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Abstract: In this paper we propose a set of measures to model the concept of 
homogeneity in path-based image segmentation. We introduce the idea of path 
homogeneity as the aggregation of resemblances between consecutive pixels in 
the path. This resemblance is obtained from a measure of resemblance between 
neighbour pixels. In order to aggregate these resemblance values we propose 
the use of certain families of t-norms that verify a set of intuitive properties. 
We have studied the performance and behaviour of these functions through a 
set of experiments. Finally, we have applied these proposals to obtain fuzzy 
segmentations from real images. 
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1 Introduction 

Nowadays, expert systems and intelligent applications, like image database retrieval or 
robot vision (Chamorro-Martinez et al., 2003a; Ohno and Tsubouchi, 2001), takes as 
starting point (and even make decisions based on) the results of image segmentation 
processes, so they should provide the most accurate representation of the content in the 
image. Therefore, they should represent and model the imprecision and uncertainty in the 
image so that, following the ‘Last commitment principle’, all the information will be 
available in later stages of processing. 

Image segmentation consist on performing a partition of the image into connected 
subsets of pixels, called regions, on the basis of some homogeneity criterion. Many types 
of segmentation techniques have been proposed in the literature (Cheng et al., 2001; 
Chen and Lu, 2002), for example those based on histogram analysis (Gillet et al., 2001), 
clustering (Zhong and Yan, 2000), split and merge (Borges and Aldon, 2000), region 
growing (Moghaddamzadeh and Bourbakis, 1997), edge-based algorithms (Shiji and 
Hamada, 1999), and combinations of these techniques (Makrogiannis et al., 2001). Most 
of the proposals falling in the aforementioned categories, provide a crisp segmentation of 
images, where each pixel has to belong to a unique region. However, separation between 
regions is usually imprecise in natural images, as occurs in shadows, bright gradients  
and colour gradients, and information about this imprecision, needed by intelligent 
applications, is not often properly modelled by crisp techniques. To solve this  
problem, some approaches propose the definition of region as a fuzzy subset of pixels, in 
such a way that every pixel of the image has a membership degree to that region 
(Cavalho et al., 1999; Chamorro-Martinez et al., 2003b). 

The majority of the fuzzy techniques are based on fuzzy clustering, like C-means 
algorithms, which defines a set of centroids and compute the membership value for all 
the pixels in the image to each centroid (Yang et al., 2002). Other examples are those 
based on the definition of fuzzy histograms (Han and Ma, 2002) or fuzzy rule-based 
systems (Hacbouf and Mezhoud, 2003). Nevertheless, a drawback of most of these fuzzy 
approaches is that they donot take into account that a region must be topologically 
connected. As a consequence, pixels belonging to separate and different regions could be 
assigned to the same cluster. 

To face up to the above-mentioned problem, path-based techniques arise which 
incorporate spatial information related to adjacency between pixels. These approaches are 
based on the idea of fuzzy topology, introduced by Rosenfeld (1979), and the use of 
fuzzy connectivity to measure the relationship between any pair of pixels. Thus, given a 
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region representative point (called seed point), the path-based methods obtain the 
associated fuzzy region on the basis of the connectivity between the seed point and the 
rest of pixels in the image (Moghaddamzadeh and Bourbakis, 1997; Cavalho et al., 1999; 
Udupa and Samarasekera, 1996; Udupa and Samarasekera, 1996; Philipp-Foliguet  
et al., 2001; Maeda et al., 2000; Chien and Cheng, 2002). 

In the context of path-based image segmentation, an open problem is how to measure 
the homogeneity (Cheng and Li, 2003) of a ‘path’ connecting two pixels and, based  
on this measure, the membership degree of its fuzzy connectivity. Most of the approaches 
in the literature calculate heterogeneity from the set of distances between consecutive 
points in the path, the most common solution being the use of a simple aggregation 
function (sum or maximum) over this set of distances (Moghaddamzadeh and  
Bourbakis, 1997; Cavalho et al., 1999), and finally obtaining homogeneity as a kind of 
inverse of heterogeneity. However, to our knowledge, there is not a study about the 
goodness of different homogeneity functions applied to image segmentation. 

