party happens to not hide it. In other words, users cannot control disclosure of 
some intuitively privacy-sensitive information. As an example of inconsistency in policy 
enforcement, even if a user chooses not to be publicly listed in Facebook she will be still 
listed in the public listings of the groups she has joined. 

Early access control models for social networks focus on computing trust values for 
users based on which they make access decisions (Kruk, 2004; Kruk et al., 2006; 
Carminati et al., 2006; Villegas et al., 2008). However, they do not consider complexities 
of the protected resources in SNSs. Digital resources in SNSs are comprised of various 
data types. Also, different annotation methods such as tagging and commenting are 
common in these systems. These all introduce a variety of semantic relations among 
objects. In particular, it is important to ensure the protection of not only the basic data 
entities and values, but also their relations. For instance, a person tagged in a photo might 
not be only concerned about being tagged, but also about who else has been tagged in the 
same photo, and who actually owns the photo. In order to truly capture the fine-grained 
protection requirements in SNSs, it is important to have an appropriate data model. We 
rely on ontology modelling of knowledge using Semantic Web technologies. Some recent 
work also propose to use ontologies (Carminati et al., 2009; Ryutov et al., 2009), but fail 
to provide protection for relations, which is central to our approach. Moreover, unlike in 
traditional systems where security administrators are in charge of access control policy, 
in an SNS, users should be recognised as the main authority over access control policies 
regarding the information related to them. A flexible authority model is required to 
determine each user’s authority over different resources. This feature has not been 
addressed in existing work. 
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In this paper, we propose an access control model that takes into account the intricate 
semantics of the privacy-sensitive knowledge base, and also respects the individual users’ 
right to have a flexible control over access control policy on contents related to them. The 
access control model is designed to be as close as possible to knowledge ontology level 
and neutral in terms of application-level semantics in order to be suitable for generic 
social information systems. We leverage the semantic web technologies, i.e., OWL, 
SWRL, and SPARQL in particular, to model SNS knowledge and express and enforce 
access control policies, which can ensure practicality of our approach. Our contributions 
in this work can be summarised as follows. 

• We propose social network systems ontology (SNO) to capture the information 
semantics in an SNS. We elaborate and discuss various scenarios regarding our 
proposed access control model based on SNO. 

• We propose an ontology-based social network access control (OSNAC) model which 
addresses the protection of semantics-rich information in a knowledge base ontology 
such as SNO by using an access control ontology (ACO) and access control policy 
rules. It supports both user-defined authorisation rules and a system-level policy. The 
model also supports advanced user-level rules to provide more flexible control, 
including delegation of authority, dependent authorisations, and the ability to enable 
multiple authorities to enforce a composite policy regarding a protected resource. 
The model can also provide support for negative authorisation for an SNS. 

• We provide an architecture and the prototype implementation of an OSNAC engine 
that automatically enforces access control policies on queries submitted to an SNS 
knowledge base. Our results show acceptable performance of our prototype and 
demonstrates the applicability of our approach. 

The rest of the paper is organised as follows. In Section 2, we provide a brief introduction 
to the standards used, and propose an ontology for representing knowledge in an SNS. In 
Section 3, we present our proposed access control model, including the ACO, various 
supported policies, the enforcement model, and support for negative authorisation. We 
provide details about our prototype implementation and results in Section 4. In Section 5, 
we review related literature, and subsequently conclude the paper in Section 6. 

2 Preliminaries 

2.1 Semantic web languages, notations, and terminology 

We leverage several semantic web languages in this work. In particular, we use web 
ontology language (OWL) to express the protected knowledge in an SNS and some 
access control decision information, semantic web rule language (SWRL) to specify 
access control policy rules, and SPARQL protocol and RDF query language (SPARQL) 
for access control enforcement. 

OWL (W3C, 2004a) is a W3C recommendation to express meanings and semantics, 
which builds on RDF/RDFS. There are three main concepts in OWL. A class is a 
collection of objects, which are also called individuals/instances of the class. A property 
is a directed binary relation (predicate). An object property relates instances of two 
classes, and a datatype property relates individuals to data values (e.g., string values). A 



   

 

   

   
 

   

   

 

   

   62 A. Masoumzadeh and J. Joshi    
 

    
 
 

   

   
 

   

   

 

   

       
 

class or a property can be defined as subclass or subproperty of another. OWL also 
supports various operators on classes such as union, intersection, and complement and 
restrictions such as cardinality constraints on properties. Depending on support for 
different operators/concepts, OWL has three sublanguages. For the purpose of this work, 
we have chosen OWL DL as it provides semantic features adequate for expressing 
knowledge in an SNS, does not have intractability issues, and there exist various  
tools and packages that support it. As customary to XML-based languages, we use 
namespace prefixes to distinguish different ontologies. For instance, owl:Class  
represents the type Class in the OWL namespace. We use a function-like notation for 
representing OWL property instances. For example, rdf:type(Person, owl:Class) defines 
Person as a new OWL class using property rdf:type in the context of RDF ontology. 
Instances of a property are called triples in the context of RDF. In a triple such as 
owns(Alice, book1), owns is the property, Alice is the subject of the property, and book1 
is the object of the property. We use this terminology for describing reification of 
ontology properties. 