In this paper an experimental study of different aggregation functions to calculate 
homogeneity of a path is performed. To this purpose, a set of desirable properties are 
defined. In addition, a set of candidate functions that verify these properties are proposed. 
To analyse the performance of the studied functions, a set of experiments is presented 
with synthetic and real images. Using the homogeneity functions analysed in the 
experiment, the region-growing algorithm proposed in Chamorro-Martinez et al. (2003a) 
is used to obtain fuzzy regions by means of a fuzzy subset of connected pixels. 

The rest of the paper is organised as follows: Firstly, in Section 2, we introduce the 
path-based segmentation techniques. Next, in Section 3, we describe the desirable 
properties for the aggregation functions and propose some candidates that are also studied 
in this paper. Finally, the experimental results and the main conclusions are showed in 
Sections 4 and 5 respectively. 

2 Path-based image segmentation 

Path-based techniques incorporate spatial information related to adjacency  
between pixels (unlike the clustering-based methods, which classified each pixel without 
considering its neighbourhood). In these approaches, the segmentation is performed by 
measuring the connectivity between any pair of pixels as the homogeneity degree  
of the most homogeneous path joining them (Udupa and Samarasekera, 1996). In a  
fuzzy approach, given a set of seed points, fuzzy regions are obtained on the basis  
of the connectivity between each seed point and the rest of pixels in the image  
(Cavalho et al., 1999; Udupa and Samarasekera, 1996). 

In this section we present a path-based methodology to obtain image regions as fuzzy 
subsets of connected pixels. First, we need to fix the features that characterise a pixel.  
A fuzzy resemblance relation between neighbour pixels is obtained from a fuzzy 
resemblance relation between their corresponding feature vectors. This concept is 
extended later to any pair of pixels following the aforementioned path-based approach. 
The whole process is particularised for the case of colour features. 
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2.1 Pixel characterisation 

We characterise each pixel p by means of a vector of features pf
JJG

 

1 2[ ]n
p p p pf f f … f= , , ,
JJG

 (1) 

where a feature ,i
pf ∈R  with i ∈ {1,2, …, n}, is a numerical measure of any relevant 

characteristic that may be obtained for p. As an example of feature vector, let’s think 
about a three-band colour representation like RGB. 

In this work we are concerned with segmentation on the basis of colour, i.e., we want 
to obtain a set of homogeneously coloured regions. Hence, we are interested in colour 
features. 

2.2 Characterisation by colour 

Although the RGB is the most used model to acquire digital images, it is well known  
that it is not adequate for colour image segmentation. Instead, other colour spaces based 
on human perception (HSI, HSV or HLS) seem to be a better choice for this purpose 
(Russ, 1999). In these spaces, hue (H) represents the colour tone (for example, red or 
blue), saturation (S) is the amount of colour (for example, bright red or pale red) and the 
third component (called intensity, value or lightness) is the amount of light (it allows the 
distinction between a dark colour and a light colour). 

In this paper, the HSI colour space will be used (it offers many advantages in a 
segmentation process, for example, the use of hue avoids the shading effects). 
Geometrically, this colour space is represented as a cone, in which the axis of the cone is 
the grey scale progression from black to white, distance from the central axis is the 
saturation, and the direction is the hue (Figure 1). To calculate the HSI values from the 
RGB coordinates, the following transform is applied (Russ, 1999): 

3( )arctan
2

1 min{ }/
( ) / 3.

G BH
R G B

S R G B I
I R G B

 +=   − − 
= − , ,
= + +

 (2) 

Figure 1 HSI colour space 
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Therefore, in this paper a pixel p will be characterised using the three-band colour 
representation given by the HSI colour space: 

[ ].p p p pf H S I= , ,
JJG

 (3) 

2.3 Fuzzy resemblance between feature vectors 

In image segmentation, regions consist of a set of connected pixels whose features are 
resemblant, i.e., not different. Hence, we need to define resemblance between feature 
vectors, and a suitable tool for that purpose is the concept of fuzzy resemblance relation. 

In general, we define a fuzzy resemblance relation between (real) feature vectors as a 
fuzzy subset FR of Rn × Rn, with membership function 

: [0 1]n n× → ,FR R R  

verifying the reflexive and symmetric properties, i.e., given two feature vectors 

1 2 1 1 and , ( ) 1f f f f, =
JJJJG JJJJG JJJJG JJJJG

FR  and 1 2 2 1( ) ( ).f f f f, = ,
JJJJG JJJJG JJJJG JJJJG

FR FR  
The way resemblance between feature vectors is computed depends on the concrete 

features employed. Usually, resemblance between particular features or subvectors is 
calculated, depending on the specific feature domain, and then the resulting measures are 
aggregated. Finally, differences between subvectors of features may be aggregated using 
some appropriate aggregation function. 