SWRL (W3C, 2004b) allows combining horn-like rules with an OWL knowledge 
base, thereby enabling new knowledge reasoning tools. We encode access control policy 
rules using SWRL to reason on top of access decision information stored in an  
OWL-based knowledge base and infer access decision. SWRL rules have a very detailed 
syntax (W3C, 2004b). For the purpose of our work, we represent them simply as 
antecedent ⇒ consequent, where antecedent (body) is a conjunction of multiple 
predicates and consequent (head) is a single predicate. Predicates can be either unary or 
binary, representing either a class or a property, respectively. A notation such as ?x is 
used to declare variable x in the body/head of a rule, which can be bound to class 
instances. For example, the following rule expresses that if someone is a tenure-track 
faculty he/she has a PhD degree. 

(? ) (? ," ")x x⇒TenureTrackFaculty hasDegree PhD  

SPARQL (W3C, 2008) is a syntactically SQL-like language for querying RDF graphs via 
pattern matching. We augment SPARQL queries with access control predicates to 
automatically enforce access control policies when a query is evaluated. 

2.2 Social network system ontology 

We propose SNO that models key entities and their relationships typically found in SNSs. 
This is partly because we could not find an appropriate ontology in the literature that can 
capture the details of objects in an SNS. Based on this, we elaborate and discuss various 
scenarios regarding our proposed access control model. Note, however, that our access 
control model is not tied or limited to this specific ontology. The current version of the 
ontology comprises of 14 concepts and ten object properties. Figure 1(a) depicts an 
overview of SNO. 

The Entity concept is the root to all concepts in SNO, with three immediate 
descendants: DigitalObject, Person, and Event. The DigitalObject concept models any 
object with digital, usually presentable content. The Person concept models human users 
in the context of SNSs. The DigitalObject concept is specialised by subconcepts such as 
Note, Photo, Wall, and Annotation. The Note concept represents a textual content. The 
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actual content is linked to a Note object using hasContent datatype property. The  
Wall concept models the posting board on the homepage of a person in an SNS, such  
as the one Facebook provides. The Annotation concept represents special digital  
objects that instead of directly representing a content, annotate one object (e.g., a wall, a 
photo, etc.) using another object (e.g., a note, a person, etc.). The two objects are  
related to an annotation object, using properties Annotates and AnnotatesWith, 
respectively. Annotation itself is specialised by Comment, Tag, and WallPost.  
Comment annotates an object with a note. PhotoPersonTag is a specialised tag that 
annotates a photo with a person. WallPost annotates a wall with an object, e.g., a photo. 
We choose to represent annotation as a concept, rather than a relation, in order to be able 
to capture more semantics regarding it. For instance, it is usually important to know who 
has tagged a person in a photo; that might be different from the owner and the tagged 
person. 

Figure 1 SNO, (a) SNO ontology (b) sample instantiation of SNO (see online version  
for colours) 
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(a) (b) 

Figure 1(b) shows a small, sample instantiation of SNO. The knowledge describes 
Alice’s name, where she resides, her friendship with Bob, Carol, and David, and an event 
she attends. Alice also owns photo photo1, in which Bob is tagged (pPersonTag1 
annotates photo1 with Bob). This tag has been created by Carol. Moreover,  
this photo tag has been posted on Bob’s wall, i.e., wallPost1 annotates Bob’s wall, 
BobWall, with pPersonTag1. Using SNO concepts and relations, more complex 
semantics can be represented, which is not shown in the simple scenario described above. 
For instance, David may make a comment about Bob’s wall post mentioned earlier.  
This can be represented by comment comment1 which annotates wallPost1 (i.e., 
annotates(comment1, wallPost1)) with a note. Throughout the paper, we use 
namespace prefix sn to refer to SNO concepts and relations. 
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3 Ontology-based social network access control model 

We propose OSNAC, a rule-based access control policy model for SNSs based on 
semantic web standards. OSNAC is a fine-grained semantics-aware model that captures 
relations between ontological concepts of knowledge as protected resources. For this 
purpose, the model relies on an ontology such as SNO (introduced in Section 2.2) that 
models the SNS knowledge. It also uses an ACO (described in Section 3.1) to model the 
policies. We assume a closed-world policy model where an access is denied unless it is 
allowed according to access control policy rules. 

Figure 2 shows the overall OSNAC policy framework. Access control rules are 
specified at two levels: user and system. At the user level, every user can express 
personal authorisation rules regarding protected resources. For more flexible 
authorisations, users can leverage dependent authorisation, delegative authorisation as 
well as multi-authority specification rules. At the system level, the rules govern the 
overall privacy policy of the system. Basic authority specification rules determine which 
users have authority over which protected resources. They empower users by recognising 
the authorisations defined at user-level as permissions. In other words, they aggregate 
user-level authorisations by determining the appropriate authority for protected resources. 
In contrast, direct permission rules indicate permissions that are valid independently of 
users’ policies. System- level policies are specified by administrators according to 
application semantics of a particular SNS, which are naturally less frequently updated 
than the user-level policies. Note that a higher-level policy component in Figure 2 can be 
considered performing aggregation of its lower-level components. We elaborate on 
various components of the framework in the rest of the section. 