Resemblance between colours: In this paper the resemblance between pixel features will 
be measured by means of the resemblance between colour features, which will be 
calculated on the basis of distances in the HSI colour space. 

Distance between colours in the HSI space 

The distance between two colour stimuli c1 = [H1,S1,I1] and c2 = [H2,S2,I2] can be defined 
on the basis of the differences between its components: 

1 2
1 2

1 2
1 2

1 2 1 2

1 2
1 2

if | |
( )

2
otherwise

( ) | |
| |( )

H

S

I

H H
H H

c c
H H

c c S S
I Ic c
MAXI

π
π

π
π

 −
− ≤∆ , = 

− −


∆ , = −
−

∆ , =

 (4) 

with MAXI being a constant equalising to the maximum level of intensity, usually  
255 (let us remark that ∆H, ∆S, ∆I ∈ [0,1]). Based on the previous distances, equation (5) 
will be used to measure the difference between colours (for the sake of simplicity, we 
have removed the parameters (c1,c2) in the notation ∆H, ∆S, and ∆I). Notice that 
∆C(c1,c2) ∈ [0,1]. 
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1 22 2 2
1 2

1 22 2

if or are achromatic
1( ) if and are chromatic[ ]
3

1 otherwise.[ ]
2

I i j

i jI S H

I S

p p

C c c p p/

/


∆

∆ , = ∆ + ∆ + ∆



∆ + ∆


 (5) 

In equation (5) we introduce the notions of chromaticity/achromacitiy to manage  
two well-known problems of the HSI representation: the imprecision of the hue when  
the intensity or the saturation is small, and the non-representativity of saturation  
under low levels of intensity. An often practical solution to solve this problem is to 
perform a partition of the colour space based on the chromaticity degree of each point.  
In equation (5), we propose to split the HSI space into three regions: chromatic,  
semi-chromatic and achromatic (Figure 1) on the basis of thresholds TI and TS on the 
components I and S respectively. A colour ci = [Hi,Si,Ii,] will be achromatic if Ii ≤ TI 
(black zone in Figure 1), semi-chromatic if Ii > TI and Si ≤ TS (grey zone in Figure 1), and 
chromatic if Ii > TI and Si ≤ TS (white zone in Figure 1). In this paper, the thresholds have 
been fixed empirically to TI = MAXI/5 and Ts = 1.5. 

Resemblance between colours in the HSI space 

On the basis of the distance between colours given by the equation (5), we define the 
resemblance between the feature vectors fp and fq corresponding to pixels p and q of an 
image IM as 

( , ) 1 ( , )p q p qf f C f f= − ∆
JJG JJG JJG JJG

FR  (6) 

where [ , , ] and [ , , ]p p p p q q q qf H S I f H S I= =
JJG JJG

 are the colour features vector of p and q 
respectively. 

2.4 Fuzzy connectivity between pixels 

In fuzzy path-based image segmentation, the notion of fuzzy connectivity of two pixels 
indicates to which degree those pixels belong to a group of the topologically connected 
pixels with resemblant features. Because of this, to measure the fuzzy connectivity 
between two pixels we do not use directly the resemblance between their feature vectors, 
but we use information about the homogeneity of the paths joining them. Before entering 
into details, let us introduce some definitions. 

Definition 2.1: A path between two pixels p and q is a sequence 

1 2( , , , )pq kr r rπ = …  (7) 

where k ≥ 1, such that r1 = p and rk = q and ri is connected to ri+1∀i ∈ {1, …, k – 1}. 
We note Πpq the set of possible paths linking the pixels p and q through pixels of the 

image IM. Also, we note P(πpq) the set of pixels in the path and rs
pq pqπ π  the subpath of 
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πpq that connects r and s with r,s ∈ P(πpq), and where r appears before s. Also, let 
πpq = {p1, …, pn}, then 1

1{ , , }.pq np pπ − = …  

Definition 2.2: The fuzzy homogeneity of a path πpq ∈ Πpq, is defined as a function 

: [0,1]pqhomo Π →  (8) 

calculated on the basis of the resemblances between consecutive points on the path. 
To measure the resemblances between consecutive points, the relation FR will be 

used. In Section 3 we shall study desirable properties of homo and we shall propose some 
candidate functions. 