Figure 2 OSNAC policy framework (see online version for colours) 
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3.1 Policy expression at ontology level 

Since knowledge resources are captured in an ontology, such as SNO, the access control 
policies need to express them using ontology concepts. In order to facilitate an efficient 
and semantics-rich access control decision, we choose to capture information related to 
access control policy in a separate ontology, which we call the ACO. We use namespace 
prefix ac to refer to ACO concepts and relations, which are depicted in Figure 3. ACO is 
used to model and store any knowledge solely needed for access control purpose 
including inferences based on access control policy rules. We categorise the concepts and 
relations in ACO as follows. 
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• Access subject: class ac:Subject is used to specify the access subject (an instance of 
sn:Person) of a given access request that is evaluated. 

• Reified properties: we consider instances of SNO properties as the protected 
resources. However, since current semantic web languages such as OWL do not 
support expressions about property instances, which is needed for expressing 
authorisations, we reify SNO properties in ACO as follows. Class ac:p_property 
serves as an abstract reification of an SNO property. Properties ac:pSbj and ac:pObj 
relate class ac:p_property to its corresponding subject and object of the property in 
SNO, respectively. Corresponding to each property sn:x, there exists class ac:p_x, 
which is a subclass of ac:p_property. Thus, a relation such as sn:isFriendOf(Alice, 
Bob) in SNO is correspondingly represented in ACO using an instance of class ac:p 
isFriendOf; its subject and object are related using relations ac:pSbj(Alice) and 
ac:pObj(Bob), respectively. 

• Authorisations: an authorisation is issued by a user to authorise the subject to access 
a property instance. Property ac:authorizes abstractly relates the user who issues the 
authorisation (an instance of sn:Person) to the reified property instance that is to be 
accessed (an instance of a ac:p_property descendant). Depending on the mode of 
access, one of the descendants of ac:authorizes will be used, which include 
ac:authorizesRead, ac:authorizesDelete, and ac:authorizesInsert. 

• Permissions: a permission specifies an access granted by the SNS to a subject. Note 
that this is usually inferred based on user-level authorisations. Class ac:Permitted 
represents an abstract notion of such a permission. A reified property instance 
becomes also an instance of ac:Permitted if access to it is inferred to be granted by 
the SNS. Depending on the mode of access, one of the descendants of ac:Permitted 
will be used, which include ac:PermittedRead, ac:PermittedDelete, and 
ac:PermittedInsert. 

• Principal authority: We assume a unique principal authority is assigned for every 
SNO class individual using property ac:hasPrincipalAuthority. The principal 
authority is most probably the originator of the object, and is determined by the 
system. In practice, principal authorities can be inferred based on other properties 
captured in SNO such as sn:owns or sn:created, that may be defined between an 
sn:Person instance and an sn:Entity instance. We elaborate more on how this 
concept is used in our model in Section 3.2.2. 

The access control policy rules in our model follow the syntax mentioned in Section 2.1. 
In order to efficiently express reified properties as protected resource in the rules we 
introduce the following shorthand. 

Definition 1: (Reified property shorthand) Expression [?rsc ← sn:p(s, o)] represents ?rsc 
as the protected reified property instance of type sn:p that relates property subject s to 
property object o, i.e., [?rsc ← sn:p(s, o)] ≡ ac:p_p(?x) ∧ ac:pSbj(?x, s) ∧ ac:pObj(?x, o). 

To define rules, we only use abstract authorisation and permission predicates. For 
instance, we use ac:authorizes in the format of personal authorisations. However, an 
actual rule needs to use one of its descendants as mentioned in Section 3.1. 
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Figure 3 Access control ontology (see online version for colours) 
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3.2 System-level policy rules 

System-level access control policy rules are specified by SNS administrators. Table 1 
shows the format of system-level policy rules. In these rules, [?rsc ← sn:p(s, o)] specifies 
the protected resource according to the reified property shorthand. P is a conjunction of 
zero or more of either SNO predicates, ac:Subject, or ac:hasPrincipalAuthority, which is 
used to express more specifically where a rule applies. We call P a rule extension 
sentence. 
Table 1 System-level access control policy rules 

Direct permission: 

 [? : ( , )] (? )rsc p s o rsc∧ ← ⇒P sn ac : Permitted  

Basic authority specification: 

 1

1
[? : ( , )] ( ,? ) (? )

n

i
i

rsc p s o u rsc rsc
≥

=
∧ ← ∧ ⇒P sn ac : authorizes ac : Permitted∧  

3.2.1 Direct permission 

Direct permissions allow the system to grant permissions to users without the 
involvement of user authorities. As shown in Table 1, a direct permission rule includes a 
rule extension sentence and a property resource specification in the antecedent, and an 
ac:Permitted descendant as the consequent. 