Taking into account the homo function, we define the optimum path between p and q, 
ˆ pqπ , as the path that links both points with maximum homogeneity, in the following 

way. 

Definition 2.3: The optimum path between p and q is: 

{ ( )}.ˆ
argmax

pq pq pq pqhomoπ ππ = ∈ Π  (9) 

Based on this optimum path, we can get the measure of the connectivity between two 
pixels as follows. 

Definition 2.4: The fuzzy connectivity between two pixels p and q is the homogeneity of 
the optimum path from p to q: 

( ) ( ).ˆ pqconn p q homo π, =  (10) 

Let us remark that the homogeneity measure defined in equation (10) uses topographic 
information (paths linking the pixels) and resemblance between pixel features. 

2.5 Membership function for fuzzy regions 

In the above section we have introduced the use of paths to measure the fuzzy 
connectivity between any pair of pixels. Now this connectivity will be used to obtain 
fuzzy regions in an image IM by means of the region growing technique showed in 
algorithm 1. Concretely, in this approach a region is defined as a fuzzy subset of 
connected pixels, so it is necessary to define a measure that indicates the degree in which 
each pixel in the image IM belongs to each region. Under the assumption that a fuzzy 
region jsR  has a representative seed point rs (as in the region growing techniques), we 
introduce the following membership function associated to each region. 

Definition 2.5: The membership degree j ( )
sR pµ  of a pixel p in a fuzzy region jsR  is 

defined as: 

k ( ) ( )
s sR p conn p rµ = ,  (11) 

where rs is the seed point of j.sR  
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Using equation (11) we calculate the membership degree of every point p ∈ IM to 
each region j.sR  It allows us to obtain a set of fuzzy regions i i i i1 2{ }m…R R RΘ = , , ,  from a 
set of seed points Θ = {r1,r2, …, rm}. 

Algorithm 1 summarises the steps to compute a fuzzy region j.sR  The algorithm starts 
at the seed point, rs ∈ Θ, which has maximum membership. In each iteration, the pixel 
nearest to the contour of the region is incorporated to it. The nearest pixel, q, is searched 
between all the neighbours of pixels in the contour of the region, and is the one with 
maximum resemblance regarding its neighbour in region’s contour. In this way we obtain 
the optimum path for each pixel in the image to the given region’s seed, with a 
computational cost of O(n), where n is the number of pixels in the image. 

An algorithm for path-based fuzzy image segmentation only has to repeat the  
process in algorithm 1 for each seed. Therefore, the computational complexity of the 
fuzzy path-based segmentation algorithm is O(mn), m being the number of seeds. 

3 Measuring the homogeneity of a path 

In previous section we have described a methodology for path-based fuzzy segmentation. 
In this section we discuss about possible ways to measure the homogeneity of a path. 

3.1 Path homogeneity intuition 

Given a path πpq = r1 … rn. We want to come up with a function homo ˆ pqπ  measuring its 

homogeneity. For the sake of simplicity, let us define a resemblance relation PR between 
neighbour pixels, induced by the relation FR between their corresponding features, in 
the following way: 

( ) ( ).p qp q f f, = ,
JJJJJG JJJJJG

PR FR  (12) 

Hence, it seems natural to define homo( ˆ pqπ ) as an aggregation of the resemblances 
between consecutive points in the path ˆ pqπ , i.e., homo(πpq) = Aggr(ReSet(πpq)), where 
ReSet is the following bag (multiset) of values: 

1 1( ) { ( ) ( )}.pq k k k k pqReSet r r r rπ π+ += , | , ∈PR P  (13) 

In order to choose the aggregation function Aggr, we study first the set of properties that 
the homo function should verify. We propose the following minimal set of properties for 
homo. 

• Let πpq = p,q be a path consisting of two adjacent pixels. Then homo(πpq) = PR(p,q). 
As a consequence, if πpp = p,p then homo(πpp) = 1. 