Example 1: The following two direct permission rules entitle everyone to read the 
relations that are defined about the objects for which he/she is the principal authority. 

[ ]

[ ]

(? ) (? ,? )
 ? (? ,? ) (? ).

(? ) (? ,? )
 ? (? ,? ) (? ).

s sbj
rsc s o rsc

o sbj
rsc s o rsc

∧

∧ ← ⇒

∧

∧ ← ⇒

ac : Subject sbj ac : hasPrincipalAuthority

sn : property ac : PermittedRead

ac : Subject sbj ac : hasPrincipalAuthority

sn : property ac : PermittedRead
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In the first rule in the above example, the first two predicates in the body constitute the 
rule extension sentence, and the third predicate specifies the protected property instance. 
Note that ac:p_property is considered as the superclass of any reified SNO property; 
therefore, the reified property shorthand applies to any property with bound variables s 
and o for its subject and object. The first predicate of the rule extension sentence 
indicates sbj to be the access subject, and the second one indicates sbj to be the principal 
authority for a protected property’s subject. Finally, the consequent predicate allows read 
access to such a property for the access subject. The second rule is only different in 
considering access subject to be the principal authority for a protected property’s object. 

3.2.2 Basic authority specification 

Most of the access control decisions in a SNS are desirable to be mediated using policies 
determined by the relevant users, instead of direct permissions by the SNS itself. In this 
respect, the role of system-level rules is to determine policy authorities for resources. 
According to Table 1, authority specification rules follow a format similar to that  
of direct permissions, i.e., having a rule extension sentence P and reified resource 
specification in antecedent and ac:Permitted descendent in consequent. But they also 
include a conjunction of ac:authorizes predicates, which indicates users whose 
authorisations matter in granting permissions on the specific protected resources. This 
means that permissions are granted based on user-level authorisations. Although an SNS 
may define a set of authority specification rules customised for its own application 
semantics, here, we propose a generic, basic authority model for an ontology-based 
knowledge base system. Assuming there is a principal authority for every SNO 
individual, as described in Section 3.1, it is safe to consider the same authority to be 
effective for any property instances associated with that individual. Hence, the authority 
over an object property instance can be determined based on the principal authorities of 
the related individuals. For instance, access to sn:isFriendOf(Alice,Bob) is under the 
authority of both Alice and Bob. The authority over a datatype property instance is also 
the principal authority of the only related object. The basic authority model for read 
access can be expressed using the following rule. 

( ) ( )
[ ]

( )

1 2

2

? ,? ? ,?

 ? (? ,? )

 (? ) ? ,?
(? )

s u o u

rsc s o

rsc u rsc
rsc

∧⎤ ⎤⎦ ⎦
∧ ←

∧ ∧

⇒

ac : hasPrincipalAuthority ac : hasPrincipalAuthority

sn : property

ac : authorizesRead ac : authorizesRead

ac : PermittedRead

 (1) 

The above rule grants a read permission on a property instance only if both the principal 
authorities of the individuals associated with the property instance authorise that access. 

3.3 User-level policy rules 

User-level access control policy rules are specified by SNS users regarding the protected 
resources that they have authority over. The actual effectiveness of such a rule is 
determined according to system authority policies. Table 2 shows the format of user-level 
policy rules. Similar to system-level policy rules, user-level policy rules include a rule 
extension sentence R, which is a conjunction of zero or more of either SNO predicates or 
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ac:Subject, and a reified property shorthand for specifying protected resource in 
antecedent. Also, all user-level policy rules have an ac:authorizes descendant in 
consequent. The first argument of this predicate has to be the user who specifies the 
authorisation. Otherwise, user authorities may be misused. We assume that SNSs enforce 
this requirement. 
Table 2 User-level access control policy rules 

Personal authorisation: 
 [? : ( , )] ( ,? )rsc p s o u rsc∧ ← ⇒R sn ac : authorizes  
Dependent authorisation: 
 ( ) ( ) ( )

( )
1 1 1 1 2 2 2 2 1

2

? : , ? : , ,?

,?

rsc p s o rsc p s o u rsc

u rsc

∧ ⎡ ← ⎤ ∧ ⎡ ← ⎤ ∧⎣ ⎦ ⎣ ⎦
⇒

R sn sn ac : authorizes

ac : authorizes
 

Delegative authorisation: 
 ( ) ( )2 1[? : ( , )] ,? ,?rsc p s o u rsc u rsc∧ ← ⇒ ⇒R sn ac : authorizes ac : authorizes  
Disjunctive multi-authority specification: 
 { }

[? : ( , )] ( ,? ) ( ,? )
i

i i i

R R
R rsc p s o u rsc pa rsc
=

= ∧ ← ∧ ⇒sn ac : authorizes ac : authorizesR
 

Conjunctive multi-authority specification: 
 

1
[? : ( , )] ( ,? ) ( ,? )

n

i
i

rsc p s o u rsc pa rsc
=

∧ ← ∧ ⇒R sn ac : authorizes ac : authorizes∧  

3.3.1 Personal authorisation 

A personal authorisation rule expresses a permission granted by an individual user to 
others. According to the rule format shown in Table 2, a personal authorisation rule uses 
a rule extension sentence and a reified property shorthand in antecedent and an 
ac:authorizes descendant in consequent. 

Example 2: The following rule, expressed by Alice, authorises her friends to read the 
photo-tags she has been marked with 

[ ]
(? , (? , ) (? )

 ? (? , ) ( ,? )
sbj sbj pTag

rsc pTag rsc
∧

∧ ← ⇒

ac : Subject sn : isFriendOf Alice sn : PhotoPersonTag

sn :anonatesWith Alice ac : authorizesRead Alice
 

In the above example, the first three antecedent predicates compose the rule extension 
sentence. The first and second predicates specify the access subject to be Alice’s friend, 
and the third predicate declares variable pTag to be of type sn:PhotoPersonTag.  
The forth predicate specifies the protected resource to be an sn:annotatesWith relation 
that relates PhotoPersonTag ptag to Alice. The consequent predicate indicates that Alice 
authorise such an access request. 

3.3.2 Dependent authorisation 

Dependent authorisation rules allow one authorisation to be inferred based on another 
authorisation. This is often useful in scenarios where authorisations need to be derived for 
related protected resources. As the format shown in Table 2, dependent authorisation 
rules include a rule extension sentence, two protected property specifications, and an 
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ac:authorizes descendent for the first protected property in antecedent, and an 
ac:authorizes descendent for the second protected property in consequent. In other 
words, dependent authorisation allows for authorisation propagation from protected 
resource rsc1 to protected resource rsc2 under specific condition determined by rule 
extension sentence R. 

Example 3: In the scenario depicted in Figure 1(b), suppose Alice has specified detailed 
authorisation rules for different types of annotations on her photo. Then she can make 
sure whoever gets to access the annotations can also access the photo content using the 
following rule, without redefining all the restrictions. 

[ ] [ ]
( ) ( )

1 2

1 2

? (? , 1) ? ( 1, ? )

 ,? ,?

rsc x rsc c

rsc rsc

← ∧ ←

∧ ⇒

sn : anonates photo sn :hasContent photo

ac : authorizesRead Alice ac : authorizesRead Alice
 

3.3.3 Delegative authorisation 

Delegation has been shown to be useful in conjunction with access control models (Barka 
and Sandhu, 2000). In the context of the proposed model, we observe that delegating 
authority improves the flexibility of policies. Based on a delegative authorisation, a user 
delegates its authority over a specific resource to another user. According to the rule 
format shown in Table 2 user u1 delegates authorisation on a specific resource to user u2. 
In other words, user u1 respects the authorisations made by user u2 on that resource. 
Delagative authorisations may be used to relax authority on the protected relations. The 
basic authority specification rule stated in Section 3.2.2 [rule (1)] requires both the end 
authorities of a relation to authorise a permission, in order for it to be granted. However, 
such a mutual agreement might be too restrictive for some users and resources. The two 
end authorities can use delegative authorisations to respect one another’s decisions on the 
specific permission(s) of choice, without a change in system-level rules. 

Delegative authorisations are very flexible and secure in terms of delegation power. 
First, an authority can flexibly customise the permission. For instance, it can restrict the 
target subjects to have certain characteristics, or the resource/operation to be of certain 
type. Second, subsequent updates to the delegative authorisation rule will be applied 
seamlessly, without a need to worry about grant/revoke propagation issues that delegation 
models usually deal with. This is because unlike traditional delegation models, the 
permissions are not explicitly transferred; the authorisation rule is the sole means of 
delegation. Third, since delagative authorisations are at the user level, there is no need to 
assure that the delegator actually has the authority on the permission. Only the valid 
delegations will be effective based on the system-level authority specification rules. 

3.3.4 Multi-authority specification 

There are scenarios in SNSs where more authorities are desired to weigh in on an access 
control decision than just the directly related authorities. We support multi-authority 
specification in two ways. A principal authority may use multiple delegative 
authorisation rules to enable a disjunctive multi-authority. Such a multi-authority is 
disjunctive in the sense that a permission authorisation by any corresponding authority in 
the set is a sufficient condition for that permission to be considered authorised  
by the principal authority. Alternatively, a principal authority may create a conjunctive 
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multi-authority, in which every involved authority is required to authorise a permission in 
order that it would be considered authorised by the principal authority. Table 2 shows the 
formats of a rule set and a single rule that establish disjunctive and conjunctive  
multi-authority, respectively, where principal authority user pa shares the authority with 
users u1, u2, …, and un. 

3.4 Access control enforcement 

A basic access request is a triple 〈sbj, rsc, opr〉, where sbj is the user who requests the 
access (instance of sn:Person), rsc = p(s, o) refers to the property instance to be accessed 
(instance of ac:p_property), and opr is the mode of access requested (read/delete/insert). 