• The homogeneity of a path should be less than or equal to the resemblance between 
consecutive pixels in the path, i.e., homo(πpp) ≤ min ReSet(πpp). The rationale behind 
this property is that a path is completely homogeneous if all the possible pairs of 
consecutive pixels are resemblant. Hence, the homogeneity of the path has an upper 
bound in the minimum value of resemblance between pairs of consecutive pixels. 
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• Monotony: ( ) ( ).rs
pq pqhomo homoπ π≥  

• Let πpq and πp′q′ be two paths such that ReSet(πpq) = ReSet(πp′q′).  
Then ( ) ( ).pq p qhomo homoπ π ′ ′=  In particular, 1( ) ( ).pq pqhomo homoπ π −=  

These properties suggest the use of a t-norm to aggregate the resemblances between 
consecutive pixels into the final homogeneity of the whole path, i.e., to define the 
aggregation function as 

( ( )) ( )pq pqAggr ReSet ReSetπ π= Λ  (14) 

were ∧ is a t-norm. 
To show that this function satisfies all the properties we have required is of little 

importance. 

3.2 Some candidates 

The choice of the t-norm to be used in equation (14) depends on the application at hand. 
In order to discuss about this issue we have performed some experiments, where we have 
employed the following operators: 

• Minimum 

• Algebraic product IA(a,b) = ab. 

• Bounded difference IB(a,b) = max(0,a + b – 1). 

• Dubois-Prade’s parametric t-norm: 

( )
max( )DP

abI a b
a b α

, =
, ,

 (15) 

with α ∈ [0,1]. 

• Weber’s parametric t-norm: 

1( ) max 0
1W

a b abI a b λ
λ

+ + − , = , + 
 (16) 

with λ > –1. 

• Frank’s parametric t-norm: 

( 1)( 1)( ) log 1
1

a b

F s
s sI a b

s
 − −, = + − 

 (17) 

with s > 0, s ≠ 1. 

For the sake of comparison, we have chosen amongst the proposed, the last three 
operators (Dubois-Prade’s, Weber’s and Frank’s parametric t-norms) because. 
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• They are parametric t-norms, so we can study different aggregation alternatives by 
using different values in parameters of these well-known operators. 

• We consider that in most of the cases, t-norms that yield values under those provided 
by the bounded difference are too strict because the resulting homogeneity values are 
too low in general, and hence significant membership values of fuzzy regions tends 
to be too low. Hence, we have chosen parametric operators that yield values between 
the minimum and the bounded difference t-norms. 

In addition, we have considered the first three t-norms, though they are known to be 
particular cases of the other three, since they as well as their properties are very well 
known. 
 

 

In the next section we show some experimental results in synthetic images as well as in 
real images, and we also discuss about using these t-norms, with several parameters, to 
calculate the homogeneity of a path. In addition we comment which of them should be 
used depending on the kind of region to segment. 

4 Experimental results 

Through experiments presented in this section we show the behaviour of our method in 
different situations. 

4.1 Synthetic images 

To test the behaviour of the aforementioned t-norms we have used synthetic images 
simulating different shades. Two of them, which serves to summarise our conclusions, 
are shown in Figures 2 and 3, where images of size 256 × 256 show a red toning down 
computed by means of Gaussian functions applied on the saturation component. 
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Graphical representations in Figure 2-A1–2-A3 show the evolution of the 
homogeneity degree along the path indicated by a black line in Figure 2, computed with 
different aggregation functions. Specifically, for each i ∈ {1, …, 255} in the X axis, the 
graphics show in the Y axis the homogeneity degree of the subpath from (0,0) to (i,i). 

Two main behaviours have been found among these t-norms. On one hand, we have 
functions with big slopes that reach the minimum homogeneity value in a point of the 
path close to the seed of the region. It means that all the pixels after this one have 
minimum membership degree, so the influence area of the region will be small.  
It produces regions where the fade is fast and strong at each bound, useful in regions with 
well defined contours or in those where it is necessary to find a frontier between regions 
whose bounds are fuzzy. This is the case of Weber t-norm when its parameter takes 
values under approximately –0.6. 

Figure 2 Results with a synthetic image generated by means of a Gaussian function simulating  
a toning down from a light incidence point 
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Figure 3 Results with a synthetic image generated by means of three Gaussian functions 
simulating toning down from three light incidence points 

 

On the other hand, small slopes imply small and similar homogeneity values, so 
minimum homogeneity will only be reached in a pixel very far away from the origin of 
the region. The limit case is given by functions like minimum or Dubois-Prade t-norm 
with parameter under 0.997, which have a point from which they are constant, so never 
reach minimum homogeneity. At the same time, homogeneity takes values in just a small 
part (the upper one) of the theoretical range. This kind of functions may be used, for 
example, in regions with a soft tone down where we want to have a slow decrease in 
membership value, letting the influence area of the seed extent through the whole region. 