Definition 2: (Access authorisation) Given an access request 〈sbj, p(s, o), opr〉, the access 
is granted if and only if the following sentence is satisfied in the knowledge base, given 
the fact Subject(sbj): 

[ ]? ( , ) (? )rsc p s o rsc← ∧ ac : Permitted  

where predicate ac:Permitted is substituted with its proper descendant corresponding to 
opr. The access is denied otherwise. 

We note that in the case of information retrieval from an SNS knowledge base 
multiple relations may be queried and evaluated simultaneously in order to retrieve a 
result set of interest. Conceptually, for each valid variable assignment in a query, every 
bound relation needs to be considered as one basic access query. However, an access 
authorisation per such relations is not efficient, and needs modification of the retrieval 
engine. Alternatively, we augment a query with access check primitives and evaluate that 
in order to retrieve only the authorised results. 

Definition 3: (Query access authorisation) Let 〈sbj, Q〉 be a query access request by 

subject sbj, where ( )
1

: ,
n

W i i i
i

Q p s o
=

=∧sn  represents the conjunctive WHERE clause of 

query Q. A retrieval engine automatically enforces the access control policy and retrieves 
the authorised result by evaluating: 

( ) ( ) ( ){ }
1

: , ? : ,   ?
n

W i i i i i i i i
i

Q p s o rsc p s o rsc
=

′ ⎡ ⎤= ∧ ← ∧⎣ ⎦∧ sn sn ac : PermittedRead  

given the fact Subject(sbj). 

Each relation predicate in the original query is followed by two predicates for access 
control purpose: the first predicate bounds the relation to a resource variable, and the 
second predicate checks if the subject has permission to access the resource. A query that 
is augmented with access primitives can be directly processed by a query retrieval engine 
on the ontology, while access control policy rules are enforced seamlessly using an 
ontology reasoner. 

Example 4: Suppose Bob requests access to the list of Alice’s friends who reside in 
Pittsburgh. This is a complex query that involves accessing the list of Alice’s friends, 
where they live, and their names. The following is a SPARQL-like syntax for this query. 
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? ?
{  ( , ? )

 (? , )
 (? ,? )}

x
x

x
x

∧
∧

SELECT      fname
WHERE   sn : friendOf Alice

sn : residesln Pittsburgh
sn : hasFullname fname

 

Its access-augmented WHERE clause will be as follows. 

[ ]

[ ]

( , ? ) 
 ? 1 ( , ? )  (? 1)
 (? , )
 ? 2 (? , )  (? 2)
 (? ,? )
 ? 3

x
rsc x rsc

x
rsc x rsc

x
rsc

∧ ← ∧

∧

∧ ← ∧

∧

∧ ←

sn : friendOf Alice

sn : friendOf Alice ac : PermittedRead

sn : residesln Pittsburgh

sn : residesln Pittsburgh ac : PermittedRead

sn : hasFullname fname

[ ](? ,? )  (? 3)x rsc∧sn : hasFullname fname ac : PermittedRead

 

When executing the augmented query in Example 4, if Bob does not have access to even 
one of the relations in the query corresponding to a specific Alice’s friend, that person’s 
information will not be retrieved. Thus, the result set reflects the authorised information 
according to the access control policies. 

3.5 Supporting negative authorisation 

The OSNAC policy model relies on positive authorisations. If the system cannot  
resolve a corresponding positive permission (i.e., descendants of ac:Permitted) for  
an access request, then the request is denied. Although positive authorisation can be  
used to express security policies in general, it is sometimes desirable to express  
intended policies using a mixture of positive and negative authorisations.  
Unfortunately, OWL and SWRL do not support negation-as-failure due to open-world 
assumption of the Semantic Web. This prevents us from reasoning collectively on 
positive and negative authorisations. To be more specific, if an authorisation cannot  
be inferred its negation cannot be inferred either. Our proposed workaround to  
support negative authorisation is to introduce separate predicates for negative 
authorisations and resolve the conflicts at the query processing time using SPARQL, 
once the inference is done. For this purpose we extend ACO, that was described in 
Section 3.1, as follows. Analogous to property ac:Permitted and its descendants, we 
define property ac:Prohibitted and its corresponding descendants (i.e., 
ac:ProhibittedRead, ac:ProhibittedInsert, and ac:ProhibittedDelete), that represent 
negative permissions. Also, we define property ac:deny and its corresponding 
descendants for negative user-level authorisation. In order to fully enable negative 
authorisations, we need to also specify corresponding basic authority specification rules 
for negative authorisations, in a manner similar to what is described in Section 3.2.2 but 
for negative permissions. 

This approach satisfies the need for the common use of negative authorisations. Users 
will be able to express negative exceptions to positive authorisations, and any conflict are 
resolved at the retrieval time. We follow a denial-takes-precedence approach, when both 
ac:Permitted and ac:Prohibitted predicates are resolved for a specific access. 
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Definition 4: (Query access authorisation with negation) Let 〈sbj, Q〉 be a query access 

request by subject sbj, where ( )
1

: ,
n

W i i i
i

Q p s o
=

=∧sn  represents the conjunctive WHERE 

clause of query Q. A retrieval engine automatically enforces the access control policy 
with negative authorisations and retrieves the authorised result by evaluating the 
following, given the fact Subject(sbj): 

( )
( ) ( )

( ){ }
( )( )

1

: ,

 ? : , ?