Finally, between both extreme behaviours there is a wide range of functions like, for 
example, Frank’s t-norm, whose homogeneity curves for this example are showed in 
Figure 2-A3. In this case, when the parameter s increase, the function assigns higher 
homogeneity values to pixels in the path and capture soft decreasing shades. Distance 
between the graphic representation of consecutive functions is smaller as s grows. 

Image in Figure 3 shows three soft shades in saturation component. Central points of 
the shades are in (0,0), (128,128) and (255,255). Again we study the homogeneity degree 
of the subpath from (0,0) to (i,i), marked as a black line in the image in Figure 3. 

In this case we find that results are coherent regarding previous results, since  
t-norms keep the same behaviour aforementioned regarding their parameter, as  
Figure 3-A1–3-A3 shows. In addition, we observe that slope of all of the functions is 
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higher in this image than for image in Figure 2, because of the higher strength of the three 
shades. In spite of this, we can also notice the stress the two main behaviours pointed 
before: soft and small slopes, so high homogeneity values, for Frank’s t-norm (3-A2) and 
even more for Dubois-Prade t-norm (3-A1). On the other hand, Weber’s t-norm (3-A3) 
has the biggest slopes, and so homogeneity decreases down to 0 around the middle of the 
path, for most of the values of its parameter. 

Figure 3-A1–3-A3 show two vertical lines indicating the points where the curvature 
of the homogeneity functions change. These points, as expected, correspond to the pixels 
in the path, marked with crosses in the original image in Figure 3, where two shades 
meet. Finally, a third change in the curvature may be perceived: the origin of the central 
shade. 

4.2 Real images 

In these section we will show some examples of the usefulness of this variety of 
behaviours, applied to a real images shown in Figures 4–7. These images are 
representative of the kind of regions we may find in real images. All the types of regions 
we may find ranges between two extreme cases: on one hand, homogeneous regions with 
crisp contours, like in Figure 4; on the other hand fuzzy regions with fuzzy contours, like 
in Figure 7. Between these extreme cases we can find a variety of homogeneously 
coloured regions, whose contours become wider and fuzzier, as in Figures 5 and 6. 

Figure 4 Results with a natural image, with well-defined contours 
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Figure 5 Results with a medical image with contours that are not completely well defined 

 

Figure 6 Results with a natural image, which is an homogeneous region with a fuzzy contour 
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Figure 7 Results with an astrophysical image, corresponding to a fuzzy region with a fuzzy 
contour 

 

In all the figures in this section, the first row has the original image with the seed marked 
as a cross, while the second and third rows represent the membership value to a given 
seed, computed with a certain homogeneity function. In the second row, membership 
degrees are represented as grey levels; white colour means maximum membership value 
while black is the minimum. In the third one, a 3D representation of the region is shown, 
where the height of a point is its membership degree. Each of three columns, i.e., A, B 
and C, corresponds to the results obtained using a given t-norm. 

In the experiment showed in Figure 4, we have placed one seed in the red pepper,  
and we have computed the corresponding fuzzy region using different t-norms:  
Dubois-Prade t-norm with α = 0.997, Frank’s with s = 50, and Weber’s with λ = –0.9 in 
columns A – C of Figure 4, respectively. Here, we have an homogeneous red region, with 
well defined contours and, as expected, we notice that the highest membership degrees 
correspond to the red round pepper, and also a significant decrease of membership values 
out of the boundary of the pepper. The magnitude of that decrease, which depends on the 
t-norm employed, can be better appreciated in the second row of images. We can also see 
how in Figure 4-C1, almost the whole area surrounding the pepper takes the membership 
value 0, limiting the extent of the region to almost just the red round pepper. This is 
shown also in Figure 4-C2. In the other two cases, the support of the fuzzy region is 
almost the whole image, so they are less suitable to model the region. 