  ?

 ! ?

i i i

n i i i i i

W
i j

j

p s o

rsc p s o rsc
Q

rsc

rsc

=

⎛ ⎞
⎜ ⎟

⎡ ⎤∧ ← ∧⎜ ⎟⎣ ⎦
⎜ ⎟′ =
∧⎜ ⎟
⎜ ⎟
⎜ ⎟∧⎝ ⎠

∧

sn

sn ac : PermittedRead

OPTIONAL   ac : ProhibittedRead

FILTER   bound

 

4 Implementation 

4.1 Design and architecture 

We have developed a prototype implementation of an SNS knowledge-base  
that is protected based on the proposed OSNAC model. The implementation  
has been done in Java language based on the Jena semantic web framework  
(http://jena. sourceforge.net).We leverage Jena’s TDB for persistent storage of SNO and 
ACO. In an initialisation phase, based on the SNS knowledge captured in SNO, ACO is 
populated with the corresponding reified properties as described in Section 3.1. 

Figure 4 illustrates the architecture of the prototype implementation. Access control 
policy rules are provided by users and system administrators, using separate interfaces, 
and are stored in the policy rule-base. Rules are expressed using SWRL as explained in 
Section 3. However, since SWRL is not directly supported in Jena, we programmatically 
convert rules to Jena’s own rule language in a policy compilation phase. Note that there is 
no loss of expressiveness in this process. At run time, the user request processor accepts 
the requests from a user (in fact, from the SNS on behalf of a user), and passes it to the 
query modifier module, where it is augmented with access control primitives (refer to 
Section 3.4). The modified query is then sent to the SPARQL engine. Before execution of 
the query by engine, a fact is inserted in the knowledge base asserting the user to be the 
access subject. The SPARQL engine then interacts with the SNO and ACO to retrieve the 
query results. In the retrieval process, the access inference engine employs Jena general 
purpose rule engine to infer access primitive predicates (i.e., ac:authorizes and 
ac:Permitted) based on the knowledge stored in the ontologies and according to the 
access control policy rules. The access subject assertion is removed from knowledge base 
after query has been executed. Finally, the authorised query results are returned to the 
user request processor. 
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Figure 4 Architecture of the prototype implementation (see online version for colours) 
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4.2 Access control enforcement 

We have conducted tests on the access control engine by submitting SPARQL queries on 
a sample populated SNO [extended version of Figure 1(b)]. The engine successfully 
returns only the authorised information that is expected according to the sample access 
control policy rules. We also developed a data generator that randomly populates an SNO 
ontology with users, friendship links, photos, and photo tags. For the purpose of 
performance evaluation, we decided to focus on a limited scenario where users want to 
control their friendship links. It is much more easier to evaluate the effects of change in 
the number of users and their protected resources (i.e., friendship links here) on access 
control performance, without complicating the problem. We run the prototype on a 
standard desktop PC, and each measurement is the average result of ten runs. 

We measure three performance parameters of the prototype access control engine. 
Initialisation time is the time it takes to load the ontologies and populate ACO with 
reified properties. Inference time is the time it takes to load access policy rules and build 
an inference model in Jena for reasoning on the ontologies. Finally, access check time is 
the time it takes for the engine to answer a simple predicate query involving an access 
check. Figure 5 shows the performance results of the access control engine for different 
data sizes. In each data point, we consider on average 60 friends per user. The first two 
steps, i.e., initialisation and inference, need to be performed once when the system starts. 
Therefore, it can be acceptable to spend about 36 seconds for completing these two steps 
with 2,500 users. The most important parameter here is the access check time, which is 
about two seconds for 2,500 users in our experiment. Although, this seems a little 
expensive, the performance can be improved by employing better software and hardware 
tools. Moreover, the access check time seems to be linear with the number of users (note 
that the scale is not linear in the horizontal axis). Since the ratio of friends per user is an 
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important parameter in the generated dataset and performance of the system, we also 
evaluated our model under different ratios of friends per user. Note that this ratio is 
currently about 130 for Facebook. The results are shown in Figure 6. All the performance 
increase at a linear rate, which is lower up to 60 and gets higher after that. 

Figure 5 Performance of the prototype engine for different number of users (with avg.  
60 friends), (a) initialisation time (ms) (b) inference time (ms) (c) access check  
time (ms) (see online version for colours) 
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Figure 6 Performance of the prototype engine for different number of friends per user  
(2,500 users), (a) initialisation time (ms) (b) inference time (ms) (c) access check  
time (ms) (see online version for colours) 
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Figure 6 Performance of the prototype engine for different number of friends per user  
(2,500 users), (a) initialisation time (ms) (b) inference time (ms) (c) access check  
time (ms) (continued) (see online version for colours) 
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5 Related work 

Access control research in social network area is still in its early stages. Initial access 
control solutions for SNSs propose trust-based access control policies that are inspired by 
research developments in trust and reputation computation in social networks. Friend of a 
friend (FOAF)-realm (Kruk, 2004; Kruk et al., 2006) is one of the earliest approaches 
that quantifies the knows relations in the context of FOAF ontology as a trust metric, and 
support rules that control accesses of friends to resources in a social network by stating 
the maximum distance and minimal friendship level. Carminati et al. (2006) propose a 
conceptually-similar but more complete trust-based access control model. Villegas et al. 
(2008) propose to use a slightly different trust measure by automatically classifying 
nodes in zones. A general drawback of trust-based access control models is the usability 
issues, as it could be very hard to comprehend and specify appropriate trust thresholds, 
and hence be left with even less protection than simple, conventional access control 
approaches. While these approaches focus mainly on subject specification based on 
distance and trust measures, we take a more abstract approach and focus instead on 
accurately capturing the information semantics using an ontology-based access control 
policy. Trust information can be straightforwardly used in our approach if captured  
in the ontology, independently from underlying trust computation mechanism. 

The closest work to this paper is probably the semantic web-based access control 
framework (Carminati et al., 2009), which also leverages OWL and SWRL. The authors 
define three type of policies, namely, access control policy, filtering policy, and admin 
policy. Access control policies are positive authorisation rules; filtering policies can limit 
someone’s access to information by herself (not conceptually a security issue); and admin 
policies can express who are authorised to define those policies. Although they outline an 
access control framework, lack of formal descriptions and implementation leaves behind 
many ambiguities. In comparison, we propose a more detailed and semi-formal semantics 
for our model, and show the applicability by implementing a proof-of-concept 
framework. Also, our model captures the notion of individual authorities, and provide 
access control policies to protect the relations in the knowledge ontology as a more 
expressive and flexible alternative to entity protection. Ryutov et al. (2009) propose a 
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rule-based access control model for semantic networks, based on a constrained first order 
logic. The authors have implemented this model in a RDF-like framework. While the 
model is based on logic rules similar to our approach, notions such as attaching policies 
and separating policy at subject and object level are introduced but inadequately 
elaborated and justified in their work. Also, relations are mainly used in the access 
control rules, but not as of the protection objects; it seems that their approach only 
protects the objects at entity level. There are also other access control approaches for 
social networks that go beyond our focus in this work, such as protection against  
third-party applications (Shehab et al., 2008). 

In the area of semantic web, Rei (Kagal et al., 2004) is a prominent policy language 
based on RDFS. Although Rei leverages semantic web languages it mainly provides a 
generic framework to support different deontic concepts in the policy (i.e., permission, 
prohibition, obligation, and dispensation), and distributed policy management. However, 
in terms of specifying subjects and protection objects it uses generic conditions, not 
specific to semantic web. In contrast, our model is more focused on how to specify  
fine-grained policy rules on a knowledge base that is specified using OWL. More closer 
to our work, there exist access control solutions for RDF stores, although not in the 
context of SNSs. Reddivari et al. (2005) propose RAP, a rule-based model and 
architecture. In RAP, access control policy is written using Jena framework rules, and 
supports both permit and prohibit predicates, similar to OSNAC features. Although no 
experimental results are reported, RAP does not seem to be a very efficient access control 
method. For a given query to the RDF store, the result set is retrieved first. Then the 
access control inference is performed separately for every triple in the result in order to 
decide to include it in the final result. Our query augmentation approach performs more 
efficiently. The use of access primitive predicates in the query avoids excessive overhead 
of access checks leveraging the query engine itself. There are other approaches to access 
control on RDF stores that are comparatively less grounded (Dietzold and Auer, 2006; 
Dersingh et al., n.d.; Liu, Xie, Li et al., 2009), or support a specific policy such as  
multi-level security (Jain and Farkas, 2006). 

6 Conclusions 

In this paper, we proposed OSNAC, an ontology-based access control model based on 
semantic web standards that empowers the individual users of a SNS to express  
fine-grained access control policies on their related information. We proposed an 
ontology for SNSs to further demonstrate our approach. The key idea in OSNAC is to 
express the policies on the relations among concepts in the social network ontology. We 
also provide policy means for the system to define an authority model, that decides which 
users’ policies are effective on what protected resources. Moreover, the advanced policy 
rules provide more flexibility to the users, in delegating their power, and sharing the 
authority over specific objects, i.e., enabling multi-authority specification. We also 
implemented a framework prototype of the proposed model, evaluated its performance, 
and showed the applicability of our approach. 

OSNAC provides powerful access control features for the users of SNSs. Existence of 
privacy options such as “share a tagged post with friends of the friend I tag” in Facebook 
shows the need for such expressive policies. However, even savvy users of SNSs do not 
have to be able to compose access control policy rules manually. An SNS employing 
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OSNAC may simply provide a user interface similar to the current practices, but with 
more flexible options to its user; then, provide the access control engine with policy rules 
corresponding to the user choices. Investigating user-friendly interfaces to enable users to 
fully benefit from OSNAC features will be our future work. 
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