In this case, since we have a well-defined region, it makes sense to look for an α-cut 
bounding the area of the pepper. Since homogeneity function that best model the pepper 
region is Weber’s t-norm, we have found on it the α-cut in the first row for α ≈ 0.7. 
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In this image, we have used some of the aforementioned membership functions to 
show that any of them may be used. In the next examples we have used Frank’s t-norm 
with s = 0.05 (A1,A2), Bounded difference (B1,B2) and Weber’s t-norm with λ = –0.8 
(C1,C2) in all the cases, to be able to make comparisons. 

Another real image example to illustrate the performance of different homogeneity 
functions is in Figure 5, that corresponds to an homogeneous regions with a not-well 
defined contours, wider and fuzzier than in the case of peppers image. Therefore, the 
function that best models is also Weber’s t-norm, but with a parameter value that makes it 
softer than in the case of peppers. The α-cut representing the region on this t-norm 
(α ≈ 0.7), is in the first row. Figure 5-C1, show how Weber function is, as expected, more 
restrictive in its consideration of homogeneity than the other t-norms. So with this 
function, dissimilarity between consecutive pixels produces a higher decrease in 
homogeneity values than with Bounded difference or Frank t-norm. As a consequence, 
the support of the fuzzy region computed with Weber is smaller than in the other cases: 
almost just the central dark orange region. It makes this function more suitable to detect 
the central area, since the other functions extents the fuzzy region over the orange bounds 
to the whole image. It is also interesting noticing what Figures 5-A2, B2 shows.  
In previous section we mentioned that the real range of homogeneity values is smaller for 
homogeneity functions with small slopes. This figure shows what it means at the time of 
segmentation: membership values vary in a small range, as the raised 3D graphic shows. 

In the preceding examples, we have seen that homogeneity functions with big slopes 
in Figure 2, very sensitive to variability in the image, are suitable to model ‘crisp’ regions 
or regions with not too fuzzy contours. This is because in the moment the path goes out 
of an homogeneous area the homogeneity value abruptly decreases. 

In the next two examples, it is shown that functions with small slopes are suitable for 
images with imprecise contours like in Figure 6 or even regions completely fuzzy like the 
one in Figure 7. 

As can be seen in Figures 6-C1 and 7-C1, a high slope function will not be able to 
represent the whole fuzzy colour shade region. In this case a softer function would be 
more appropriated to adapt to the extent of the whole colour shade (in Figure 6) or the 
fuzzy region (in Figure 7). It is seen in images A1 in both figures: Figure 6-A1 shows 
how the support of the sun region extends through almost the whole tone down, while 
Figure 7-A1 shows how the fuzzy red nebula is better model by Frank t-norm, since 
softer in the transition from the region to the background. 

5 Conclusions 

As many intelligent applications demand, we have proposed a set of fuzzy measures that, 
combined with path-based fuzzy image segmentation techniques, lead us to obtain 
representations, by means of fuzzy sets, of the imprecision inherent to regions in images. 

Path-based fuzzy image segmentation takes a colour image and yields a set of fuzzy 
regions, each region being a fuzzy subset of topologically connected pixels. As a way to 
determine membership degrees, we have proposed a fuzzy approach to calculate the 
homogeneity of a path. The homogeneity degree of a path is obtained as an aggregation 
of resemblances between colours of adjacent pixels in the path. Starting from a set of 
intuitive properties, we have chosen to employ t-norms as aggregation operators. 
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We have studied the use of different t-norms that present a wide range of behaviours, 
giving us a powerful and flexible tool to adapt membership functions of fuzzy regions to 
any kind of colour image, depending on its purpose and characteristics. 

In summary, two main different behaviours of t-norms have been found. On one 
hand, we have functions like Weber’s functions with λ ∈ (–1,–0.5], that are the most 
suitable ones when we are looking for homogeneous regions with relatively precise 
bounds (for example, unicellular organisms in biomedical images). On the other hand, 
functions like bounded difference, Dubois and Prade or Frank t-norm, are useful when 
bounds of the region are imprecise (for example, nebula images in astronomy, 
intercellular material in biomedical images, or toning down images like that seen in 
Figure 6). In general, from the order relation existing between t-norms, from minimum to 
the bounded difference, we obtain different slopes for the membership functions, 
allowing us to model all the types of regions between two extreme cases from regions 
with crisp contours to regions with fuzzy ones. These conclusions have been made after 
obtained studying several images from different environs. 

As future work we shall study an automatic procedure to select the most suitable 
function depending on the characteristics of the regions in the image. 
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